
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

19 | P a g e

http://ijacsa.thesai.org/

Advanced Steganography Algorithm using Encrypted

secret message

Joyshree Nath

A.K.Chaudhuri School of IT

University of Calcutta

Kolkata, India

joyshreenath@gmail.com

Asoke Nath

Department of Computer Science

St. Xavier’s College(Autonomous)

Kolkata, India

asokejoy@gmail.com

Abstract—In the present work the authors have introduced a new

method for hiding any encrypted secret message inside a cover

file. For encrypting secret message the authors have used new

algorithm proposed by Nath et al(1). For hiding secret message

we have used a method proposed by Nath et al (2). In MSA (1)

method we have modified the idea of Play fair method into a new

platform where we can encrypt or decrypt any file. We have

introduced a new randomization method for generating the

randomized key matrix to encrypt plain text file and to decrypt

cipher text file. We have also introduced a new algorithm for

encrypting the plain text multiple times. Our method is totally

dependent on the random text_key which is to be supplied by the

user. The maximum length of the text_key can be of 16

characters long and it may contain any character (ASCII code 0

to 255). We have developed an algorithm to calculate the

randomization number and the encryption number from the

given text_key. The size of the encryption key matrix is 16x16 and

the total number of matrices can be formed from 16 x 16 is 256!

which is quite large and hence if someone applies the brute force

method then he/she has to give trail for 256! times which is quite

absurd. Moreover the multiple encryption method makes the

system further secured. For hiding secret message in the cover

file we have inserted the 8 bits of each character of encrypted

message file in 8 consecutive bytes of the cover file. We have

introduced password for hiding data in the cover file. We propose

that our new method could be most appropriate for hiding any

file in any standard cover file such as image, audio, video files.

Because the hidden message is encrypted hence it will be almost

impossible for the intruder to unhide the actual secret message

from the embedded cover file. This method may be the most

secured method in digital water marking.

Keywords- Steganography; MSA algorithm; Encryption;

Decryption;

I. INTRODUCTION

In the present work we have used two (2) methods: (i) We
encrypt the secret message(SM) using a method
MSA(Meheboob,Saima and Asoke) proposed by Nath et al.(1).
(ii) We insert the encrypted secret message inside the standard
cover file(CF) by changing the least significant bit(LSB). Nath
et al(2) already proposed different methods for embedding SM
into CF but there the SF was inserted as it is in the CF and
hence the security of steganography was not very high. In the
present work we have basically tried to make the
steganography method more secured. It means even if someone
can extract SM from CF but he cannot be able to decrypt the

message as he has to know the exact decryption method. In our
present work we try to embed almost any type of file inside
some standard cover file (CF) such as image file(.JPEG or
.BMP) or any image file inside another image file. Here first
we will describe our steganography method for embedding any
type of file inside any type of file and then we will describe the
encryption method which we have used to encrypt the secret
message and to decrypt the extracted data from the embedded
cover file.

(i) Least Significant Bit Insertion method: Least significant
bit (LSB) insertion is a common, simple approach for
embedding information in a cover image. The LSB or in other
words 8-th bit of some or all the bytes inside an image is
changed to a bit of the secret message. Let us consider a cover
image contains the following bit patterns:

Byte-1 Byte-2 Byte-3 Byte-4

00101101 00011100 11011100 10100110

 Byte-5 Byte-6 Byte-7 Byte-8
11000100 00001100 11010010 10101101

Suppose we want to embed a number 200 in the above bit
pattern. Now the binary representation of 200 is 11001000. To
embed this information we need at least 8 bytes in cover file.
We have taken 8 bytes in the cover file. Now we modify the
LSB of each byte of the cover file by each of the bit of embed
text 11001000.

Now we want to show what happens to cover file text after
we embed 11001000 in the LSB of all 8 bytes:

TABLE 1 CHANGING LSB

Before

Replacement

After

Replacement

Bit

inserted

Remarks

00101101 00101101 1 No change in bit

pattern

00011100 00011101 1 Change in bit

pattern(i)

11011100 11011100 0 No change in bit

pattern

10100110 10100110 0 No change in bit

pattern

11000100 11000101 1 Change in bit

pattern(ii)

00001100 00001100 0 No change in bit

pattern

11010010 11010010 0 No change in bit

pattern

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

20 | P a g e

http://ijacsa.thesai.org/

10101101 10101100 0 Change in bit

pattern(iii)

Here we can see that out of 8 bytes only 3 bytes get
changed only at the LSB position. Since we are changing the
LSB hence we are either changing the corresponding character
in forward direction or in backward direction by only one unit
and depending on the situation there may not be any change
also as we have seen in the above example. As our eye is not
very sensitive so therefore after embedding a secret message in
a cover file our eye may not be able to find the difference
between the original message and the message after inserting
some secret text or message on to it. To embed secret message
we have to first skip 600 bytes from the last byte of the cover
file. After that according to size of the secret message (say n
bytes) we skip 8*n bytes. After that we start to insert the bits
of the secret file into the cover file. Under no circumstances the
size of the cover should not be less the 10*sizeof(secret
message) then our method will fail. For extracting embedded
file from the cover file we have to perform the following:

One has to enter the password while embedding a secret
message ile. If password is correct then the program will read
the file size from the cover file. Once we get the file size we
follow simply the reverse process of embedding a file in the
cover file. We read LSB of each byte and accumulate 8 bits to
form a character and we immediately write that character on to
a file.

We made a long experiment on different types of host files
and also the secret messages and found the following
combinations are most successful:

Table-2 COVER FILE TYPE AND SECRET MESSAGE FILE TYPE

Sl.N

o.

Cover

file type

Secret file type used

1 .BMP .BMP,.DOC,.TXT,.WAV,.MP3,.XLS,.PPT,

.AVI,.JPG,.EXE..COM

2. .JPG .JPG,.BMP,.TXT,.WAV,.MP3,.XLS,,.PPT,

.EXE,.COM

3. .DOC .TXT

4. .WAV .BMP,.JPG,.TXT,.DOC

5. .AVI .TXT,.WAV,.JPEG

6. .PDF .TXT

Only in case of .PDF and .JPEG file to insert secret
message is a bit difficult job as those files are either
compressed or encrypted. Even then we got success for
inserting a small text file in .PDF file. So we can conclude that
.PDF file is not a good cover file. On the other hand .BMP file
is the most appropriate file which can be used for embedding
any type of file without facing any problem.

(ii) Meheboob, Saima and Asoke(MSA) Symmetric key
Cryptographic method:

Symmetric key cryptography is well known concept in
modern cryptography. The plus point of symmetric key
cryptography is that we need one key to encrypt a plain text
and the same key can be used to decrypt the cipher text and the

main problem is that the same key is used for encryption as
well as decryption process. Hence the key must be secured.
Because of this problem we have introduced public key
cryptography such as RSA public key method. RSA method
has got both merits as well as demerits. The problem of Public
key cryptosystem is that we have to do massive computation
for encrypting any plain text. Sometimes these methods may
not be also suitable such as in sensor networks. However, there
are quite a number of encryption methods have come up in the
recent past appropriate for the sensor nodes. Nath et al.(1)
proposed a symmetric key method where they have used a
random key generator for generating the initial key and that key
is used for encrypting the given source file. MSA method is
basically a substitution method where we take 2 characters
from any input file and then search the corresponding
characters from the random key matrix and store the encrypted
data in another file. In our work we have the provision for
encrypting message multiple times. The key matrix contains all
possible characters (ASCII code 0 to 255) in a random order.
The pattern of the key matrix will depend on text_key entered
by the user. Nath et al. proposed algorithm to obtain
randomization number, encryption number and the shift
parameter from the initial text_key. We have given a long trial
run on text_key and we found that it is very difficult to match
the three above parameters for 2 different Text_key which
means if someone wants to break our encryption method then
he/she has to know the exact pattern of the text_key otherwise
it will not be possible to obtain two sets of identical parameters
from two different text_key. We have given several trial runs to
break our encryption method but we found it is almost
unbreakable. For pure text file we can apply brute force method
to decrypt small text but for any other file such as binary file
we cannot apply any brute force method.

II. RANDOM KEY GENERATION AND MSA ENCRYPTION

ALGORITHM

Before we embed the secret message in a cover file we first
encrypt the secret message using MSA method. The detail
method is given in our previous publication (1). Here we will
describe the MSA algorithm in brief:

To create Random key Matrix of size(16x16) we have to
take any key. The size of key must be less than or equal to 16
characters long. These 16 characters can be any of the 256
characters(ASCII code 0 to 255). The relative position and the
character itself is very important in our method to calculate the
randomization number , the encryption number and the relative
shift of characters in the starting key matrix. We take an
example how to calculate randomization number, the
encryption number and relative shift from a given key. Here we
are demonstrating our method:

Suppose key=AB

Choose the following table for calculating the place value
and the power of characters of the incoming key:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

21 | P a g e

http://ijacsa.thesai.org/

TABLE-3

 n

Step-1: Sum= ASCII Code * bm ----(1)

 m=1

Example-1:

Now we calculate the sum for key=”AB” using equation(1)

Sum=65*161 + 66 * 162 =17936
Now we have to calculate 3 parameters from this sum (i)

Randomization number(n1), (ii) Encryption number(n2) and
(iii)Relative shift(n3) using the following method:

a) Randomization number(n1):

 num1=1*1+7*2+9*3+3*4+6*5=84

 n1=sum mod num1=17936 mod 84=44
 Note: if n1=0 then n1=num1 and n1<=128

b) Encryption number(n2):

 num2=6*1+3*2+9*3+7*4+1*5=72

 n2=sum mod num2 =17936 mod 72 =8
 Note: if n2=0 then n2=num2 and n2<=64

c) Relative shift(n3):

n3= all digits in sum=1+7+9+3+6=26

Now we show the original key matrix(16 x 16) which
contains all characters(ASCII code 0-255):

TABLE –4 : THE ORIGINAL MATRIX:

☺ ☻ ♁ ♂ ♀ ☿

 ♫ ☼

⇑ ⇓ ↕ ‼ ¶ ¤ ⇏ ↖ ↑ ↓ ← ↗ ↔ ⇐ ⇒

 ! " # $ % & ' () * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _

` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~ ↚

Ç ü é â ä à å ç ê ë è ï î ì Ä Å

� æ Æ ó ô ò û ù ÿ � � ¢ £ ≦ ₧ ƒ

� ì ñ ú ð � ª º ¿ ↛ ¬ ½ ¼ ¡ « »

⇋ ⇌ ⇍ ↟ ↥ ↺ ↻ ↯ ↮ ↼ ↪ ↰ ↶ ↵ ↴ ↡

↢ ↧ ↦ ↤ ↞ ↨ ↷ ↸ ↳ ↭ ⇂ ↿ ↹ ↩ ⇅ ⇀

⇁ ↽ ↾ ↲ ↱ ↫ ↬ ⇄ ⇃ ↣ ↠ ⇈ ⇇ ⇉ ⇊ ⇆

α ß Γ π Σ ζ ≧ η Φ Θ Ω δ ∞ θ ε ↘
↙ ± ≥ ≤ ↜ ↝ ÷ ≈ ° ∙ · √ ⁿ ²

TABLE-5 : THE MATRIX AFTER RELATIVE SHIFT(N3=26) IS:

4 N h é £ ↻ ⇁ Ω ☺ ← 5 O i �

≦ ↯ ↽ δ ☻ ↗ 6 P j � ₧ ↮ ↾ ∞ ♁ ↔

7 Q k � ƒ ↼ ↲ θ ♂ ⇐ 8 R l å � ↪

↱ ε ♀ ⇒ 9 S m ç ì ↰ ↫ ↘ ☿ : T

n ê ñ ↶ ↬ ↙ ! ; U o ë ú ↵ ⇄ ±

 " < V p è ð ↴ ⇃ ≥ # = W q ï

� ↡ ↣ ≤

 $ > X r î ª ↢ ↠ ↜ ☾ %

? Y s í º ↧ ⇈ ↝ ☽ & @ Z t � ¿ ↦

 ' A [u � ↛ ↤ ⇉ ≈ ♫ (B \

v � ¬ ↞ ⇊ ° ☼) C] w æ ½ ↨ ⇆ ∙

⇑ * D ^ x Æ ¼ ↷ α · ⇓ + E _ y ó

¡ ↸ ß √ ↕ , F ` z ô « ↳ Γ ⁿ ‼ -

G a { ò » ↭ π ² ¶ . H b | û ⇋ ⇂

Σ ⇎ ¤ / I c } ù ⇌ ↿ ζ ⇏ 0 J d

~ ÿ ⇍ ↹ ≧ ↖ 1 K e ↚ � ↟ ↩ η ↑ 2
L f � � ↥ ⇅ Φ ↓ 3 M g ü ¢ ↺ ⇀ Θ

Now we apply the following randomization methods one
after another in a serial manner:

Step-1: Function cycling()

Step-2: Function upshift()

Step-3: Function downshift()

Step-4:Function leftshift()

Step-5:Function rightshift()

Step-6:Function random()

Step-7:Function random_diagonal_right()

Step-8:Function random_diagonal_left()

For detail randomization methods we refer to our previous
work(1).

After finishing above shifting process we perform

a) column randomization

b) row randomization and

c) diagonal rotation and

d) reverse diagonal rotation

Each operation will continue for n3 number of times.

Now we apply encryption process on any text file. Our
encryption process is as follows:

We choose a 4X4 simple key matrix:

Length
of key(n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Base
value(b)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

22 | P a g e

http://ijacsa.thesai.org/

TABLE-6

A B C D

E F G H

I J K L

M N O P

Case-I: Suppose we want to encrypt FF then it will take as
GG which is just one character after F in the same row.

Case –II: Suppose we want to encrypt FK where F and K
appears in two different rows and two different columns. FK
will be encrypted to KH (FKGJHKKH).

Case-III: Suppose we want to encrypt EF where EF occurs
in the same row. Here EF will be converted to HG

III. CHANGING LSB BITS OF COVER FILE USING ENCRYPTED

SECRET MESSAGE FILE

In the present work we have made an exhaustive study on
embedding (i) text, (ii)sound, (iii)image in different cover files
such as image file, sound file, word document file, .PDF file.
The size of the cover file must be at least 10-times more than
secret message file which is to be embedded within the cover
file. The last 500 bytes of the cover file we reserved for storing
the password and the size of the secret message file. After that
we subtract n*(size of the secret message file) from the size of
the cover file. Here n=8 depending on how many bytes we
have used to embed one byte of the secret message file in the
cover file. For strong password we have used a simple
algorithm as follows: We take XOR operation with each byte
of the password with 255 and insert it into the cover file. To
retrieve the password we read the byte from the cover file and
apply XOR operation with 255 to get back original password.
To embed any any secret message we have to enter the
password and to extract message we have to enter the same
password. The size of the secret message file we convert into
32 bits binary and then convert it into 4 characters and write
onto cover file. When we want to extract encrypted secret
message from a cover file then we first extract the file size
from the cover file and extract the same amount of bytes from
cover file. Now we will describe the algorithms which we have
used in our present study:

We read one byte at a time from the encrypted secret
message file(ESMF) and then we extract 8 bits from that byte.
After that we read 8 consecutive bytes from the cover file(CF).
We check the LSB of each byte of that 8 byte chunk whether it
is different from the bits of ESMF. If it different then we
replace that bit by the bit we obtain from the ESMF. Our
program also counts how many bits we change and how many
bytes we change and then we also calculate the percentage of
bits changed and percentage of bytes changed in the CF. Now
we will demonstrate in a simple case.:

Suppose we want to embed “A” in the cover text
“BBCDEFGH”. Now we will show how this cover text will be
modified after we insert “A” within it.

TABLE -7 CHANGING LSB

Original

Text

Bit string Bit to be

inserted in

LSB

Changed Bit

string

Changed

Text

B 01000010 0 01000010 B

B 01000010 1 01000011 C

C 01000011 0 01000010 B

D 01000100 0 01000100 D

E 01000101 0 01000100 D

F 01000110 0 01000110 F

G 01000111 0 01000110 F

H 01001000 1 01001001 I

Here we can see that to embed “A” we modify 5 bits out of
64 bits. After embedding “A” in cover text “BBCDEFGH” the
cover text converts to “BCBDDFFI”. We can see that the
change in cover text is prominent as we are trying to embed
text within text which is actually not possible using LSB
method. But when we do it in some image or audio file then it
will not be so prominent.

To extract byte from the cover file we follow the reverse
process which we apply in case of encoding the message. We
simply extract serially one by one from the cover file and then
we club 8 bits and convert it to a character and then we write it
to another file. But this extracted file is now in encrypted form
and hence we apply decryption process which will be the
reverse of encryption process to get back original secret
message file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

23 | P a g e

http://ijacsa.thesai.org/

IV. RESULTS AND DISCUSSION

Case-1: Cover File type=.jpg Secret File type=.jpg

 + =

Fig_1:Cover file name: sxcn.jpg Size=1155378

Bytes

Fig_2:Secret message File:joy1.jpg Size=1870

Bytes

Fig_3: Embedded Cover file name :sxcn.jpg

Size=1155378 Bytes

 (secret message encrypted before embedding)

Case-2: Cover File type=.BMP secret message file =.doc

Fig_4: Cover File name : tvshow.bmp Size=688856 Bytes.

Fig_5: Embedded Cover File name : tvshow.bmp Size=688856 Bytes

In this file an encrypted word file xxfile2.doc(size=19456B) is embedded

 Case-3: Cover File type=.BMP secret message file =.jpg

 + =

Fig_6: Cover file name = tvshow1.bmp

(size=688856B)

Fig_7: Secret message file=

tuktuk1.jpg(size=50880B) (The secret message

file was Encrypted while embedding)

Fig_8: Embedded cover file name=tvshow1.bmp

(size=688856B)

 Case-4: Cover File type=..AVI(Movie File) secret message file =.jpg

 + =

Fig_9: Cover File Name=

Name=rhinos.avi(size=76800B)

Fig_10: Secret message File name =

tuktuk_bw.jpg (Size=1870B)

Fig_11:Embedded Cover File Name=rhionos.avi.

(Size=76800B)
(The encrypted secret message file is embedded)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No.3, March 2011

24 | P a g e

http://ijacsa.thesai.org/

V. CONCLUSION

In the present work we try to embed some secret message
inside any cover file in encrypted form so that no one will be
able to extract actual secret message. Here we use the standard
steganographic method i.e. changing LSB bits of the cover file.
Our encryption method can use maximum encryption
number=64 and maximum randomization number=128. The
key matrix may be generated in 256! Ways. So in principle it
will be difficult for anyone to decrypt the encrypted message
without knowing the exact key matrix. Our method is
essentially stream cipher method and it may take huge amount
of time if the files size is large and the encryption number is
also large. The merit of this method is that if we change the
key_text little bit then the whole encryption and decryption
process will change. This method may most suitable for water
marking. The steganography method may be further secured if
we compress the secret message first and then encrypt it and
then finally embed inside the cover file.

VI. ACKNOWLEDGEMENT

AN sincerely expresses his gratitude to Department of
Computer Science for providing necessary help and assistance.
AN is also extremely grateful to University Grants Commission
for providing fund for continuing minor research project on
Data encryption using symmetric key and public key crypto
system. JN is grateful to A.K. Chaudhury School of I.T. for
giving inspiration for research work.

REFERENCES

[1] Symmetric key cryptography using random key generator, A.Nath

, S.Ghosh, M.A.Mallik, Proceedings of International conference on
SAM-2010 held at Las Vegas(USA) 12-15 July,2010, Vol-2,P-239-244

[2] Data Hiding and Retrieval, A.Nath, S.Das, A.Chakrabarti, Proceedings
of IEEE International conference on Computer Intelligence and
Computer Network held at Bhopal from 26-28 Nov, Page-392-397,
2010.

[3] Advanced steganographic approach for hiding encrypted secret message
in LSB ,LSB+1,LSB+2 and LSB+3 bits in non standard cover files,
Joyshree Nath, Sankar Das, Shalabh Agarwal and Asoke Nath , to be
published in IJCA(USA),Vol 14-No.7, P-31-35, February 2011.

[4] Cryptography and Network , William Stallings , Prectice Hall of India
[5] Modified Version of Playfair Cipher using Linear Feedback Shift

Register, P. Murali and Gandhidoss Senthilkumar, UCSNS
International journal of Computer Science and Network Security, Vol-
8 No.12, Dec 2008.

[6] Jpeg20000 Standard for Image Compression Concepts algorithms and
VLSI Architectures by Tinku Acharya and Ping-Sing Tsai, Wiley
Interscience.

[7] Steganography and Seganalysis by Moerland, T , Leiden Institute of
Advanced Computing Science.

[8] SSB-4 System of Steganography using bit 4 by J.M.Rodrigues Et. Al.
[9] An Overview of Image Steganography by T.Morkel, J.H.P. Eloff and

M.S.Oliver.
[10] An Overview of Steganography by Shawn D. Dickman
[11] Hamdy, S., El-messiry, H., Roushdy, M., & Kahlifa, E. (2010).

Quantization Table Estimation in JPEG Images. International Journal of
Advanced Computer Science and Applications - IJACSA, 1(6), 17-23.

[12] Lalith, T. (2010). Key Management Techniques for Controlling the
Distribution and Update of Cryptographic keys. International Journal of
Advanced Computer Science and Applications - IJACSA, 1(6), 163-
166.

[13] Hajami, A., & Elkoutbi, M. (2010). A Council-based Distributed Key
Management Scheme for MANETs. International Journal of Advanced
Computer Science and Applications - IJACSA, 1(3).

[14] Meshram, C. (2010). Modified ID-Based Public key Cryptosystem
using Double Discrete Logarithm Problem. International Journal of
Advanced Computer Science and Applications - IJACSA, 1(6).
Retrieved from http://ijacsa.thesai.org/.

