
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

111 | P a g e  

http://ijacsa.thesai.org/ 

To Generate the Ontology from Java Source Code  
OWL Creation 

 

Gopinath Ganapathy 1   

1 Department of Computer Science,  

Bharathidasan University,  

Trichy, India. 

gganapathy@gmail.com 

S. Sagayaraj 2 

2 Department of Computer Science,  

Sacred Heart College,  

Tirupattur, India 

  sagisara@gmail.com 

 

 

Abstract—Software development teams design new components 

and code by employing new developers for every new project. If 

the company archives the completed code and components, they 

can be reused with no further testing unlike the open source code 

and components. Program File components can be extracted 

from the Application files and folders using API’s. The proposed 

framework extracts the metadata from the source code using 

QDox code generators and stores it in the OWL using Jena 

framework automatically. The source code will be stored in the 

HDFS repository. Code stored in the repository can be reused for 

software development. By Archiving all the project files in to one 

ontology will enable the developers to reuse the code efficiently. 

Keywords- component: Metadata; QDox, Parser, Jena, Ontology, 

Web Ontology Language  and   Hadoop Distributed File System;. 

I.  INTRODUCTION 

Today’s Web content is huge and not well-suited for human 
consumption. An alternative approach is to represent Web 
content in a form that is more easily machine-processable by 
using intelligent techniques. The machine processable Web is 
called the Semantic Web. Semantic Web will not be a new 
global information highway parallel to the existing World 
Wide Web; instead it will gradually evolve out of the existing 
Web [1].  Ontologies are built in order to represent generic 
knowledge about a target world [2]. In the semantic web, 
ontologies can be used to encode meaning into a web page, 
which will enable the intelligent agents to understand the 
contents of the web page. Ontologies increase the efficiency 
and consistency of describing resources, by enabling more 
sophisticated functionalities in development of knowledge 
management and information retrieval applications.  From the 
knowledge management perspective, the current technology 
suffers in searching, extracting, maintaining and viewing 
information. The aim of the Semantic Web is to allow much 
more advanced knowledge management system. 

For every new project, Software teams design new 
components and code by employing new developers. If the 
company archives the completed code and components, it can 
be used with no further testing unlike open source code and 
components. File content metadata can be extracted from the 
Application files and folders using API’s. During the 
development each developer follows one's own methods and 

logic to perform a task.  So there will be different types of 
codes for the same functionalities. For instance to calculate the  

factorial, the code can be with recursive, non-recursive process 
and with different logic. In organizational level a lot of time is 
spent in re-doing the same work that had been done already. 
This has a recursive effect on the time of development, testing, 
deployment and developers. So there is a base necessity to 
create system that will minimize these factors.  

Code re-usability is the only solution for this problem. This 
will reduce the development of an existing work and testing. 
As the developed code has undergone the rigorous software 
development life cycle, it will be robust and error free. There is 
no need to re-invent the wheel. Code reusability was covered in 
more than two decades. But still it is of syntactic nature. The 
aim of this paper is to extract the methods of a project and store 
the metadata about the methods in the OWL. OWL stores the 
structure of the methods in it. Then the code will be stored in 
the distributed environment so that the software company 
located in various geographical areas can access. To reuse the 
code, a tool can be created that can  extract the metadata such 
as function, definition, type, arguments, brief description, 
author, and so on from the source code and store them in OWL. 
This source code can be stored in the HDFS repository. For a 
new project, the development can search for components in the 
OWL and retrieve them at ease[3].    

The paper begins with a note on the related technology 
required  in Section 2. The detailed features and framework for 
source code extractor is found in Section 3. The metadata 
extraction from the source code is in section 4. The metadata 
extracted is stored in OWL using Jena framework is in section 
5. The implementation scenario is in Section 6. Section 7 deals 
with the findings and future work of the paper. 

II. RELATED WORK 

A. Metadata 

Metadata is defined as “data about data” or descriptions of 
stored data. Metadata definition is about defining, creating, 
updating, transforming, and migrating all types of metadata that 
are relevant and important to a user’s objectives. Some 
metadata can be seen easily by users, such as file dates and file 
sizes, while other metadata can be hidden.  Metadata standards 
include not only those for modeling and exchanging metadata, 

mailto:sagisara@gmail.com


(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

112 | P a g e  

http://ijacsa.thesai.org/ 

but also the vocabulary and knowledge for ontology [4]. A lot 
of efforts have been made to standardize the metadata but all 
these efforts belong to some specific group or class. The 
Dublin Core Metadata Initiative (DCMI) [5] is perhaps the 
largest candidate in defining the Metadata. It is simple yet 
effective element set for describing a wide range of networked 
resources and comprises 15 elements. Dublin Core is more 
suitable for document-like objects. IEEE LOM [6], is a 
metadata standard for Learning Objects. It has approximately 
100 fields to define any learning object. Medical Core 
Metadata (MCM) [7] is a Standard Metadata Scheme for 
Health Resources. MPEG-7 [8] multimedia description 
schemes provide metadata structures for describing and 
annotating multimedia content. Standard knowledge ontology 
is also needed to organize such types of metadata as content 
metadata and data usage metadata.  

B. Hadoop &  HDFS  

The Hadoop project promotes the development of open 
source software and it supplies a framework for the 
development of highly scalable distributed computing 
applications [9]. Hadoop is a free, Java-based programming 
framework that supports the processing of large data sets in a 
distributed computing environment and it also supports data 
intensive distributed application. Hadoop is designed to 
efficiently process large volumes of information[10]. It 
connects many commodity computers so that they could work 
in parallel. Hadoop ties smaller and low-priced machines  into 
a compute cluster. It is a simplified programming model which 
allows the user to write and test distributed systems quickly. It 
is an efficient, automatic distribution of data and it works 
across machines and in turn it utilizes the underlying 
parallelism of the CPU cores. 

In a Hadoop cluster even while, the data is being loaded in, 
it is distributed to all the nodes of the cluster. The Hadoop 
Distributed File System (HDFS) will break large data files into 
smaller parts which are managed by different nodes in the 
cluster. In addition to this, each part is replicated across several 
machines, so that a single machine failure does not lead to non-
availability of any data. The   monitoring system then re-
replicates the data in response to system failures which can 
result in partial storage. Even though the file parts are 
replicated and distributed across several machines, they form a 
single namespace, so their contents are universally accessible. 
Map Reduce [11] is a functional abstraction which provides an 
easy-to-understand model for designing scalable, distributed 
algorithms.  

C. Ontology 

The key component of the Semantic Web is the collections 
of information called ontologies. Ontology is a term borrowed 
from philosophy that refers to the science of describing the 
kinds of entities in the world and how they are related. Gruber 
defined ontology as a specification of a conceptualization 
[12].Ontology defines the basic terms and their relationships 
comprising the vocabulary of an application domain and the 
axioms for constraining the relationships among terms [13]. 
This definition explains what an ontology looks like [14].The 
most typical kind of ontology for the Web has taxonomy and a 
set of inference rules. The taxonomy defines classes of objects 

and relations among them. Classes, subclasses and relations 
among entities are a very powerful tool for Web use. 

A large number of relations among entities can be 
expressed by assigning properties to classes and allowing 
subclasses to inherit such properties. Inference rules in 
ontologies supply further power. Ontology may express rules 
on the classes and relations in such a way that a machine can 
deduce some conclusions. The computer does not truly 
“understand" any of this information, but it can now 
manipulate the terms much more effectively in ways that are 
useful and meaningful to the human user. More advanced 
applications will use ontologies to relate the information on a 
page to the associated knowledge structures and inference 
rules.  

III. SOURCE CODE EXTRACTOR FRAMEWORK 

After the completion of a project, all the project files are 
sent to Source code extraction framework that extracts 
metadata from the source code. Only java projects are used for 
this framework.  The java source file or folder that consists of 
java files is passed as input along with project information like 
description of the project, version of the project. The 
framework extracts the metadata from the source code using 
QDox code generators and stores it in the OWL using Jena 
framework. The source code is stored in the Hadoop’s HDFS. 
A sketch of the source code extractor tool is shown in “Fig. 1”.  

Source code extraction framework performs two processes: 
Extracting Meta data from the source code using QDox and   
storing  the meta-data in to OWL using Jena. Both the 
operations are performed by API's. This source code extractor 
will integrate these two operations in a sequenced manner. The 
given pseudo code describes the entire process of the 
framework. 

Figure 1. The process of Semantic Stimulus Tool 

The framework takes project folder as input and counts the 
number of packages. Each package information is stored in the 
OWL. Each package contains various classes and each class 
has many methods. The class and method information is stored 
in the OWL. For each of  method, the information such as 
return type, parameters and parameter type information are 
stored in the OWL.  The framework which places all the 
information in the persistence model and it is stored in the 
OWL file.  

  



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

113 | P a g e  

http://ijacsa.thesai.org/ 

1. Get package count by passing the file path. 

2. Initialize packageCounter to zero 

3. While the package count equal to packageCounter 

3.1 Store the package[packageCounter] Information into OWL model 

3.2 Initilalize classCounter value is equal to zero. 

3.3 Get the no of class count 

3.4 While class count equal to classCounter 

3.4.1 Store the class[ClassCounter] Information 

into OWL model 

3.4.2 Initialize methodCounter to zero 

3.4.3 Get no of method of the 

class[packageCounter] 

3.4.4 While no of method count is equal to zero 

3.4.4.1 Store the method[methodCounter]  

                information into OWL. 

3.4.4.2 Store the modifier informaton of the 

method [classCounter] 

3.4.4.3 Store the return type of the     

                method[classCounter] 

3.4.4.4 Initialize the parmCounter to zero 

3.4.4.5 Get the no of parameters of  

                 method[methodCounter] 

3.4.4.6 While no of paramerters count is equal to  

                 zero 

3.4.4.6.1 Store the 

parameter[paramCounter] 

information into OWL model 

3.4.4.6.2 Increase 

paramCounter by 

one 

3.4.4.7 Increase methodCounter by one 

3.4.5 Increase class Counter by one 

3.5 Increase package Counter by one 

4. Write the OWL model in the OWL File. 

 

IV. EXTRACTING METADATA 

QDox is a high speed small footprint parser for extracting 
classes, interfaces, and method definitions from the source 
code. It is designed to be used by active code generators or 
documentation tools. This tool extracts the metadata from the 
given java source code. To extract the meta-data of the source, 
the given order has to be followed. When the java source file or 
folder that has the java source file is loaded to QDox, it 
automatically performs the iteration. The loaded information is 
stored in the JavaBuilder object. From the java builder object 
the list of packages, as an array of string, are returned. This 
package list has to be looped to get the class information. From 
the class information, the method information is extracted. It 
returns the array of JavaMethod. Out of these methods, the 
information like scope of the method, name of method, return 
type of the method and parameter information is extracted.  

The QDox process uses its own methods to extract various 
metadata from the source code. The getPackage() method lists 
all the available packages for a given source. The getClasses() 
method lists all the available classes in the package. The 
getMethods() method lists all the available methods in a class. 
The getReturns() method returns the return type of the method. 
The getParameters() method lists all the parameters available 
for the method. The getType() method returns the  type of the 
method. And when the getComment() method is used with 
packages, classes and methods, it returns the appropriate  
comments. Using the above methods the project  informations 
such as package, class, method, retune type of the method, 
parameters of the method, method type and comments are 

extracted by the QDox. These metadata are passed to the next 
section for storing in the OWL.   

V. STORING METADATA IN OWL 

To store the metadata extracted by QDox, the Jena 
framework is used. Jena is a Java framework for manipulating 
ontologies defined in RDFS and OWL Lite [15]. Jena is a 
leading Semantic Web toolkit [16] for Java programmers. 
Jena1 and Jena2 are released in 2000 and August 2003 
respectively. The main contribution of Jena1 was the rich 
Model API.  Around this API, Jena1 provided various tools, 
including I/O modules for: RDF/XML [17], [18], N3 [19], and 
N-triple [20]; and the query language RDQL [21]. In response 
to these issues, Jena2 has a more decoupled architecture than 
Jena1. Jena2 provides inference support for both the RDF 
semantics [22] and the OWL semantics [23].  

Jena contains many APIs out of which only few are used 
for this framework like addProperty(), createIndividual() and 
write methods. The addProperty() method is to store data and 
object property in the OWL Ontology.  CreateIndividual() 
creates the individual of the particular concepts. Jena uses in-
memory model to hold the persistent data. So this has to be 
written in to OWL Ontology using write() method. 

The OWL construction is done with Protégé. Protégé is an 
open source tool for managing and manipulating OWL[24]. 
Protégé [25] is the most complete, supported and used 
framework for building and analysis of ontologies [26, 27, 28]. 
The result generated in Protégé is a static ontology definition 
[29] that can be analyzed by the end user. Protégé provides a 
growing user community with a suite of tools to construct 
domain models and knowledge-based applications with 
ontologies. At its core, Protégé implements a rich set of 
knowledge-modeling structures and actions that support the 
creation, visualization, and manipulation of ontologies in 
various representation formats. Protégé can be customized to 
provide domain-friendly support for creating knowledge 
models and entering data. Further, Protégé can be extended by 
way of a plug-in architecture and a Java-based API for building 
knowledge-based tools and applications. 

Based on the java source code study the ontology domain is 
created with the following attributes. To store the extracted 
metadata, the ontology is created with project, packages, 
classes, methods and parameters. The project is concept that 
holds the information like name, project repository location, 
project version and the packages. The package is a concept that 
holds the information like name and the class. The class is a 
concept that holds the class informations such as author, class 
comment, class path, identifier, name and the methods. The 
method is a concept that holds the information like method 
name, method Comment, method identifier,  isConstructor, 
return type, and the parameter. The parameter is a concept that 
holds the information like name and the data type.      

Concepts/Classes provide an abstraction mechanism for 
grouping resources with similar characteristics. Project, 
package, class, method, parameter are concepts in source code 
extractor ontology. 

Individual is an instance of the concept/ class. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

114 | P a g e  

http://ijacsa.thesai.org/ 

 
Property describes the relation between concepts and 

objects. It is a binary relationship on individuals. Each property 
has domain and range. There are two types of property namely 
object and data property 

Object Property links individuals to individuals. In source 
code ontology, the object properties are hasClass, hasMethod, 
hasPackage and hasParameter. hasClass is an object property  
which has domain Package and range Class. hasMethod is an 
object property which has domain class and range method. 
hasPackage is an object property which has domain Project and 
range Package.  hasParameter is an object property which has 
domain method and range range. 

Datatype Property links individuals to data values.  Author 
is a dataproperty which has domain Class and the String as 
range. ClassComment is a data property which has domain 
class and string  as range. DataType is a data property which 
has domain parameter and the range string  as range. Identifier 
is a data property which has domain method,class and the range 
boolean as range. IsConstructor is a data property which has 
domain method and string as range. MethodComment is a data 
property which has domain method and string as range. Name 
is a data property which has domain project, package, class, 
method, parameter and string as range. Project_Date is a data 
property which has domain project and string as range. 
Project_Description is a data property which has domain 
project and string as range. Project_Repository_Location is a 
data property which has domain project and string as range. 
Project_Description is a data property which has domain 
project and string as range. Project_Version is a data property 
which has domain project and string as range. Returns is a data 
property which has domain method and string as range.   

VI. CASE STUDY 

To evaluate the proposed framework the following simple 
java code is used.  

package com.sourceExtractor.ontology; 

import java.io.FileNotFoundException; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.OutputStream; 

import java.util.ArrayList; 

import java.util.List; 

import org.apache.log4j.Logger; 

import org.apache.log4j.spi.RootLogger; 

import com.hp.hpl.jena.ontology.DatatypeProperty; 

/**   * To manage the ontology related informations 

 * @author Sagayaraj  */ 

public class OntoManager { 

  private Logger LOGGER = 

RootLogger.getLogger(OntoManager.class); 

 @SuppressWarnings("static-access") 

 public OntModel getModel(String modelLocation) { 

   OntModel ontModel = null; 

    ontModel = ModelFactory.createOntologyModel(); 

    ontModel.read(new FileManager().get().open(modelLocation), 

""); 

    return ontModel;  } 

 /** 

  * To create Individual In OWL 

  * @param model 

  * @param concept 

  * @param individual   */ 

 public void createIndividual(OntModel model, String concept, 

String individual) { 

  OntClass ontClass = 

model.getOntClass(addNameSpace(concept, model)); 

 model.enterCriticalSection(Lock.WRITE); 

  try {if (ontClass != null) { 

 ontClass.createIndividual(addNameSpace(individual, model)); 

   } else { 

LOGGER.error("Direct Class is null");// todo 

   }} finally { 

   model.leaveCriticalSection(); 

  } }} 

 

The sample java code is given as input to QDox document 
generator through the Graphical User Interface (GUI) provided 
in the “Fig. 2”.   

Source Code ExtractorSource Code Extractor

Select the Source Folder

Project Name

Project Description

Version of Project

/home/prathap/SourceExtractor/src/

Extract Close

Click here to Start Extraction

 

Figure 2. GUI for locating folder 

     Using the QDox API’s metadata is extracted as given in 
the Table 1. The output of the QDox stores metadata in the 
form of strings.  To store the metadata the OWL ontology, 
template is created using Protégé. The strings are passed to the 
Jena framework and the APIs place the metadata in to the 
OWL Ontology. The entire project folder, stored in the HDFS, 
is linked to the method signature in the OWL ontology for 
retrieval purpose. The components will be reused for the new 
project appropriately.  The obtained OWL Ontology 
successfully loads on both Protégé Editor and Altova 
Semantics. The sample OWL file is given below as the output 
of the framework. 

  <owl:Ontology rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#"/> 

  <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Package"/> 

  <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Project"/> 

  <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Class"/> 

  <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Method"/> 

  <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Parameter"/> 

  <owl:ObjectProperty rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#hasPackage"> 

    <rdfs:domain rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Project"/> 

    <rdfs:range rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Package"/> 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

115 | P a g e  

http://ijacsa.thesai.org/ 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#hasParameter"> 

    <rdfs:domain rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Method"/> 

    <rdfs:range rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Parameter"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#hasClass"> 

    <rdfs:domain rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Package"/> 

    <rdfs:range rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Class"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#hasMethod"> 

    <rdfs:range rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Method"/> 

    <rdfs:domain rdf:resource="http://www.owl-

ontologies.com/SourceExtractorj.owl#Class"/> 

  </owl:ObjectProperty>   <owl:DatatypeProperty rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Project_Date"/> 

  <owl:DatatypeProperty rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Identifier"> 

    <rdfs:domain> 

      <owl:Class> 

        <owl:unionOf rdf:parseType="Collection"> 

          <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Method"/> 

          <owl:Class rdf:about="http://www.owl-

ontologies.com/SourceExtractorj.owl#Class"/> 

        </owl:unionOf> 

      </owl:Class> 

    </rdfs:domain> 

    <rdfs:range> 

      <owl:Class> 

        <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DataRange"/> 

        <owl:oneOf rdf:parseType="Resource"> 

          <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

          >public</rdf:first> 

          <rdf:rest rdf:parseType="Resource"> 

            <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

            >private</rdf:first> 

            <rdf:rest rdf:parseType="Resource"> 

              <rdf:first 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

              >protected</rdf:first> 

              <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-

ns#nil"/> 

            </rdf:rest> 

          </rdf:rest> 

        </owl:oneOf> 

      </owl:Class> 

    </rdfs:range> 

  </owl:DatatypeProperty> 

VII. CONCLUSION AND FUTURE WORK 

This paper presents an approach for generating ontologies 
using the source code extractor tool from source code. This 
approach helps to integrate source code into the Semantic Web. 
OWL is semantically much more expressive than needed for 
the results of our mapping. With these sample tests the paper 
argues that it is indeed possible to transform source code in to 
OWL using this Source Code Extractor framework.  The 
framework created OWL which will increase the efficiency and 
consistency in development of knowledge management and 
information retrieval applications.  The purpose of the paper is 
to achieve the code re-usability for the software development. 

By creating OWL for the source code the future will be to 
search and extract the code and components and reuse to 
shorten the software development life cycle. Open source code 
can also be used to create OWL so that there will be huge 
number of components which can be reused for the 
development. By storing the projects in the OWL and the 
HDFS the corporate knowledge grows and the developers will 
use more of reuse code than developing themselves. Using the 
reuse code the development cost will come down, development 
time will become shorter, resource utilization will be less and 
quality will go up.     

After developing OWL and storing the source code in the 
HDFS, the code components can be reused. The future work 
can take off in two ways. One can take a design document from 
the user as input, then extract the method signature and try to 
search and match in the OWL. If the user is satisfied with the 
method definition, it can be retrieved from the HDFS where the 
source code is stored.  Second one can take the project 
specification as input and text mining can be performed to 
extract the keywords as classes and the process as methods. 
The method prototype can be used to search and match with the 
OWL and the required method definition can be retrieved from 
the HDFS. The purpose of storing the metadata in OWL is to 
minimize the factors like time of development, time of testing, 
time of deployment and developers. Creating OWL using this 
framework can reduce these factors.   

REFERENCES 

[1]  Grigoris Antoniou and Frank van Harmelen, “A Semantic   Web Primer”,  

        PHI  Learning Private Limited, New Delhi, 2010, pp 1-3. 

[2]  Bung. M, “Treatise on Basic Philosophy. Ontology I”. The   Furniture of  

        the World. Vol. 3, Boston: Reidel. 

[3]  Gopinath Ganapathy and S. Sagayaraj, “Automatic  Ontology Creation  

        by Extracting Metadata from the Source code ”, in Global Journal of  

        Computer Science and Technology,Vol.10, Issue 14( Ver.1.0) Nov.  

        2010. pp.310-314. 

[4]  Won Kim: “On Metadata Management Technology Status  and Issues”,       

        in  Journal of Object Technology, vol. 4, no.2, 2005, pp. 41-47. 

[5]  Dublin Core Metadata Initiative. <         

       http://dublincore.org/documents/>,2002. 

[6]  IEEE Learning Technology Standards Committee,         

        http://ltsc.ieee.org/wg12, IEEE Standards for Learning   Object Metadata  

        (1484.12.1) 

[7]  Darmoni, Thirion, “Metadata Scheme for Health  Resources”          

        American Medical  Infor. Association, 2000 Jan–Feb; 7(1): 108–109. 

[8]  MPEG-7 Overview: ISO/IEC JTC1/SC29/WG11 N4980,   Kla-genfurt,  

       July 2002. 

[9] Jason Venner, “Pro Hadoop : Build Scalable, Distributed       

       Applications”, in the cloud, Apress, 2009. 

[10] Gopinath Ganapathy and S. Sagayaraj, “Circumventing Picture  

        Archiving and Communication Systems Server  with Hadoop Framework  

        in Health Care Services”, in Journal of Social Science, Science  

        Publication 6 (3) :  pp.310-314. 

 [11] Tom White, “Hadoop: The Definitive Guide”, O’Reilly Media, Inc.,  

          2009. 

[12] Gruber, T. “What is an Ontology?” ,September, 2005:  

          http://www.ksl-         stanford.edu/kst/what-is-an-ontology.html. 

[13]  Yang, X. “Ontologies and How to Build Them”,(March, 2006):   

http://dublincore.org/documents/%3e,2002
http://ltsc.ieee.org/wg12


(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

116 | P a g e  

http://ijacsa.thesai.org/ 

         http://www.ics.uci.edu/~xwy/publications/area-exam.ps. 

[14] Bugaite, D., O. Vasilecas, “Ontology-Based Elicitation of   Business  

         Rules”. In A. G. Nilsson, R. Gustas, W.  Wojtkowski, W. G.  

         Wojtkowski, S. Wrycza, J. Zupancic  Information Systems  

        Development: Proc. of the     ISD’2004. Springer- Verlag, Sweden, 2006,  

         pp.  795-806. 

[15] McCarthy, P,” Introduction to Jena”: 

         www-106.ibm.com/developerworks/java/library/j-jena/, ,  

         22.02.2005. 

[16] B. McBride,” Jena IEEE Internet Computing”, July/August, 2002. 

[17] J.J. Carroll.” CoParsing of RDF & XML”, HP Labs Technical Report,  

         HPL-2001-292, 2001 

[18]  J.J. Carroll, “Unparsing RDF/XML,WWW2002”: 

          http://www.hpl.hp.com/techreports/2001/HPL-2001- 292.html 

[19] T. Berners-Lee et al,” Primer: Getting into RDF & Semantic  Web using  

         N3”, http://www.w3.org/2000/10/swap/Primer.html 

[20] J. Grant, D. Beckett, “RDF Test Cases”, 2004, W3C6. 

[21] L. Miller, A. Seaborne, and A. Reggiori,”Three  Implementations of  

        SquishQL, a Simple RDF Query  Language”, 2002, p 423. 

[22] P. Hayes, “RDF Semantics”, 2004, W3C. 

[23] P.F. Patel-Schneider, P. Hayes, I. Horrocks,” OWL  Semantics &  

         Abstract Syntax”, 2004, W3C. 

[24] Protégé Semantic Web Framework,  

         http://protege.stanford.edu/overview/protege-owl.html,  

         accessed 16th October 2010. 

[25] Protégé. –          

         http://protege.stanford.edu/ontologies/ontologyOfScience. 

[26] 9th Intl. Protégé Conference - July 23-26, 2006 –  Stanford,     

         Californiahttp://protege.stanford.edu/conference/2006. 

[27] 10th Intl. Protégé Conference - July 15-18, 2007 –  Budapest,  

         Hungaryhttp://protege.stanford.edu/conference/2007. 

[28] 11th Intl. Protégé Conference - June 23-26, 2009 – Amsterdam,  

         Netherlandshttp://protege.stanford.edu/conference/2009. 

[29] Hai H. Wang, Natasha Noy, Alan Rector, Mark Musen, Timothy  

         Redmond, Daniel Rubin, Samson Tu, Tania  Tudorache, Nick  

         Drummond, Matthew Horridge, and  Julian  Sedenberg,” Frames and  

         OWL side by side”. In 10th International Protégé Conference,Budapest,  

         Hungary, July 2007. 

AUTHORS PROFILE 

Gopinath Ganapathy is the Professor & Head, Department of Computer 
Science and Engineering in  Bharathidasan University, India. He obtained his 
under graduation and post-graduation from Bharathidhasan University, India  in 
1986 and 1988 respectively. He submitted his Ph.D in 1996 in Maduari  
Kamaraj University, India. Received Young Scientist Fellow Award for the 
year 1994 and eventually did the research work at IIT Madras. He published 
around 20 research papers. He is a member of  IEEE, ACM, CSI, and ISTE. He 
was a Consultant for a 8.5 years in the international firms in the USA and the 
UK, including IBM, Lucent Technologies (Bell Labs) and Toyota. His research 
interests include Semantic Web, NLP, Ontology, and Text Mining. 

 
S. Sagayaraj is the Associate professor in the Department of Computer 

Science, Sacred Heart College, Tirupattur, India. He did his Bachelor Degree in 
Mathematic in   Madras University, India in 1985. He completed his Master of 
Computer Applications in Bharadhidhasan University, India in 1988. He 
obtained Master of Philosophy in Computer Science from Bharathiar 
University, India in 2001. He registered for Ph.D. programme in 
Bharathidhasan University, India in 2008. His Research interests include Data 
Mining, Ontologies and Semantic Web. 

 

TABLE  I.   METADATA EXTRACTED FROM THE SAMPLE CODE 

 

 

Project 

Project Name Ontology_Learn 

Project Version 1.0.0 

Project Date 10/10/10 

Repository Location /opt/SourceCodeExtrctor/ 

HasPackage com.sourceExtractor.ontology 

Package 
Name com.sourceExtractor.ontology 

HasClass OntoManager 

Class 

Name OntoManager 

Class Comment It manage the ontology 
operation 

Class Path /SampleOntology/com/sourceE
xtractor/ontology/OntoMa
nager.java 

Author Sagayaraj 

Identifier Public 

HasMethod getModel 

createIndividual 

Method 

Name getModel 

createIndividual 

Identifier Public  Public 

Returns OntoModel 

Void 

Method Comment -undefined- 

To add the data property in owl 
file 

IsConstructor FALSE 

FALSE 

HasParameter modelLocation 

Individual model 

Concept 

Parameter 

Name modelLocation 

Data Type java.lang.String 

Name Individual 

Data Type java.lang.String 

Name Model 

Data Type OntModel 

Name Concept 

Data Type java.lang.String 

http://www.ics.uci.edu/~xwy/publications/area-exam.ps
http://www-106.ibm.com/developerworks/java/library/j-jena/
http://www.hpl.hp.com/techreports/2001/HPL-2001-%20292.html
http://www.w3.org/2000/10/swap/Primer.html
http://protege.stanford.edu/overview/protege-owl.html

