
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

31 | P a g e

http://ijacsa.thesai.org/

An Algorithm to Reduce the Time Complexity of

Earliest Deadline First Scheduling Algorithm in

Real-Time System

Jagbeer Singh

Dept. of Computer Science and

Engineering

Gandhi Institute of Engg. & Tech.

Gunupur, Rayagada, India-765022

willybokadia@gmail.com

Bichitrananda Patra

Dept. of Information Technology

Gandhi Institute of Engg. & Tech.

Gunupur, Rayagada, India-765022

bnpatra@gmail.comdr

Satyendra Prasad Singh

Dept. of Master of Computer

Application

Gandhi Institute of Compt. Studies

Gunupur, Rayagada, India-765022

spsingh1@hotmail.com

Abstract—To this paper we have study to Reduce the time

Complexity of Earliest Deadline First (EDF), a global scheduling

scheme for Earliest Deadline First in Real Time System tasks on

a Multiprocessors system. Several admission control algorithms

for earliest deadline first are presented, both for hard and soft

real-time tasks. The average performance of these admission

control algorithms is compared with the performance of known

partitioning schemes. We have applied some modification to the

global earliest deadline first algorithms to decrease the number of

task migration and also to add predictability to its behavior. The

Aim of this work is to provide a sensitivity analysis for task

deadline context of multiprocessor system by using a new

approach of EFDF (Earliest Feasible Deadline First) algorithm.

In order to decrease the number of migrations we prevent a job

from moving one processor to another processor if it is among the

m higher priority jobs. Therefore, a job will continue its

execution on the same processor if possible (processor affinity).

The result of these comparisons outlines some situations where

one scheme is preferable over the other. Partitioning schemes are

better suited for hard real-time systems, while a global scheme is

preferable for soft real-time systems.

Keywords- Real-time system; task migration, earliest deadline first,

earliest feasible deadline first.

I. INTRODUCTION (HEADING 1)

Real-time systems are those in which its correct operation
not only depends on the logical results, but also on the time at
which these results are produced. These are high complexity
systems that are executed in environments such as: military
process control, robotics, avionics systems, distributed systems
and multimedia.

Real-time systems use scheduling algorithms to decide an
order of execution of the tasks and an amount of time assigned
for each task in the system so that no task (for hard real-time
systems) or a minimum number of tasks (for soft real-time
systems) misses their deadlines. In order to verify the
fulfillment of the temporal constraints, real-time systems use
different exact or inexact schedulability tests. The
schedulability test decides if a given task set can be scheduled
such that no tasks in the set miss their deadlines. Exact

schedulability tests usually have high time complexities and
may not be adequate for online admission control where the
system has a large number of tasks or a dynamic workload. In
contrast, inexact schedulability tests provide low complexity
sufficient schedulability tests.

The first schedulability test known was introduced by Liu
and Layland with the Rate Monotonic Scheduling Algorithm
[Liu, 1973] (RM). Liu and Layland introduced the concept of
achievable utilization factor to provide a low complexity test
for deciding the schedulability of independent periodic and
preemptable task sets executing on one processor.

In Earliest Deadline First scheduling, at every scheduling
point the task having the shortest deadline is taken up for
scheduling. The basic principle of this algorithm is very
intuitive and simple to understand. The schedulability test for
EDF is also simple. A task is schedule under EDF, if and only
if it satisfies the condition that total processor utilization (Ui)
due to the task set is less than 1.

With scheduling periodic processes that have deadlines
equal to their periods, EDF has a utilization bound of 100%.
Thus, the schedulability test for EDF is:

 ∑

Where the {Ci} are the worst-case computation-times of the
n processes and the {Ti} are their respective inter-arrival
periods (assumed to be equal to the relative deadlines).

The schedulability test introduced by Liu and Layland for
RM states that a task set will not miss any deadline if it meets
the following condition: U ≤ n(21/n - 1). Liu and Layland
provided a schedulability tests that fails to identify many
schedulable task sets when the system is heavily overloaded.
After the work of Liu and Layland, many researchers have
introduced improvements on the schedulability condition for
RM for one and multi processors. These improvements include
the introduction of additional timing parameters in the
schedulability tests and transformations on the task sets. It is a
well-known fact that when more timing parameters are

mailto:willybokadia@gmail.com
mailto:bnpatra@gmail.comdr
http://portal.acm.org/citation.cfm?id=78285

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

32 | P a g e

http://ijacsa.thesai.org/

introduced in the schedulability condition better performance
can be achieved.

For example let us Consider 3 periodic processes scheduled
using EDF, the following acceptance test shows that all
deadlines will be met.

 Table 1: Task Parameters

Process Execution Time = C Period = T

P1 1 8

P2 2 5

P3 4 10

The utilization will be:

The theoretical limit for any number of processes is 100%

and so the system is schedulable.

EDF has been proven to be an optimal uniprocessor
scheduling algorithms [8].This means that if a set of tasks is
unschedulable under EDF, then no other scheduling algorithm
can feasible schedule this task set. The EDF algorithm chooses
for execution at each instant in the time currently active job(s)
that have the nearest deadlines. The EDF implementation upon
uniform parallel machines is according to the following rules
[2], No Processor is idled while there are active jobs waiting
for execution, when fewer then m jobs are active, they are
required to execute on the fastest processor while the slowest
are idled, and higher priority jobs are executed on faster
processors.

A formal verification which guarantees all deadlines in a

real-time system would be the best. This verification is called

feasibility test.

Three different kinds of tests are available:-

 Exact tests with long execution times or simple

models [11], [12], [13].

 Fast sufficient tests which fail to accept feasible task

sets, especially those with high utilizations [14], [15].

 Approximations, which are allowing an adjustment of

performance and acceptance rate [1], [8].

For many applications an exact test or an approximation

with a high acceptance rate must be used. For many task sets a

fast sufficient test is adequate.
EDF is an appropriate algorithm to use for online

scheduling on uniform multiprocessors. However, their
implementation suffers from a great number of migrations due
to vast fluctuations caused by finishing or arrival of jobs with
relatively nearer deadlines. Task migration cost might be very
high. For example, in loosely coupled system such as cluster of
workstation a migration is performed so slowly that the
overload resulting from excessive migration may prove
unacceptable [3]. Another disadvantage of EDF is that its
behavior becomes unpredictable in overloaded situations.
Therefore, the performance of EDF drops in overloaded
condition such that it cannot be considered for use. In this

paper we are presenting a new approach, call the Earliest
Feasible Deadline First (EFDF) which is used to reduce the
time complexity of earliest deadline first algorithm by some
assumptions.

II. BACKGROUND AND REVIEW OF RELATED WORKS

Each processor in a uniform multiprocessor machine is
characterized by a speed or Computing capacity, with the
interpretation that a job executing on a processor with speed s
for t time units completes (s * t) units of execution. The
Earliest-Deadline First scheduling of real-time systems upon
uniform multiprocessor machines is considered. It is known
that online algorithms tend to perform very poorly in
scheduling such real-time systems on multiprocessors;
resource-augmentation techniques are presented here that
permit online algorithms in general (EDF in particular) to
perform better than may be expected given these inherent
limitations.

Generalization the definition of utilization from periodic
task to nonperiodic tasks has been studies in [23] and [24]. In
deriving the utilization bound for rate monotonic scheduler
with multiframe and general real time task models, Mok and
Chen in [25] and [26] proposed a maximum average utilization
which measures utilization in an infinite measuring window.
To derive the utilization bound for nonperiodic tasks and
multiprocessor system, the authors in [23] and [24] proposed a
utilization definition that is based on relative deadlines of tasks,
instead of periods. It is shown that EDF scheduling upon
uniform multiprocessors is robust with respect to both job
execution requirements and processor computing capacity.

III. SCHEDULING ON MULTIPROCESSOR SYSTEM

Meeting the deadlines of a real-time task set in a
multiprocessor system requires a scheduling algorithm that
determines, for each task in the system, in which processor they
must be executed (allocation problem), and when and in which
order, with respect to other tasks, they must start their
execution (scheduling problem). This is a problem with a
difficult solution, because (i) some research results for a single
processor not always can be applied for multiple processors
[17], [18], (ii) in multiple processors different scheduling
anomalies appear [19], [21], [20] and (iii) the solution to the
allocation problem requires of algorithms with a high
computational complexity.

The scheduling of real-time tasks on multiprocessors can be
carried out under the partitioning scheme or under the global
scheme. In the partitioning scheme (Figure 1.a) all the instances
(or jobs) of a task are executed on the same processor. In
contrast, in the global scheme (Figure 1.b), a task can migrate
from one processor to another during the execution of different
instances. Also, an individual job of a task that is preempted
from some processor, may resume execution in a different
processor. Nevertheless, in both schemes parallelism is
prohibited, that is, no job of any task can be executed at the
same time on more than one processor.

On both schemes, the admission control mechanism not
only decides which tasks must be accepted, but also it must
create a feasible allocation of tasks to processors (i.e., on each

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

33 | P a g e

http://ijacsa.thesai.org/

processor, all tasks allocated must met their deadlines). For the
partitioning and global schemes, task sets can be scheduled
using static or dynamic schedulers. In any case, the
computational complexity associated to the admission control
must remain as low as possible, especially for the dynamic
case.

The partitioning scheme has received greater attention than
the global scheme, mainly because the scheduling problem can
be reduced to the scheduled on single processors, where at the
moment a great variety of scheduling algorithms exist. It has
been proved by Leung and Whitehead [18] that the partitioned
and global approaches to static-priority scheduling on identical
multiprocessors are incomparable in the sense that (i) there are

task sets that are feasible on identical processors under the
partitioned approach but for which no priority assignment
exists which would cause all jobs of all tasks to meet their

deadlines under global scheduling on the same processors,

and (ii) there are task sets that are feasible on identical
processors under the global approach, which cannot be

partitioned into distinct subsets such that each individual
partition is feasible on a single static-priority uniprocessor.

Fig. 1. (a). Partitioning and (b). Global Scheduling Schemes

IV. OUR PROPOSED GRID APPROXIMATION STRATEGY

We have applied some modification to the global Earliest
Deadline First algorithms to decrease the number of task
migration and also to add predictability to its behavior. In order
to decrease the number of migrations we prevent a job from
moving to another processor if it is among the m higher priority
jobs. The scheduling algorithms can be classified in static and
dynamic. In a static scheduling algorithm, all scheduling
decisions are provided a priori. Given a set of timing
constraints and a schedulability test, a table is constructed,
using one of many possible techniques (e.g., using various
search techniques), to identify the start and completion times of
each task, such that no task misses their deadlines. This is a
highly predictable approach, but it is static in the sense that
when the characteristics of the task set change the system must
be re-started and its scheduling table re-computed.

In a dynamic scheduling algorithm, the scheduling decision
is executed at run-time based on task's priorities. The dynamic
scheduling algorithms can be classified in algorithms with fixed
priorities and algorithms with variable priorities. In the
scheduling algorithms with fixed priorities, the priority of each
task of the system remains static during the complete execution
of the system, whereas in an algorithm with variable priorities
the priority of a task is allowed to change at any moment.

The schedulability test in static scheduling algorithms can
only be performed off-line, but in dynamic scheduling
algorithms it can be performed off-line or on-line. In the o®-
line scheduling test, there are complete knowledge of the set of
tasks executing in the system, as well as the restrictions
imposed to each one of the tasks (deadlines, precedence
restrictions, execution times), before the start of their
execution. Therefore no new tasks are allowed to arrive in the
system. Therefore, a job will continue its execution on the same
processor if possible (processor affinity

1).

A. The Strategy

In Earliest Deadline First scheduling, at every scheduling
point the task having the shortest deadline is taken up for
scheduling. The basic principle of this algorithm is very
intuitive and simple to understand. The schedulability test for
Earliest Deadline First is also simple. A task is schedule under
EDF, if and only if it satisfies the condition that total processor
utilization due to the task set is less than 1. For a set of periodic
real-time task {T1, T2, Tn}, EDF schedulibility criterion can be
expressed as:-

∑

 ∑

Where ei is the execution time, pi is the priority of task and
ui is the average utilization due to the task Ti and n is the total
number of task in set. EDF has been proven to be an optimal
uniprocessor scheduling algorithm [8]. This means that if a set
of task is unschedulable under Earliest Deadline First , then no
other scheduling algorithm can feasible schedule this task set.
In the simple schedulability test for EDF we assumed that the
period of each task is the same as its deadline. However in
practical problem the period of a task may at times be different
from its deadline. In such cases, the schedulability test needs to
be changed. If pi>di , then each task needs ewe areount of
computing time every min(pi, di) duration time. Therefore we
can write:

∑

However, if pi <di , it is possible that a set of tasks is EDF
schedulable , even when the task set fail to meet according to
expression

B. Mathematical Representation

Our motivation for exploiting processor affinity drive from
the observation that, for much parallel application, time spent
bringing data into the local memory or cache is significant
source of overhead, ranging between 30% to 60% of the total
execution time [3]. While migration is unavoidable in the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

34 | P a g e

http://ijacsa.thesai.org/

global schemes, it is possible to minimize migration caused by
a poor assignment of task to processors.

By scheduling task on the processor whose local memory or
cache already contains the necessary data, we can significantly
reduce the execution time and thus overhead the system. It is
worth mentioning that still a job might migrate to another
processor when there are two or more jobs that were last
executed on the same processor. A migration might also
happen when the numbers of ready jobs become less than the
number processors. This fact means that our proposed
algorithm is a work conserving one.

 In order to give the scheduler a more predictable behavior
we first perform a feasibility check to see whether a job has a
chance to meet its deadline by using some exiting algorithm
like Yao’s [16]. If so, the job is allowed to get executed.
Having known the deadline of a task and its remaining
execution time it is possible to verify whether it has the
opportunity to meet its dead line. More precisely, this
verification can be done by examining a task’s laxity3. The
laxity of a real-time task Ti at time t, Li (t), is defined as
follows:-

Li (t) = Di (t) - Ei (t)

Where Di(t) is the dead line by which the task Ti must be
completed and Ei (t) is the amount of computation remaining to
be performed. In other words, Laxity is a measure of the
available flexibility for scheduling a task. A laxity of Li (t)
means that if a task Ti is delayed at most by Li (t) time units, it
will still has the opportunity to meet its deadline.

A task with zero laxity must be scheduled right away and
executed without preemption or it will fail to meet its deadline.
A negative laxity indicates that the task will miss the deadline,
no matter when it is possible picked up for execution. We call
this novel approach the Earliest Feasible Deadline First
(EFDF)

C. EFDF Scheduling Algorithm

Let m denote the number of processing nodes and n, (n≥m)
denote the number of Available tasks in a uniform parallel real-
time system. Let s1, s2,… sm denote the computing capacity of
available processing nodes indexed in a non-increasing
manner: sj ≥ sj +1 for all j, 1<j<m. We assume that all speeds
are positive i.e. sj >0 for all j. In this section we are presenting
five steps of EFDF algorithm. Obviously, each task which is
picked for up execution is not considered for execution by
other processors. Here we are giving following methods for our
new approach:

1. Perform a feasibility check to specify the task

which has a chance to meet their deadline and put

them into a set A, Put the remaining tasks into set

B. We can partition the task set by any existing

approach.

2. Sort both task sets A and B according to their

deadline in a non-descending order by using any

of existing sorting algorithms. Let k denote the

number of tasks in set A, i.e. the number of tasks

that have the opportunity to meet their deadline.

3. For all processor j, (j≤min(k,m)) check whether a

task which was last running on the jth
 processor is

among the first min(k,m) tasks of set A. If so

assign it to the j
th processor. At this point there

might be some processors to which no task has

been assigned yet.

4. For all j, (j≤min(k,m)) if no task is assigned to the

j
th

 processor , select the task with earliest deadline

from remaining tasks of set A and assign it to the

j
th processor. If k≥m, each processor have a task

to process and the algorithm is finished.

5. If k<m, for all j, (k<j≤m) assign the task with

smallest deadline from B to the jth processor. The

last step is optional and all the tasks from B will

miss their deadlines.

D. Experimental Evaluation
We conducted simulation-based experimental studies to

validate our analytical results on EFDF overhead. We consider
an SMP machine with four processors. We consider four tasks
running on the system. Their execution times and periods are
given in Table 2. The total utilization is approximately 1.5,
which is less than 4, the capacity of processors. Therefore,
LLREF can schedule all tasks to meet their deadlines. Note that
this task set’s α (i.e., maxN {ui}) is 0.818, but it does not affect
the performance of EFDF, as opposed to that of global EDF
[22].

Table 2: Task Parameters (4 Task Set)

Process Pi Execution Time Ci Period Ti Ui

P1 9 11 0.818

P2 5 25 0.2

P3 3 30 0.1

P4 5 14 0.357

Figure 1: Scheduler Invocation Frequency with 4 Tasks

In Figure 1, the upper-bound on the scheduler invocation
frequency and the measured frequency are shown as a dotted

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

35 | P a g e

http://ijacsa.thesai.org/

line and a fluctuating line, respectively. We observe that the
actual measured frequency respects the upper bound.

Table 3: Task Parameters (8 Task Set)

Process Pi Execution Time Ci Period Ti Ui

P1 3 7 0.429

P2 1 16 0.063

P3 5 19 0.263

P4 4 5 0.8

P5 2 26 0.077

P6 15 26 0.577

P7 20 29 0.69

P8 14 17 0.824

Figure 2: Scheduler Invocation Frequency with 8 Tasks

Figure 2 shows the upper-bound on the invocation
frequency and the actual frequency for the 8-task set.
Consistently with the previous case, the actual frequency never
moves beyond the upper-bound. We also observe that the
average invocation frequencies of the two cases are
approximately 1.0 and 4.0, respectively. As expected the
number of tasks proportionally affects EFDF overhead.

E. Complexity and Performance of the Partitioning

Algorithms

In Table 2 we are taking the compression of given standard
and simulated complexities of different algorithms given below

and we are comparing these complexities to our purposed
algorithm, the complexity and performance of the partitioning
algorithms is introduced. Note that the algorithms with lowest
complexity are RMNF-L&L, RMGT/M, and EDF-NF, while
the algorithm with highest complexity is RBOUND-MP. The

rest of the algorithms have complexity O(n log n). The
algorithms with best theoretical performance are RM-FFDU,

RMST, RMGT, RMGT/M, EDF-FF and EDF-BF.[16]

TABLE 2 :COMPLEXITY AND PERFORMANCE OF THE MULTIPROCESSOR

PARTITIONING ALGORITHMS

F. Complexity Analysis

 The Earliest Deadline First algorithm would be
maintaining all tasks that are ready for execution in a queue.
Any freshly arriving task would be inserted at the end of queue.
Each task insertion will be achieved in O(1) or constant time,
but task selection (to run next) and its deletion would require
O(n) time, where n is the number of tasks in the queue. EDF
simply maintaining all ready tasks in a sorted priority queue
that will be used a heap data structure. When a task arrives, a
record for it can be inserted into the heap in O(log2 n) time
where n is the total number of tasks in the priority queue.
Therefore, the time complexity of Earliest Deadline First is
equal to that of a typical sorting algorithm which is O(n log2n).
While in the EFDF the number of distinct deadlines that tasks
is an application can have are restricted.

In our approach, whenever a task arrives, its absolute
deadline is computed from its release time and its relative
deadline. A separate first in first out (FIFO) queue is
maintained for each distinct relative deadline that task can
have. The schedulers insert a newly arrived task at the end of
the corresponding relative deadline queue. So tasks in each
queue are ordered according to their absolute deadlines. To find
a task with the earliest absolute deadline, the scheduler needs to
search among the threads of all FIFO queues. If the number of
priority queue maintained by the scheduler in n, then the order
of searching would be O(1). The time to insert a task would
also be O(1). So finally the time complexity of five steps of
Earliest Feasible Deadline First (EFDF) are O(n), O(n log2 n),
O(m), O(m), O(m), respectively.

V. CONCLUSION AND FUTURE WORK

This work focused on some modification to the global
Earliest Deadline First algorithms to decrease the number of
task migration and also to add predictability to its behavior.
Mainly Earliest Feasible Deadline First algorithms are
presented the least complexity according to their performance
analyzed. Experimental result of Earliest Feasible Deadline
First (EFDF) algorithm reduced the time complexity in
compression of Earliest Deadline First algorithm on real time
system scheduling for multiprocessor system and perform the
feasibility checks to specify the task which has a chance to
meet their deadline.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

36 | P a g e

http://ijacsa.thesai.org/

When Earliest Feasible Deadline First is used to schedule a
set of real-time tasks, unacceptable high overheads might have
to be incurred to support resource sharing among the tasks
without making tasks to miss their respective deadlines, due to
this it will take again more time. Our future research will
investigate other less complexity Algorithm and also reduced
the overhead for different priority assignments for global
scheduling which will, consequently, lead to different bounds.

We believe that such studies should be conducted regularly
by collecting data continuously so that skill demand patterns
can be understood properly. This understanding can lead to
informed curricula design that can prepare graduates equipped

with necessary skills for employment. Once such studies
are carried out, students can use the findings to select courses
that focus on those skills which are in demand. Academic
institutions can use the findings so that those skills in demand
can be taken into account during curriculum design.

As an advance to our work, in future, we have desire to
work on different deployment approaches by developing more
strong and innovative algorithms to solve the time complexity
of Earliest Deadline First. Moreover, as our proposed algorithm
is a generalized one, we have planned to expand our idea in the
field of Real Time System existing Rate Monotonic Algorithm
for calculating minimum Time Complexity. Moreover, we have
aim to explore some more methodologies to implement the
concept of this paper in real world and also explore for Fault
Tolerance Task Scheduling Algorithms to finding the Task
Dependency in single processor or multiprocessor system for
reducing the time for fault also reduce the risk for fault and
damage.

ACKNOWLEDGMENTS

The authors thank the reviewers of drafts of this paper. It is
profound gratitude and immense regard that we acknowledge
to Dr. S.P. Panda, Chairman, GGI, Prof. N.V.J. Rao Dean
(Admin), GGI for their confidence, support and blessing
without which none of this would have been possible. Also a
note to all professors here in GIET for the wisdom and
knowledge that they given us, all of which came together in the
making of this paper. We express our gratitude to all my
friends and colleagues as well for all their help and guidance.

REFERENCES

[1] S. Baruah, S. Funk, and J. Goossens , “Robustness Results Concerning
EDF Scheduling upon Uniform Multiprocessors”,IEEE Transcation on
computers, Vol. 52, No.9 pp. 1185-1195 September 2003.

[2] E.P.Markatos, and T.J. LeBlanc, “ Load Balancing versus Locality
Management in Shared-Memory Multiprocessors”, The 1992
International Conference on Parallel Processing, August 1992.

[3] S. Lauzac, R. Melhem, and D. Mosses,“Compression of Global and
Partitioning Scheme for Scheduling Rate Monotonic Task on a
Multiprocessor”, The 10th EUROMICRO Workshop on Real-Time
Systems, Berlin,pp.188-195, June 17-18, 1998.

[4] Vahid Salmani ,Mohsen Kahani , “ Deadline Scheduling with Processor
Affinity and Feasibility Check on Uniform Parpllel Machines”, Seventh
International Conference on Computer and Information Technology,
CIT.121.IEEE,2007.

[5] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem.
Operations Research”, 26(1):127–140, 1978.

[6] Y. Oh and S. Son. “Allocating fixed-priority periodic tasks on
multiprocessor systems”, Real-Time Systems Journal, 9:207–239, 1995.

[7] J. Lehoczky, L. Sha, and Y. Ding. “The rate monotonic Scheduling:
Exact characterization and average case behavior”, IEEE Real-time
Systems Symposium, pages 166–171, 1989.

[8] C.M. Krishna and Shin K.G. Real-Time Systems. Tata
McGrawiHill,1997.

[9] S. Chakraborty, S. Künzli, L. Thiele. Approximate Schedulability
Analysis. 23rd IEEE Real-Time Systems Symposium (RTSS), IEEE
Press, 159-168, 2002.

[10] J.A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo. Deadline
Scheduling for Real-Time Systems EDF and Related Algorithms. Kluwer
Academic Publishers, 1998.

[11] S. Baruah, D. Chen, S. Gorinsky, A. Mok. Generalized Multiframe
Tasks. The International Journal of Time-Critical Computing Systems,
17, 5-22, 1999.

[12] S. Baruah, A. Mok, L. Rosier. Preemptive Scheduling Hard-Real-Time
Sporadic Tasks on One Processor. Proceedings of the Real- Time
Systems Symposium, 182-190, 1990.

[13] K. Gresser. Echtzeitnachweis Ereignisgesteuerter Realzeitsysteme.
Dissertation (in german), VDI Verlag, Düsseldorf, 10(286), 1993.

[14] M. Devi. An Improved Schedulability Test for Uniprocessor Periodic
Task Systems. Proceedings of the 15th Euromicro Conference on Real-
Time Systems, 2003.

[15] C. Liu, J. Layland. Scheduling Algorithms for Multiprogramming in
Hard Real-Time Environments. Journal of the ACM, 20(1), 46-61, 1973

[16] Omar U. Pereira Zapata, Pedro Mej´ıa Alvarez “EDF and RM
Multiprocessor Scheduling Algorithms: Survey and Performance
Evaluation” Report No. CINVESTAV-CS-RTG-02. CINVESTAV-IPN,
Sección de Computación.

[17] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem”,
Operation Research, vol. 26, number 1, pp. 127-140, 1978.

[18] J. Y.-T. Leung and J. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks, Performance Evaluation,
number 2, pp. 237-250,1982.

[19] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies”,SLAM
Journal of Applied Mathematics, 416-429, 1969.

[20] R. Ha and J. Liu, “Validating Timing Constraints in Multiprocessor and
Distributed Real-Time Systems”, Int’l Conf. on Distributed Computing
system, pp. 162-171, June 21-24, 1994.

[21] B. Andersson, “Static Priority Scheduling in Multiprocessors”, PhD
Thesis, Department of Comp.Eng., Chalmers University, 2003.

[22] J. Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen,”An
Optimal Real-Time Scheduling Algorithm for Multiprocessors”, IEEE
Conference Proceedings, SIES 2007: 9-16.

[23] B. Anderson,“Static-priority scheduling on multiprocessors,” PhD
dissertation, Dept. of Computer eng., Chalmers Univ. of
Technology,2003.

[24] T.Abdelzaher and C.Lu,“Schedubility Analysis and Utilization Bound of
highly Scalable Real-Time Services,” Proc. 15th Euro-micro Conf. Real
Time Systems,pp.141-150,july 2003.

[25] A.K.Moc and D.Chen,” A General Model for Real Time Tasks,”
Technical Report TR-96-24,Dept. of Computer Sciences, Univ.of Texas
at Austin, Oct.1996.

[26] A.K.Moc and D.Chen,” A multiframe Model for Real Time
Tasks,”IEEE Trans. Software Eng., vol. 23 ,no.10,pp.635-645,Oct 1997.

AUTHORS PROFILE

Jagbeer Singh has received a bachelor’s degree in Computer

Science and engineering, from the Dr. B.R.A. University Agra 2000, Uttar

Pradesh (India). In 2006, he received a master’s degree in computer science

from the Gandhi Institute of Engineering and Technology Gunupur , under

Biju Patnaik University of Technology Rourkela ,Orissa(India) He has been a

http://www.informatik.uni-trier.de/~ley/db/conf/sies/sies2007.html#ChoRJ07

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.2, February 2011

37 | P a g e

http://ijacsa.thesai.org/

Asst. Professor Gandhi Institute of Engineering and Technology Gunupur in

the Department of Computer Science since 2004. His research interests are in

the areas of Real Time Systems under the topics “Fault Tolerance Tasks

Scheduling in single processor or multiprocessor system,” he has published 3

peer-reviewed, and 6 scientific papers, organized 5 national research papers in

international/ national conferences and organized national conferences

/workshops, and serves as a reviewer for 3 journals, conferences, workshops,

and also having membership for different professional bodies like

ISTE,CSI,IAENG etc.

 Bichitrananda Patra He is an assistant professor at the

Department of Information Technology Engineering, Gandhi Institute of

Engineering Technology, Gunupur, Orissa, India, He received his master

degree in Physics and Computer Science from the Utkal University,

Bhubaneswar, Orissa, India. His research interests are in Soft Computing,

Algorithm analysis, statistical, neural nets. He has published 8 research papers

in international journals and conferences organized national workshops and

conference and also having membership for different professional bodies like

ISTE, CSI etc.

Satyendra Prasad Singh having M. Sc., MCA and Ph. D. in
Statistics and working as a Professor and Head of department of MCA, Gandhi
Institute of Computer Studies, Gunupur, Rayagada, Orissa, India since 2007.
He has worked as a Research Associate in Defence Research and Development
Organisation, Ministry of Defence, Government of India, New Delhi for 2
years and also worked in different universities. Also he has received a Young
Scientist Award in year 2001 by International Academy of Physical Sciences
for the best Research Paper in CONIAPS-IV, 2001. He has published more
than 10 papers in reputed International/National journals and presented 15
Papers in International/National Conferences in the field of Reliability
Engineering, Cryptology and Pattern Recognization. He has guided many M.
Tech and MCA project thesis.

