
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

105 | P a g e

http://ijacsa.thesai.org/

An Architectural Decision Tool Based on Scenarios

and Nonfunctional Requirements

Mr. Mahesh Parmar

Department of Computer

Engineering

Lakshmi Narayan College of

Tech.(LNCT).

Bhobal (MP), INDIA

Email:maheshparmarcse@gmail.com

Prof. W.U. Khan

Department of Computer

Engineering
 Shri G.S. Institute of Tech. &

Science(SGSITS)

Indore (M.P.), INDIA

Email : wukhan@rediffmail.com

Dr. Binod Kumar

HOD & Associate Professor, MCA

Department.

Lakshmi Narayan College of

Tech.(LNCT).

Bhobal (MP), INDIA

Email : binod.istar.1970@gmail.com

Abstract—Software architecture design is often based on

architects intuition and previous experience. Little

methodological support is available, but there are still no

effective solutions to guide the architectural design. The most

difficult activity is the transformation from non-functional

requirement specification into software architecture. To achieve

above things proposed “An Architectural Decision Tool Based on

Scenarios and Nonfunctional Requirements”. In this proposed

tool scenarios are first utilized to gather information from the

user. Each scenario is created to have a positive or negative effect

on a non-functional quality attribute. The non-functional quality

attribute is then computed and compared to other non-quality

attributes to relate to a set of design principle that are relevant to

the system. Finally, the optimal architecture is selected by finding

the compatibility of the design principle.

Keywords- Software Architecture, Automated Design, Non-

functional requirements, Design Principle.

I. INTRODUCTION

Software architecture is the very first step in the software
lifecycle in which the nonfunctional requirements are
addressed [7, 8]. The nonfunctional requirements (e.g.,
security) are the ones that are blamed for a system re-
engineering, and they are orthogonal to system functionality
[7]. Therefore, software architecture must be confined to a
particular structure that best meets the quality of interest
because the structure of a system plays a critical role in the
process (i.e., strategies) and the product (i.e., notations) utilized
to describe and provide the final solution.

In this paper, we discuss an architectural decision tool
based on a software quality discussed in [14] in order to select
the software architecture of a system. In [14], we proposed a
method that attempted to bridge the chasm between the
problem domain, namely requirement specifications, and the
first phase in the solution domain, namely software
architecture. The proposed method is a systematic approach
based on the fact that the functionality of any software system
can be met by all kinds of structures but the structure that also
supports and embodies non-functional requirements (i.e.,
quality) is the one that best meets user needs. To this end, we
have developed a method based on nonfunctional requirements

of a system. The method applies a scenario-based approach.
Scenarios are first utilized to gather information from the user.
Each scenario is created to have a positive or negative affect on
a non-functional quality attribute. When creating scenarios, we
decided to start with some basic scenarios involving only single
quality attribute, multiple scenarios were then mapped to each
attribute that would have a positive or negative affect when the
user found the scenario to be true. Finally, it became clear to us
that we needed to allow each scenario to affect an attribute
positively or negatively in varying degrees.

In this work, we have studied and classified architectural
styles in terms of design principles, and a subset of
nonfunctional requirements. These classifications, in turn, can
be utilized to correlate between styles, design principles, and
quality. Once we establish the relationship between, qualities,
design principle, and styles, we should be able to establish the
proper relationship between styles and qualities, and hence we
should be able to select an architectural style for a given sets of
requirements [8], [13].

II. NON-FUNCTIONAL REQUIREMENT

 Developers of critical systems are responsible for
identifying the requirements of the application, developing
software that implements the requirements, and for allocating
appropriate resources (processors and communication
networks). It is not enough to merely satisfy functional
requirements. Non-functional requirement is a requirement that
specifies criteria that can be used to judge the operation of a
system, rather than specific behaviours. This should be
contrasted with functional requirements that define specific
behaviour or functions. Functional requirements define what a
system is supposed to do whereas non-functional requirements
define how a system is supposed to be. Non-functional
requirements are often called qualities of a system. Critical
systems in general must satisfy non-functional requirement
such as security, reliability, modifiability, performance, and
other, similar requirements as well. Software quality is the
degree to which software possesses a desired combination of
attributes [15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

106 | P a g e

http://ijacsa.thesai.org/

III. SCENARIOS

Scenarios are widely used in product line software
engineering: abstract scenarios to capture behavioral
requirements and quality-sensitive scenarios to specify
architecturally significant quality attributes. Scenario system
specific means translating it into concrete terms for the
particular quality requirement. Thus, a scenario is "A request
arrives for a change in functionality, and the change must be
made at a particular time within the development process
within a specified period." A system-specific version might be
"A request arrives to add support for a new browser to a Web-
based system, and the change must be made within two
weeks." Furthermore, a single scenario may have many system-
specific versions. The same system that has to support a new
browser may also have to support a new media type. A quality
attribute scenario is a quality-attribute-specific requirement

The assessment of a software quality using scenarios is
done in these steps:

A. Define a Representative set of Scenarios

A set of scenarios is developed that concretizes the actual
meaning of the attribute. For instance, the maintainability
quality attribute may be specified by scenarios that capture
typical changes in requirements, underlying hardware, etc.

B. Analyses the Architecture

Each individual scenario defines a context for the
architecture. The performance of the architecture in that
context for this quality attribute is assessed by analysis. Posing
typical question [15] for the quality attributes can be helpful.

C. Summaries the Rresults

The results from each analysis of the architecture and
scenario are then summarized into overall results, e.g., the
number of accepted scenarios versus the number not accepted.
We have proposed a set of six independent high-level non-
functional characteristics, which are defined as a set of
attributes of a software product by which its quality is
described and evaluated. In practice, some influence could
appear among the characteristics, however, they will be
considered independent to simplify our presentation. The
quality characteristics are used as the targets for validation
(external quality) and verification (internal quality) at the
various stages of development. They are refined (see Figure 1)
into sub-characteristics, until the quality attribute are obtained.
Sub characteristics (maturity, fault tolerance, confidentiality,
changeability etc) are refined into scenarios. Each non-
functional characteristic may have more than one sub
characteristics is refined into set of scenarios. When we
characterized a particular attribute then set of scenarios
developed to describe it.

Figure 1. Analysis Scenario Diagram

IV. THE APPROACH

To establish the correct relationship between architectural
styles using non functional requirements. The proposed
recommendation tool consists of four activities as follows:

 Create a set of simple scenarios relevant to a single

nonfunctional requirement.

 Identify those scenarios that may have positive or

negative impacts on one or more nonfunctional

requirements

 Establish a relationship between a set of quality

attributes obtained in step 2 to a set of universally

accepted design principles (tactics).

 Select a software architecture style that supports set

of design principles identified by step 3.

A. Quality Attribute

Product considerations and market demands require
expectations or qualities that must be fulfilled by a system’s
architecture. These expectations are normally have to do with
how the system perform a set of tasks (i.e., quality) rather than
what system do (i.e., functionality). Functionality of a system,
which is the ability of a system to perform the work correctly
for which it was intended, and the quality of a system, is
orthogonal to one another.

In general, the quality attributes of a system is divided
between two groups: 1) Operational quality attributes such as
performance, and 2) non-operational, such as modifiability [8].
In this study, we have selected both operational and non-
operational quality attributes as follows:

 Reliability (the extent with which we can expect a

system to do what it is supposed to do at any given

time)

 Security (the extend by which we can expect how

secure the system is from tampering/ illegal access)

 Modifiability (how difficult or time consuming it is to

perform change on the system)

 Performance (how fast the system will run, i.e.,

throughput, latency, number of clock cycles spend

finishing a task)

 Usability (the ease by which the user can interact

with system in order to accomplish a task),

 Availability (the extend by which we expect the

system is up and running)

 Reusability (the extent by which apart or the entire

system can be utilized)

Usability involves both architectural and nonarchitectural

aspects of a system. Example of nonarchitectural features
includes graphical user interface (GUI); examples of
architectural features include, undo, cancel, and redo.
Modifiability involves decomposition of system functionality
and the programming techniques utilized within a component.
In general, a system is modifiable if changes involve the
minimum number of decomposed units. Performance involves
the complexity of a system, which is the dependency (e.g.,
structure, control, and communication) among the elements of

NFR

Characteristics

Quality

Attribute

Sub-

Characteristics

Scenarios

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

107 | P a g e

http://ijacsa.thesai.org/

a system, and the way system resources are scheduled and/or
allocated. In general, the quality of a system can never be
achieved in isolation. Therefore, the satisfaction of one quality
may contribute (or contradict) to the satisfaction of another
quality [12]. For example, consider security and availability;
security strives for minimally while availability strives for
maximally. Or, it is difficult to achieve a high secure system
without compromising the availability of that system. In this
case security contradicts the availability. This can be easily
solved by negotiating with the user to make her/his mind.
Another example has to do with security and usability: security
inhabits usability because user must do additional things such
as creating a password. Table I documents the correlation
among quality attributes.

To summaries, five types of quality attributes relationships
are identified. These relationships are defined by some
numerical values which belong to 0 to 1. These relationships
are: Very strong(0.9), Strong(0.7), Average(0.5), Below
average(0.3), Very low(0.1), Not available(0.0).

TABLE I. QUALITY VS QUALITY

S.N. Quality

Attribute

Quality

Attribute

Relationship values

1) Reliability Performance Very Strong 0.9

 Security Very Strong 0.9

2) Performance Reliability Very Strong 0.9

 Security Below Average 0.3

3) Security Reliability Average 0.5

 Performance Very Low 0.1

B. Design Principle

 According to [1, 2], a design can be evaluated in many
ways using different criteria. The exact selection of criteria
heavily depends on the domain of applications. In this work,
we adopted what is known as commonly accepted design
principles [3, 6, 7], and a set of design decisions known as
tactics [3, 8, 13, 14]. Tactics are a set of proven design
decisions and are orthogonal to particular software
development methods. Tactics and design principle have been
around for years and originally advocated by people like Parnas
and Dijkstra. Our set of design principles and tactics includes:
1) Generality (or abstractions), 2)Locality and separation of
concern, 3) Modularity, 4)Concurrency 5) Replicability, 6)
Operability, and 7) Complexity.

Examples of design principles and tactics include a high
degree of parallelism and asynchronized communication is
needed in order to partially meet the performance requirement;
a high degree of replicability (e.g., data, control, computation
replicability) is needed in order to partially meet availability; a
high degree of locality, modularity, and generality are needed
in order to achieve modifiability and understandability; a high
degree of controllability, such as authentication and
authorization, is needed in order to achieve security and
privacy.; and a high degree of locality, operatability (i.e., the
efficiently by which a system can be utilized by end-users) is

needed in order to achieve usability. Table II shows the
correlation among qualities and tactics.

TABLE II. TACTICS VS QUALITIES

C. Architecture Styles

 In order to extract the salient features of each style we
have compiled its description, advantages and disadvantages.
This information was later utilized to establish a link among
styles and design principles. We have chosen, for the sake of
this work, main/subroutine, object-oriented, pipe/filter,
blackboard, client/server, and layered systems.

A main/subroutine (MS) architectural style advocates top-
down design strategy by decomposing the system into
components (calling units), and connectors (caller units). The
coordination among the units is highly synchronized and
interactions are done by parameters passing.

An Object-oriented (OO) system is described in terms of
components (objects), and connectors (methods invocations)
components are objects. Objects are responsible for their
internal representation integrity. The coordination among the
units is highly asynchronized and interactions are done by
method invocations. The style supports reusability, usability,
modifiability, and generality.

A Pipe/filter (P/F) style advocates bottom-up design
strategy by decomposing a system in terms of filters (data
transformation units) and pipes (data transfer mechanism). The
coordination among the filters are asynchronized by
transferring control upon the arrival of data at the input.
Upstream filters typically have no control over this behavior.

A Client/server (C/S) system is decomposed into two sets
of components (clients or masters), and (servers or slaves). The
interactions among components are done by remote procedure
calls (RPC) type of communication protocol. The coordination
and control transformation among the units are highly
synchronized.

A Blackboard (BKB) system is similar to a database
system; it decomposes a system into components (storage and
computational units known as knowledge sources (KSs). In a
Blackboard system, the interaction among units is done by
shared memory. The coordination among the units, for most
parts, is asynchronized when there is no race for a particular
data item, otherwise it is highly synchronized. The blackboard

S.N Tactics Quality

Attribute

Relationship values

1) Generality Reliability Very Strong 0.9

 Security Average 0.5

 Performance Very Strong 0.9

2) Locality Reliability Very Strong 0.9

 Security Not Available 0.0

 Performance Very Strong 0.9

3) Modularity Reliability Very Strong 0.9

 Security Very Strong 0.9

 Performance Strong 0.7

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

108 | P a g e

http://ijacsa.thesai.org/

style enjoys some level of replications such data (e.g., the
distributed database and the distributed blackboard systems)
and computation.

A Layered (LYR) system typically decomposes a system
into a group of components (subtasks). The communication
between layers is achieved by the protocols that define how the
layers will interact. The coordination and control
transformation among the units (or subtasks) is highly
synchronized and interactions are done by parameters passing.
A Layered system incurs performance penalty stems from the
rigid chain of hierarchy among the layers. Table III illustrates
the relationships among design principles/tactics.

V. PROPOSED WORK

The implementation of our tool consists of six different
modules to perform its functions. Average weight module
calculates average weight corresponding to selected scenarios.
Effective weight module calculates effective weight of each
nonfunctional requirement and each nonfunctional requirement
has list of scenarios. Scenarios and its corresponding weight are
selected by user. Quality attribute weight module calculates
quality attribute weight. It depends on average and effective
module response. Quality attribute rank module calculates the
rank of quality attribute. It depends on quality attribute weight
module. Tactics rank module calculates tactics rank and
architecture style rank module calculates the architecture rank.

TABLE III. ARCHITECTURAL STYLES VS TACTICS

These are described in detail as follows.

 Calculate average weight of each quality attribute that

is selected by user. In this step user first selects

scenarios corresponding to non-functional

requirement and chooses weight according to his

choice. Then calculate the average weight for each

non functional requirement by using following

formula

 AQAi = Average weight of ith quality attribute

QWtn = Weight of n
th selected scenario.

 n = Number of scenarios

N = Total number of selected scenarios

 Calculate effective weight of each quality attribute.

Each scenario may affect more than one scenarios.

All effective scenarios questions for each scenario are

stored in the effect table in the database. Effect table

maintains the list of effected scenarios questions.

Calculate effective weight for each quality attribute

by using following formula.

 EWtQAi = Effective weight of ith quality attribute

 EQn = nth Effective scenario.

 e = Number of effective scenarios.

 m = Number of scenarios

 Calculate quality attribute weight for each quality

attribute. Using the output of step1 and step 2 we

calculate the quality attribute weight by the following

formula.

 =
 QAWti = ith quality attribute weight.

 Calculate quality attribute rank. Quality to quality

relationship table is stored in the database which

maintains relationship values of quality to quality

attribute. Calculate quality attribute rank using

quality to quality relationship table by following

formula.
 QARi = ith quality attribute rank.

 q = Number of quality attribute.

QtoQq = qth Quality to quality relationship

 Calculate tactics rank. Quality to tactics relationship

table is stored in the database which maintains

relationship values of quality to tactics. Calculate

tactics rank using quality to tactics relationship table

by following formula.

 TRi = ith Tactics rank.

QtoTt = tth Quality to tactics relationship.

 t = Number of tactics.

 Calculate architecture style rank. Tactics to

architecture style relationship table is stored in the

database which maintains relationship values of

tactics to architecture style. Calculate architecture

style rank using tactics to architecture style

relationship table by flowing formula.

N

QWtn

AQAi

n

 1

m e

QWtnEQnEWtQAi
1 1

*

QAWti EWtQAiAQAi

q

QtoQqQAWtiQARi
1

*

t

QtoTtQARiTRi
1

*

a

TtoASaTRiASRi
1

*

S.N Architecture

Style

Tactics Relationship values

1) Pipe & Filter Generality Very Strong 0.9

 Locality Very Strong 0.9

 Modularity Average 0.5

2) Black Board Generality Very Strong 0.9

 Locality Very Strong 0.9

 Modularity Very Strong 0.9

3) Object Oriented Generality Very Strong 0.9

 Locality Very Strong 0.9

 Modularity Very Strong 0.9

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

109 | P a g e

http://ijacsa.thesai.org/

 ASRi = ith Architecture style rank.

 TtoASa = ith Tactics to architecture style relationship.

 a = Number of architecture styles

First user will click the main page then main page opens

and he will select non functional requirements. Now he has to
select scenario questions and corresponding weight according
to his requirement. A single user can select more than one non
functional requirement

Now the user will select the submit button and Result page
will open and he would be able to see the Average Weight,
Effective Weight, Quality Attribute Weight, Quality Attribute
rank, Tactics Rank and Architectural Style and Rank.

VI. RELATED WORK

The work in this paper is inspired by the original work in
the area of architectural design guidance tool by Thomas Lane
[4], and it is partially influenced by the research in [2, 5], [6],
of [7], [8], [9], [11], [12], [13], and [14]. In [5], NFRs, such as
accuracy, security, and performance have been utilized to study
software systems.

Figure 2 . A simple form-based Scenario

Figure 3. The evaluation results

In [6], the authors analyzed the architectural styles using
modality, performance, and reusability. Their study provided

preliminary support for the usefulness of architectural styles the
work by Bass et al. [8] introduces the notion of design principle
and scenarios that can be utilized to identify and implement
quality characteristics of a system. In [7], the discussed the
identification of the architecturally significant requirements its
impact and role in assessing and recovering software
architecture. In [9], the authors proposed an approach to elicit
NFRs and provide a process by which software architecture to
obtain the conceptual models.

In [14], the authors proposed a systematic method to extract
architecturally significant requirements and the manner by
which these requirements would be integrate into the
conceptual representation of the system under development.
The method worked with the computation, communication, and
coordination aspects of a system to select the most optimal
generic architecture. The selected architecture is then deemed
as the starting point and hence is subjected to further
assessment and/or refinement to meet all other user’s
expectations.

In [13], the authors developed a set of systematic
approaches based on tactics that can be applied to select
appropriate software architectures. More specifically, they
developed a set of methods, namely, ATAM (architecture
Tradeoff Analysis Method, SAAM (Software Architecture
Analysis Method, and ARID (Active Reviews for Intermediate
Designs. Our approach has been influenced by [13]; we did
applied tactics and QAs to select an optimal architecture.
However, the main differences between our approach and the
methods developed by Clements et al. [13] are 1) our method
utilizes different set of design principle and proven design, 2)
establishes the correlation within QAs, tactics using tables, 3)
establishes the proper correlation between QAs, tactics, and
architectural styles using a set of tables and 4) the
implementation of scenarios, which meant to increase the
accuracy of the evaluation and architectural recommendations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we created a tool based on a set of scenarios
that allows the user to select an architecture based on non-
functional requirements. Non-functional requirements are then
mapped to tactics using weighting. The architecture is then
selected by its compatibility with the high-scoring design
principle. We believe this approach has a lot of merits.
However, more research work will be required to create a
complete set of scenarios having a closer coupling with quality
attributes. Additional work may also be required in fine-tuning
the mappings between nonfunctional and functional
requirements.

Currently, our tool can be utilized to derive and/or
recommend architectural styles based on NFR. To validate the
practicality and the usefulness of our approach, we plan to
conduct a series of experiments in the form of case studies in
which the actual architectural recommendations from our tool
will be compared to the design recommendations by architects.
We have discussed some quality attributes, some design tactics
and some architecture styles. This needs some more research
work on other quality attributes, tactics and architecture styles.
New research works on non functional requirements might be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

110 | P a g e

http://ijacsa.thesai.org/

done by project members in the future. Our tool provides
facility for addition, deletion and modification of new non-
functional requirements, new tactics, and new architecture
styles.

REFERENCES

[1] R. Aris. Mathematical modeling techniques. London; San Francisco:
Pitman (Dover, New York), 1994.

[2] N. Medvidovic, P. Gruenbacher, A. Egyed, and B. Boehm. Proceedings
of the 13th International Conference on Software Engineering and
Knowledge Engineering (SEKE’01), Buenos Aires, Argentina, June
2001.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture: A System of Patterns. John
Wiley, 1996.

[4] T. Lane. User Interface Software Structure, Ph.D. thesis. Carnegie
Mellon University, May 1990.

[5] L. Chung, and B. Nixon. Dealing with Non Functional Requirements:
Three experimental Studies of a Processes oriented approach. Process
dings of the International Conference on Software Engineering
(ICSE’95), Seattle, USA, 1995.

[6] M. Shaw, and D. Garlan. Software Architecture: Perspective on an
Emerging Discipline. Prentice Hall, 1996.

[7] M. Jazayeri, A. Ran, and F. Linden. Software Architecture for Product
Families., Addison/Wesley, 2000.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,
second edition, Addison/Wesley. 2003.

[9] L. Cysneiros, and J. Leite. Nonfunctional Requirements: From elicitation
to Conceptual Models. IEEE Transaction on Software Engineering,
vol.30, no.5, May 2004.

[10] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy. Using
the WinWin spiral model: a case study IEEE Computer, 1998.

[11] A. Lamsweerde. From System Goals to Software Architecture. In
Formal Methods for Software Architecture by LNCS 2804, Springer-
Verlag, 2003.

[12] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Nonfunctional
Requirements in Software Engineering. Kluwer Academic, Boston,
2000.

[13] P. Clements, R. Kazman, and M. Klein. Evaluating Software

Architectures: Methods and Case Studies. Addison Wesley, 2002.

[14] H. Reza, and E. Grant. Quality Oriented Software Architecture. The
IEEE International Conference on Information Technology Coding and
Computing (ITCC’05), Las Vegas, USA, April 2005.

[15] J.A. McCall, Quality Factors, Software Engineering Encyclopedia, Vol
2, J.J. Marciniak ed., Wiley, 1994, pp. 958 – 971

[16] B. Boehm and H. Hoh, “Identifying Quality-Requirement Conflicts,”
IEEE Software, pp. 25-36, Mar. 1996.

[17] M. C. Paulk, “The ARC Network: A case study,” IEEE Software, vol. 2,
pp. 61-69, May 1985.

[18] M. Chen and R. J. Norman, “A framework for integrated case,” IEEE
Software, vol. 9, pp. 18-22, March 1992.

[19] S. T. Albin, The Art of Software Architecture: Design Methods and
Techniques, John Wiley and Sons, 2003

[20] P. Bengtsson, Architecture-Level Modifiability Analysis, Doctoral
Dissertation Series No.2002-2, Blekinge Institute of Technology, 2002.

AUTHORS PROFILE

Mr. Mahesh Parmar is Assistant Professor in CSE Dept. in LNCT Bhopal and

having 2 years of Academic and Professional experience. He has published 5

papers in International Journals and Conferences. He received M.E. degree in

Computer Engineering from SGSITS Indore in July 2010. His other

qualifications are B.E.(Computer Science and Engineering, 2006). His area of

expertise is Software Architecture and Software Engineering

Dr.W.U.Khan, has done PhD (Computer Engg) and Post Doctorate (Computer

Engg). He is Professor in Computer Engineering Department at, Shri G.S.

Institute of Technology and Science, Indore, India.

Dr. Binod Kumar is HOD and Associate professor in MCA Dept. in LNCT

Bhopal and having 12.5 years of Academic and Professional experience. He is

Editorial Board Member and Technical Reviewer of Seven (07) International

Journals in Computer Science. He has published 11 papers in International

and National Journals. He received Ph.D degree in Computer Science from

Saurastra Univ. in June 2010. His other qualifications are M.Phil (Computer

Sc, 2006), MCA(1998) and M.Sc (1995). His area of expertise is Data Mining,

Bioinformatics and Software Engineering.

