
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

75 | P a g e

http://ijacsa.thesai.org/

Arabic Cursive Characters Distributed Recognition

using the DTW Algorithm on BOINC:

Performance Analysis

Zied TRIFA, Mohamed LABIDI and Maher KHEMAKHEM

Department of Computer Science, University of Sfax

MIRACL Lab

Sfax, Tunsia

trifa.zied@gmail.com, mohamedlabidi@yahoo.fr

maher.khemakhem@fsegs.rnu.tn

Abstract— Volunteer computing or volunteer grid computing

constitute a very promising infrastructure which provides enough

computing and storage powers without any prior cost or

investment. Indeed, such infrastructures are the result of the

federation of several, geographically dispersed, computers or/and

LAN computers over the Internet. Berkeley Open Infrastructure

for Network Computing (BOINC) is considered the most well-

known volunteer computing infrastructure. In this paper, we are

interested, rather, by the distribution of the Arabic OCR (Optical

Character Recognition) based on the DTW (Dynamic Time

Warping) algorithm on the BOINC, in order, to prove again that

volunteer computing provides very interesting and promising

infrastructures to speed up, at will, several greedy algorithms or

applications, especially, the Arabic OCR based on the DTW

algorithm. What makes very attractive the Arabic OCR based on

the DTW algorithm is the following, first, its ability to recognize,

properly, words or sub words, without any prior segmentation,

from within a reference library of isolated characters. Second, its

good immunity against a wide range of noises. Obtained first

results confirm, indeed, that the Berkeley Open Infrastructure

for Network Computing constitutes an interesting and promising

framework to speed up the Arabic OCR based on the DTW

algorithm.

Keywords— Volunteer Computing; BOINC; Arabic OCR; DTW

algorithm;

I. INTRODUCTION

Arabic OCR based on the DTW algorithm provides very
interesting recognition and segmentation rates. One of the
advantages of the DTW algorithm is its ability to recognize,
properly, words or connected characters without their prior
segmentation. In our previous studies achieved on high and
medium quality documents [2], [3], [5] we obtained an average
of more than 98% as recognition rate and more than 99% as
segmentation rate. The purpose of the DTW algorithm is to
perform the optimal time alignment between a reference
pattern and an unknown pattern in order to ease the evaluation
of their similarity. Unfortunately, the drawback of the DTW is
its complex computing [6], [7], [8]. Consequently, several
solutions and approaches have been proposed to speed up the
DTW algorithm, [1], [7], [8], [4], [9], [5].

In this paper we show and confirm, through an
experimental study, how volunteer computing, which present

the advantage to be costless, can speed up, substantially also,
the execution time of the Arabic OCR using the DTW
algorithm. More specifically, we show how BOINC can
achieve such a mission.

The reminder of this paper is organized as follows; section
(2) describes the Arabic OCR using the DTW algorithm.
Section (3), gives an overview on volunteer computing
especially BOINC (Berkeley Open Infrastructure for Network
Computing). The proposed approach and the corresponding
performance evaluation are detailed in Section (4). Conclusion
remarks and some future investigation are presented in section
(5).

II. MECHANISM OF THE ARABIC OCR BASED ON THE

DTW ALGORITHM

Words in Arabic are inherently written in blocks of
connected characters. We need a prior segmentation of these
blocks into separated characters. Indeed many researchers have
considered the segmentation of Arabic words into isolated
characters before performing the recognition phase. The
viability of the use of DTW technique, however, is its ability
and efficiency to perform the recognition without prior
segmentation [4, 2].

We consider in this paper a reference library of R trained
characters forming the Arabic alphabet in some given fonts,
and denoted by : r=1, 2,…, R. The technique consists to use
the DTW pattern method to match an input character against
the reference library. The input character is thus recognized as
the reference character that provides the best time alignment,
namely character A is recognized to be if the summation
distance corresponding to the matching of A to reference
character satisfies the following equation [4, 5].

 { }

Let T constitutes a given connected sequence of Arabic
characters to be recognized. T is then composed of a sequence
of N feature vectors that are actually representing the
concatenation of some sub sequences of feature vectors
representing each an unknown character to be recognized. As
portrayed in Fig.1 text T lies on the time axis (the X-axis) in
such a manner that feature vector is at time i on this axis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

76 | P a g e

http://ijacsa.thesai.org/

The reference library is portrayed on the Y-axis, where

reference character is of length , 1≤ r ≤ R. Let S (i, j, r)
represent the cumulative distance at point (i, j) relative to
reference character . The objective here is to detect
simultaneously and dynamically the number of characters
composing T and recognizing these characters. There surely

exists a number k and indices (, , ...,) such that 

 … represent the optimal alignment to text T

where  denotes the concatenation operation. The path
warping from point (1, 1,) to point (N, ,k) and
representing the optimal alignment is therefore of minimum
cumulative distance that is:

 { }

This path, however, is not continuous since it spans many
different characters in the distance matrix. We therefore must
allow at any time the transition from the end of one reference
character to the beginning of another reference character. The

end of reference character is first reached whenever the

warping function reaches point (i, , r), i =⌈

⌉,...,N. As we

can see from Fig.1, the end of reference characters , ,
are first reached at time 3, 4, 3 respectively. The end points of
reference characters are shown in Fig.1 inside diamonds and
points at which transitions occur are within a circle. The
warping function always reaches the ends of the reference
characters. At each time i, we allow the start of the warping
function at the beginning of each reference character along
with addition of the smallest cumulative distance of the end
points found at time (i - 1) [4,5]. The resulting functional
equations are:

{

}

With the boundary conditions:

 [

]

To trace back the warping function and the optimal
alignment path, we have to memorize the transition times
among reference characters. This can easily be accomplished
by the following procedure:

{

}

Where trace min is a function that returns the element

corresponding to the term that minimizes the functional
equations. The functioning of this algorithm is portrayed on
Fig.1 by means of the two vectors and , where
 represents the reference character giving the least
cumulative distance at time i, and provides the link to
the start of this reference character in the text T . The heavy

marked path through the distance matrix represents the optimal
alignment of text T to the reference library. We observe that the

text is recognized as C1  C3 [5].

Figure 1. DTW Wrapping mechanism.

III. VOLUNTEER COMPUTING AND BOINC

Volunteer computing is a form of distributed computing in
which the general public volunteer make available and storage
resources to scientific research projects. Early volunteer
computing projects include the Great Internet Mersenne Prime
Search [12], SETI@home [10], Distributed.net [11] and
Folding@home [13]. Today the approach is being used in
many areas, including high energy physics, molecular biology,
medicine, astrophysics, and climate dynamics. This type of
computing can provide great power (SETI@home, for
example, has accumulated 2.5 million years of CPU time in 7
years of operation). However, it requires attracting and
retaining volunteers, which places many demands both on
projects and on the underlying technology.

The Berkeley Open Infrastructure for Network Computing
(BOINC) is a framework to deploy distributed computing
platforms based on volunteer computing. It is developed at
U.C. Berkeley Spaces Sciences Laboratory and it is released
under an open source license.

BOINC is the evolution of the original SETI@home
project, which started in 1999 and attracted millions of
participants worldwide [16].

This middleware provides a generic framework for
implementing distributed computation applications within a
heterogeneous environment. The system is designed as a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

77 | P a g e

http://ijacsa.thesai.org/

software platform utilizing computing resources from volunteer
computers [14].

BOINC software is divided in two main components: the
server and the client side of the software. BOINC allows
sharing computing resources among different autonomous
projects. A BOINC project is identified by a unique URL
which is used by BOINC clients to register with it. Every
BOINC project must run a host with the server side of the
BOINC software.

BOINC software on the server side comprises several
components: one or more scheduling servers that communicate
with BOINC clients, one or more data servers that distribute
input files and collect output files, a web interface for
participants and project administrators and a relational database
that stores information about work, results, and participants.

BOINC software provides powerful tools to manage the
applications run by a project. For instance it allows to easily
define different application versions for different target
architectures. A “workunit” describes a computation to be
performed, associating a (unique) name with an application and
the corresponding input files.

Not all kind of applications are suitable to be deployed on
BOINC. Ideally, candidate applications must present
“independent parallelism” (divisible into parallel parts with few
or no data dependencies) and a low data/compute ratio since
output files will be sent through a typically slow commercial
Internet connection [16].

In this paper, we show how volunteer computing such as
BOINC can speed up the execution time of Arabic OCR based
on the DTW algorithm.

IV. THE DTW DATA DISTRIBUTION OVER BOINC

The Arabic OCR based on the DTW procedure described in
the preceding section presents many ways on which one could
base its parallelization or distribution. The idea of the proposed
approach is how to take advantages of the enough power
provided by BOINC to speed up the execution time of the
DTW algorithm?

A BOINC project uses a set of servers to create, distribute,
record, and aggregate the results of a set of tasks that the
project needs to perform to accomplish its goal. The tasks are
evaluating data sets, called workunits. The servers distribute
the tasks and corresponding workunits to clients (software that
runs on computers that people permit to participate in the
project). When a computer running a client would otherwise be
idle (in the context of volunteer computing, a computer is
deemed to be idle if the computer’s screensaver is running), it
spends the time working on the tasks that a server assigns to
the client. When the client has finished a task, it returns the
result obtained by completing the task to the server. If the user
of a computer that is running a client begins to use the
computer again, the client is interrupted and the task it is
processing is paused while the computer executes programs for
the user. When the computer becomes idle again, the client
continues processing the task it was working on when the client
was interrupted.

To be added into a BOINC project, applications must
incorporate some interaction with the BOINC client: they must
notify the client about start and finish, and they must allow for
renaming of any associated data files, so that the client can
relocate them in the appropriate part of the guest operating
system and avoid conflicts with workunits from other projects
[16].

We propose to split optimally the binary image of a given
Arabic text to be recognized into a set of binary sub images and
then assign them among some volunteer computers which are
already subscribed to our project.

BOINC uses a simple but a rich set of abstraction files,
applications, and data. A project defines application versions
for various platforms (Windows, Linux/x86, Mac OS/X, etc.).

An application can consist of an arbitrary set of files. A
workunit represents the inputs to a computation: the application
(but not a particular version) presents a set of references input
files, and sets of command line arguments and environment
variables. Each workunit has parameters such as computing,
memory and storage requirements and a soft deadline for
completion. A result represents the result of a computation, it
consists of a reference to a workunit and a list of references to
output files.

Files can be replicated, the description of a file includes a
list of URLs from which it may be downloaded or uploaded.
When the BOINC client communicates with a scheduling
server it reports completed work, and receives an XML
document describing a collection of the above entities. The
client then downloads and uploads files and runs applications;
it maximizes concurrency, using multiple CPUs when possible
and overlapping communication and computation.

A. Experimental Study

Significant reduction in the elapsed time, defined as the
time elapsing from the start until the completion of the text
recognition, can be realized by using a distributed architecture.
This effect is known as the speedup factor. This factor is
properly defined as the ratio of the elapsed time using
sequential mode with just one processor to the elapsed time
using the distributed architecture.

Next we consider only the case where the volunteer
computers participating in the work are homogeneous. It means
that all the corresponding interconnected computers are
homogeneous in terms of computing power, hardware
configuration and operating system. We ran several
experiments on several specific printed Arabic texts.

Our experiments aim at proving that volunteer computing
present, indeed, interesting infrastructures to speed up the
execution process of the Arabic OCR based on the DTW
algorithm.

During these experiments, we have considered the
following conditions:

 The number of pages is 100,

 The number of lines per page is 7,

 The average number of characters per line is 55,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

78 | P a g e

http://ijacsa.thesai.org/

 The number of characters per page is 369,

 The reference library contains 103 characters,

 We have used 16 dedicated homogeneous workers
having the exact configuration: 3GHZ CPU frequency,
512 Mega Octets RAM and running Windows XP-
professional.

To reach our expectation, we have studied the effect of the
distribution of approximately a hundred (100) of similar
printed Arabic text pages over a variable number of volunteer
computers.

Figure 2. Distributed execution time.

Figure 3. Speedup of the DTW algorithm.

Fig. 2 and 3 illustrate the obtained results of our

experiment. These figures show in particular that:

 The execution time of the DTW algorithm decreases
with the number of computers used. Each time you add
a computer the execution time of recognition decrease.
The average test time for 1 computer was
approximately 6.20 hours and the average test time for
16 computers was 0.4 hours. It clearly shows an
exponential decrease in the amount of time required to
complete the tests.

 However, the speedup factor increases with the number
of computers used.

 If we use 16 computers then the execution time reaches
the value 1450 seconds and the speedup factor reaches
the value 15. This result is very interesting, because in
this case our proposed OCR system is able to recognize
more than 830 characters per second, compared with
the existing commercial Arabic OCR [2].

Consequently, volunteer computing constitute interesting
infrastructures to speedup, drastically, the execution time of the
Arabic OCR based on the DTW algorithm. Moreover, and
thanks to the enough computing power provided by such
infrastructures, we can think, now, about the improvement of
the recognition rate of our system by adding to it some
complementary approaches or techniques.

V. CONCLUSION AND PERSPECTIVE

This paper has shown how volunteer computing present
interesting infrastructures to speed up, substantially, the
execution time of the Arabic OCR based on the DTW
algorithm. Indeed, conducted experiments confirm that such
infrastructures can help a lot in building a powerful Arabic
OCR based on the combination (integration) of some strong
complementary approaches or techniques which require
enough computing power.

Several investigations are under studies especially the way
to exploit in a large scale the BOINC and the way to improve
the recognition rate of the Arabic OCR based on the DTW
algorithm in order to build a powerful Arabic OCR system.

REFERENCES

[1] M. Khemakhem, A. Belghith, M. Labidi « The DTW data distribution
over a grid computing architecture », International Journal of Computer
Sciences and Engineering Systems (IJCSES), Vol.1, N°.4, p. 241-247,
December 2007

[2] M. Khemakhem, A. Belghith: « Towards a distributed Arabic OCR
based on the DTW algorithm », the International Arab Journal of
Information Technology (IAJIT), Vol. 6, N°. 2, p. 153-161, April 2009.

[3] M. Khemakhem et al., Arabic Type Writen Character Recognition Using
Dynamic Comparison, Proc. 1st Computer conference Kuwait, March.
1989.

[4] M. Khemakhem, A. Belghith, M. Ben Ahmed, Modélisation
architecturale de la Comparaison Dynamique distribuée Proc, Second
International Congress On Arabic and Advanced Computer Technology,
Casablanca, Morocco, December 1993.

[5] M. Khemakhem and A. Belghith., A Multipurpose Multi-Agent System
based on a loosely coupled Architecture to speed up the DTW algorithm
for Arabic printed cursive OCR. Proc. IEEE AICCSA-2005, Cairo,
Egypt, January 2005.

[6] A.Cheung et al. An Arabic optical character recognition system using
recognition based segmentation, Pattern Recongnition. Vol. 34, 2001.

[7] G. R. Quénot et al., A Dynamic Programming Processor for Speech
Recognition, IEEE JSSC, Vol. 24, N(F 9)q.20, April 1989.

[8] Philip G. Bradford, Efficient Parallel Dynamic Programming, Proc. the
30 Annual Allerton Conference on Communication, Control an
Computing, University of Illinois, 185-194, 1992.

[9] C. E. R. Alves et al, Parallel Dynamic Programming for solving the
String Editing Problem on CGM/BSP, Proc. SPAA’02, August 10-13,
2002 Winnipeg, Manitoba, Canada.

[10] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer.
“SETI@home: An Experiment in Public-Resource Computing”.
Communications of the ACM, November 2002

[11] Distributed.net, http://distributed.net

[12] GIMPS, http://www.mersenne.org/prime.htm

[13] S.M. Larson, C.D. Snow, M. Shirts and V.S. Pande. “Folding@Home
and Genome@Home: Using distributed computing to tackle previously
intractible problems in computational biology”. Computational
Genomics, Horizon Press, 2002.

[14] D.P. Anderson. “BOINC: A System for Public-Resource Computing and
Storage”. 5th IEEE/ACM International Workshop on Grid Computing,
Nov. 8 2004.

[15] Einstein@Home, http://einstein.phys.uwm.edu/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

79 | P a g e

http://ijacsa.thesai.org/

[16] B.Antoli, F. Castejón, A.Giner, G.Losilla, J.M Renolds, A.Rivero,
S.sangiaos, F.Serrano, A. Tarancón, R. Vallés and J.L. Velasco “ZIVIS:
A City Computing Platform Based on Volunteer Computing”

[17] D.P. Anderson, E. Korpela, and R. Walton. “High-Performance Task
Distribution for Volunteer Computing”. First IEEE International
Conference

[18] Gupta, S., Doshi, V., Jain, A., & Iyer, S. (2010). Iris Recognition System
using Biometric Template Matching Technology. International Journal
of Advanced Computer Science and Applications - IJACSA, 1(2), 24-28.
doi: 10.5120/61-161.

[19] Padmavathi, G. (2010). A suitable segmentation methodology based on
pixel similarities for landmine detection in IR images. International
Journal of Advanced Computer Science and Applications - IJACSA,
1(5), 88-92.

[20] Miriam, D. D. H. (2011). An Efficient Resource Discovery Methodology
for HPGRID Systems. International Journal of Advanced Computer
Science and Applications - IJACSA, 2(1).

[21] Hamdy, S., El-messiry, H., Roushdy, M., & Kahlifa, E. (2010).
Quantization Table Estimation in JPEG Images. International Journal of

Advanced Computer Science and Applications - IJACSA, 1(6), 17-23.

AUTHORS PROFILE

Maher Khemakhem received his master of science and his PhD degrees from

the University of Paris 11, France in 1984 and 1987, respectively. He is

currently assistant professor in computer science at the Higher institute of

Management at the University of Sousse Tunisia. His research interests

include distributed systems, performance evaluation, and pattern recognition.

Zied Trifa received his master degree of computer science from the

University of Economics and management of Sfax, Tunisia in 2010. He is

currently PhD student in computer science at the same University. His

research interests include Grid Computing, distributed systems, and

performance evaluation.

Mohamed Laabidi received his master degree of computer science from the

University of Economics and management of Sfax, Tunisia in 2007. He is

currently PhD student in computer science at the same University. His

research interests include Cloud and Grid Computing, distributed systems, and

performance evaluation.

