
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

41 | P a g e  

http://ijacsa.thesai.org/ 

Effective Implementation of Agile Practices 
Ingenious and Organized Theoretical Framework 

 

Veerapaneni Esther Jyothi 

Lecturer, Department of Computer Applications, 

V.R. Siddhartha Engineering College, 

Kanuru, Vijayawada – 520 007, Andhra Pradesh, India. 

nejyothi@hotmail.com 

K. Nageswara Rao 

Professor and Head, Department of Computer Science and 

Engineering, 

P.V.P.Siddhartha Institute of Technology, 

Kanuru, Vijayawada – 520 007, Andhra Pradesh, India. 

drknrao@ieee.org

 

 
Abstract—Delivering software in traditional ways is challenged 

by agile software development to provide a very different 

approach to software development. Agile methods aim at fast, 

light and efficient than any other vigorous method to develop and 

support customers business without being chaotic. Agile software 

development methods claim to be people-oriented rather than 

process-oriented and adaptive rather than predictive. Solid 

Determination and Dedicated efforts are required in agile 

development to overcome the disadvantages of predefined set of 

steps and changing requirements to see the desirable outcome 

and to avoid the predictable results.  These methods reach the 

target promptly by linking developers and stakeholders. 
The focus of this research paper is two fold. The first part is to 

study different agile methodologies, find out the levelheaded 

difficulties in agile software development and suggests possible 

solutions with a collaborative and innovative framework. The 

second part of the research paper concentrates on the importance 

of handling traceability in agile software development and finally 

proposes an ingenious and organized theoretical framework with 

a systematic approach to agile software development.  

Keywords-Traceability; requirements; agile manifesto; framework 

I.  INTRODUCTION 

Over the years many different software methodologies have 
been introduced and used by the software engineering 
community. Developers and users of these methods have 
invested significant amount of time and energy in improving 
and refining them. The method they choose for software 
development depends on the type of organization, the type of 
project and the type of people involved. Agile software 
development methodologies have been greeted with 
enthusiasm by many software developers because work is done 
at different levels in parallel [9]. We can use our creativity on 
the design level you can also have the fun of implementing the 
design in a smart way.  

Handling unstable and volatile requirements throughout the 
development life cycles and delivering products in short time 
frames and under budget constraints when compared with 
traditional development methods are the two most significant 
characteristics of the agile approaches. Successful agile 
traceability processes incorporates the carefully devised 
planning stage to determine when, how, where and why each 
traceability link will be created. 

This paper is organized as follows; section II presents the 
comparative study of different agile methodologies. Section III 
Surveys the major worthwhile risks associated with agile 
software development and suggests possible solutions. Section 
IV explains the importance of traceability in agile. Finally 
section V proposes ingenious and organized theoretical 
framework. 

II. COMPARITIVE STUDY OF AGILE METHODS 

Agile methods are a family of development techniques 
designed to deliver products on time, on budget, with high 
quality and customer satisfaction [15]. This family includes 
several and very different methods. The most popular include: 

 eXtreme Programming (XP) 

 Scrum 

 Dynamic Systems Development Method (DSDM) 

 Adaptive Software Development (ASD) 

 The Crystal family 

 
XP is a deliverable and disciplined approach to agile 

software development [1]. XP is successful because it stresses 
customer satisfaction and allows the software developers to 
confidently respond to changing software requirements even 
late in the lifecycle. The business culture affecting the 
development unit is another focal issue in XP.  

Scrum approach has been developed for managing the 
systems development process [8]. It is an empirical approach 
applying the ideas of industrial process control theory to 
software development resulting in an approach that 
reintroduces the ideas of flexibility, adoptability & 
productivity.  

Scrum concentrates on how the team members should 
function in order to produce the system flexibly in a constantly 
changing environment [8]. 

The fundamental idea behind DSDM is that instead of 
fixing the amount of functionality in a product, and then 
adjusting time and resources to reach that functionality, it is 
preferred to fix time and resources, and then adjust the amount 
of functionality accordingly. DSDM is a non-profit and non – 
proprietary framework for rapid application development 
(RAD) maintained by the DSDM consortium. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

42 | P a g e  

http://ijacsa.thesai.org/ 

Adaptive software development is a lightweight software 
development method that accepts continuous change as the 
norm. The method follows a dynamic lifecycle, Speculate-
Collaborate-Learn, instead of the traditional, static lifecycle, 
Plan-Design-Build. ASD emphasizes continuous learning. It is 
characterized by constant change, reevaluation, peering into an 
uncertain future, and intense collaboration among developers, 
testers, and customers [16]. ASD was designed for projects that 
are characterized with high-speed, high-change, and 
uncertainty. 

The crystal family of methodologies includes a number of 
different methodologies for selecting the most suitable 
methodology for each individual project. Besides the 
methodologies, the crystal approach also includes principles for 
tailoring the methodologies to fit the raring circumstances of 
different projects. A team using crystal clear should be located 
in a shared office-space due to the limitations in its 
communication structure. Both the crystal clear as well as 
crystal orange suggest the following policy standards: 

 incremental delivery on a regular basis 

 progress tracking 

 direct user involvement 

 automated regression testing of functionality 

 two user reviewing per release 

TABLE I.  TEAM  SIZE  IN  CRYSTAL  FAMILY 

Methodology Team (n° people) 

Crystal Clear 2-6 

Crystal Yellow 6-20 

Crystal Orange 20-40 

Crystal Red 40-80 

TABLE II.   COMPARISON OF AGILE METHODS 

Concept XP SCRUM DSDM CRYSTAL FDD 

Team size 3-16 

 

5-9 

 

2-6 

 

4-8 

 

6-15 

 

Number of  

teams 
1 

 

1-4 

 

 

1-6 

 

 

1-10 

 

1-3 

 

Volatility 

 

 

high 

 

 

high 

 

 

low 

 

high low 

Team 

distribution 

 

no 

 

 

no 

 

 

yes 

 

 

yes 

 

yes 

III. LEVELHEADED DIFFICULTIES IN AGILE SOFTWARE 

DEVELOPMENT AND THE SUGGESTED SOLUTIONS 

Collaboration between customers and development team is 
important factor of agile software development. Even though 
the agile methods are meant for fast delivery under budget 
constraints there are certain levelheaded difficulties in agile 
software development.  

Below are such difficulties which are worthwhile to be 
considered: 

 Need high-quality collaboration between customers 
and agile development team. 

 Need a high-level of customer involvement. 

 Lack of long-term detailed plans. 

 Producing a lower level documentation. 

 Misinterpreted as unplanned and undisciplined. 

Requirements are the base of all software products and their 
elicitation, management, and understanding are very common 
problems for all development methodologies [2]. In particular, 
the requirements variability is a major challenge for all 
commercial software projects. Five of the eight main factors for 
project failure deal with requirements incomplete requirements, 
low customer involvement, unrealistic expectations, changes in 
the requirements, and useless requirements. 

TABLE III.  MAIN CAUSES OF PROJECT FAILURE 

Problem % 

Incomplete requirements 13.1 

Low customer involvement 12.4 

Lack of resources 10.6 

Unrealistic expectations 9.9 

Lack of management support 9.3 

Changes in the requirements 8.7 

Lack of planning 8.1 

Useless requirements 7.5 

A. Quality facilitator 

Figure1 portrays the responsibilities of the Quality 
Facilitator in different aspects of the agile software 
development process. QF should be responsible of the effective 
management of changing requirements which is an important 
factor to be concentrated on in order to maximize stakeholder 
ROI. QF along with the agile team should as well address the 
issues of maintenance and support so as to maintain high 
discipline and good engineering principles. QF is responsible in 
the following aspects of different issues which are discussed. 

Agile Project Management is an iterative method of 
determining requirements for software and for delivering 
projects in a highly flexible and interactive manner [4]. It 
requires empowered individuals from the relevant business 
with supplier and customer input. Agile project management 
takes the ideas from agile software development and applies 
them to project management. Agile methodologies generally 
promote a project management process that encourages 
stakeholder involvement, feedback, objective metrics and 
effective controls [11]. 

Software configuration management is a process for 
developing and maintaining concurrency of the product’s 
performance, functional, and physical attributes with its 
requirements, design and operational information throughout 
its life [9]. Hence both the agile teams and the quality 
facilitator should focus on the configuration management. 

 

  



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

43 | P a g e  

http://ijacsa.thesai.org/ 

 

 

 
 
 

Responsibilit

y of the 

Quality 
Facilitator 

 

 
 

 
 

 
 

Software  

Configuratio

n 

Management 

 

Change 

Management 

Project 

Management 

Facilitation 

and        

Deployment 

 

 

Release 

Management 

Testing and 

Quality 

Assurance 

Figure 1.  Responsibilities of Quality Facilitator 

Agilists want to develop software which is both high-
quality and high-value, and the easiest way to develop high-
value software is to implement the highest priority 
requirements first. The activities contributing to effective 
change management are motivating change, creating vision of 
change, developing political support, managing the transition 
of change and sustaining momentum [11].  

Teams practicing Agile Software Development value 
working software over other artifacts. A feature from the 
release plan is not complete until you can demonstrate it to 
your customer, ideally in a shippable state. Agile teams strive 
to have a working system ("potentially shippable") ready at the 
end of each iteration [11]. Thus Release Management should 
be easy for an ideal agile team, as agile teams, in theory are 
ready to release at regular intervals, and the release 
management aspect is the customer saying "ship it!." 

Deployment is the point where an application starts to 
provide a return on the development investment. Delivering 
software doesn't stop once the application is written. It needs to 
be built, assembled and deployed, and historically this has been 
a non-trivial, manual and an error-prone task. 

Agile testing does not emphasize testing procedures and 
focuses on ongoing testing against newly developed code until 
quality software from an end customer's perspective results. 
Agile testing is built upon the philosophy that testers need to 
adapt to rapid deployment cycles and changes in testing 
patterns [13]. 

Agile development processes place both added importance 
as well as special demands on your software quality assurance 
(SQA) practices. As an integrated part of the agile team, testers 
participate in the full life-cycle from requirements through 
release [9]. While many of the principles and practices of 
software quality assurance apply, an agile approach requires 
some new ways of viewing testing activities in the 
development process. Successful outsourcing projects are the 
ones that strike a good balance between testing and quality 
assurance throughout the lifecycle of the project [13]. 

B. Collaborative and innovative framework 

To generate a significant impact on the productivity of the 
project, companies should adopt a hybrid approach that is using 
scrum and adding XP engineering practices.  

Unlike XP, projects are wrapped by scrum, they becomes 
scalable and can be run simultaneously by distributed teams[1]. 
XP can be gradually implemented within scrum framework. 
Scrum is a project management approach, whereas XP is a 
methodology for project development [6]. Scrum only focuses 
on the managing side that is on what needs to be done rather 
than how to do it. XP on the developer side uses test driven 
development, pair programming, refactoring, etc. which are 
very essential to build good quality software but are missing in 
scrum [5].  

Since Scrum doesn’t have any engineering practices and 
XP doesn’t have any management practices, XP with scrum 
projects allows better value metrics process for measuring and 
managing initiative ROI [10].  

Planning includes the definition of the system being 
developed and the definition of the project team, tools and 
other resources, risk assessment, controlling issues, training 
needs and verification management approval.  

The requirements can originate from the customer, sales 
and marketing division, customer support or software 
developers.  The requirements are prioritized and the effort 
needed for their implementation is estimated. The product 
backlog list is constantly updated with new and more detailed 
items, as well as with more accurate estimations and new 
priority orders. Sprint backlog lists product backlog items 
selected to be implemented in the next iteration.  

Unlike the product backlog, sprint backlog is stable until 
the sprint is completed. A new iteration of the system is 
delivered after all the items in the sprint backlog are completed.  

Figure 2 is the framework, a hybrid approach in which XP 
engineering practices are implemented in the scrum sprint [5]. 
Sprints are iterative cycles where the functionality is 
developed or enhanced to produce new increments. Each 
Sprint includes the traditional phases of software 
development:  requirements, analysis, design, evolution and 
delivery phases. These phases are implemented using extreme 
programming methodology. The functional tests created by the 
customer are run at the end of each iteration.                          

Here the key characteristics of XP are included such as 
refactoring - restructuring the system by removing duplication, 
improving communication, simplifying and adding flexibility 
without changing its functionality, pair programming – two 
people write the code at one computer which is great for 
complex and critical logic [11], collective code ownership – 
code belongs to the project not to any individual engineer, 
continuous integration – a new piece of code is integrated into 
the code-base as soon as it is ready. Thus the system is 
integrated and built many times a day [7]. All tests are run and 
passed for the changes in the code to be accepted.  



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

44 | P a g e  

http://ijacsa.thesai.org/ 

 

Test 

 

SPRIN

T 

 

  Regular updates 

 

Priorities  

Effort 

estimates 

  

 

  Requirements 

    Continuous review 

  Feedback 
Continuous 

integration 

 
 

Collective 

codebase 

 

Final 

release 

 

System 

testing 

 

Integration 

 

New product 

increment 

 

Product 

backlog 

list 

 

Sprint 

backlog 

list 

(stable 

until sprint) Pair programming 

 

Analysis 
 

Design 

 

Testing 

 

   Documentation 

 

  Planning 

Figure 2.  A Collaborative and innovative framework 

Extra testing and checking of the performance of the system 
before the system can be released to the customer. At this 
stage, new changes may still be found and the decision has to 
be made if they are included in the current release. The 
postponed ideas and suggestions should be documented for 
later implementation [9]. 

Communication and coordination between project members 
should be enabled at all times. Any resistance against XP 
practices from project members, management or customers 
may be enough to fail the process. Ultimately better results can 
be obtained by tailoring some of the scrum principles such as 
the daily scrum meeting to keep track of the progress of the 
scrum team continuously and they also serve as planning 
meetings [8] [13].  

Developing software on time and within budget is not good 
enough if the product developed is full of defects and 
customers today are demanding higher quality software than 
ever before. Now-a-days the software market is mature enough 
and users want to be assured of quality [5]. Due to time-to-
market pressures or cost considerations, the developer may 
limit the software quality assurance function and not choose to 
conduct independent reviews. 

IV. TRACEABILITY IN AGILE 

This section of the research paper explains the importance 
of traceability in agile methods, how much level of traceability 
should be added and how to add traceability to agile methods.  

A. The Importance of Traceability 

Traceability is an important part in agile software 
development. Today there are many conflicts on whether the 
traceability is important in agile methods. During the study we 
have considered several opinions of different people of agile 
teams. Majority of people articulated that if traceability is 
supposed to be added in agile methods it should see that it will 
not place much administrative overhead to the team and also it 
should be considered on how the team will be benefited from 
the gathered information. 

Traceability done in agile methods should help keep all the 
information gathered, organized and easy to find. It should 
ensure that the teams involved in development should find a 
way to look at how different artifacts are linked. Also it is 
important for teams to be capable of tracing the information 
and the decisions that were made during the entire process [14]. 

To generate a significant impact on the productivity of the 
project, companies should adopt a hybrid approach that is using 
scrum and adding XP engineering practices as discussed in 
section III. The tracing practices that apply to adding 
traceability to Scrum can be applied to XP and vice-versa. 

B. Levels of AddingTtraceability 

Some level of tracing is always considered to be useful for 
all the projects to be developed. There are several situations 
where it is good to add traceability in the agile methods. Some 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

45 | P a g e  

http://ijacsa.thesai.org/ 

Product 

Backlog 

Sprint 

Backlog 

Codes 

Tests 

Tables 

 

Documentation 

Requirements 
Problem 

Description 

projects are suitable to add traceability completely where as 
some are suitable to add traceability to the minimum.  

Adding traceability to a project depends on the life span of 
the project. The organization should consult the customer or 
stake holder on how long the product will be used. The level of 
traceability to be added depends on the life span of the product. 
If the life span is too short it is better to avoid traceability in 
agile methods.  

If the life span is about one year there is no need of adding 
all the traceability and the documentation. If the life span for 
the project is about to change then the traceability should be 
added from the beginning of the development itself. If the life 
span last long it is better to add full tracing. The customer or 
stake holder is uncertain about the life span of the project it is 
better to add traceability to a certain level.  

Adding traceability to a project depends on the size of the 
project [12]. If the size of the project is small it is difficult to 
know how much the level of traceability is added. When Scrum 
or XP agile methods are used to develop small projects the 
level of traceability can be quite minimum. If the size of the 
project is large and complex, the team should document their 
work from the beginning of the development. Hence the level 
of traceability to be added should be maximum for such 
projects. 

C. The Tracing Practices in Adding Traceability 

In order to add traceability in agile methods there are 
several tracing practices which can be used individually or 
combined with each other. Below are several tracing practices: 

1) Trace  the requirements to stakeholder. 

2) Trace the requirements to problem description. 

3) Trace  the requirements to product backlog. 

4) Trace the requirements to sprint backlog. 

5) Trace the requirements to code. 

6) Trace the requirements to database tables. 

7) Trace the requirements to test. 

8) Documentation. 

V. INGENIOUS AND ORGANIZED  THEORETICAL 

FRAMEWORK 

Agile Alliance formulated their ideas into values and 
further to twelve principles that support those values. Values of 
Agile Manifesto are as follows:  

 Individuals and interactions over processes and tools. 

 Working software over comprehensive documentation. 

 Customer collaboration over contract negotiation. 

 Responding to change over following a plan. 

The above values are realized in the principles of Agile 
Manifesto[3].

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Traceability practices 

The eleven principles among the twelve are chosen to 
model ingenious and organized theoretical frameworks which 
are as follows:  

1) Our highest priority is to satisfy the customer through 

early and continuous delivery of valuable software. 

2) Welcome changing requirements, even late in  

development. Agile processes harness change for the 

customer's competitive advantage. 

3) Deliver working software frequently, from a couple of 

weeks to a couple of months, with a preference to the 

shorter timescale. 

4) Business people and developers must work together 

daily throughout the project. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

46 | P a g e  

http://ijacsa.thesai.org/ 

5) Build projects around motivated individuals. Give them 

the environment and support they need, and trust them 

to get the job done. 

6) The most efficient and effective method of  conveying 

information to and within a development team is face-

to-face conversation. 

7) Working software is the primary measure of progress. 

8) Agile processes promote sustainable development. The 

sponsors, developers, and users should be able to 

maintain a constant pace indefinitely. 

9) Continuous attention to technical excellence  

and good design enhances agility. 

10) Simplicity--the art of maximizing the amount  

of work not done--is essential. 

11) At regular intervals, the team reflects on how to become 

more effective, then tunes and adjusts its behavior 

accordingly. 

To improve software development and to maximize the 
ROI (Return On Investment), it is not merely sufficient if the 
organization just understand the principles of Agile manifesto 
but indeed implementing them in right way and in right 
situations is more important. In order to facilitate agile software 
development, all the aspects of the organization are to be 
considered. The four different aspects that lead the organization 
are internal, external, technical and social aspects. Each aspect 
should be handled very carefully. 

The ingenious and theoretical framework given below 
clearly shows which of the agile manifesto principles are to be 
followed in each aspect of the system. By doing so working 
software can be produced using agile software development 
with faster delivery and within budget. Not all the principles 
are relevant enough to be followed in all the aspects of the 
organization. With careful examination and with experience the 

framework given suggests what principles are to be followed in 
each and every aspect of the organization and their 
interdependencies through which working software can be 
produced which satisfies both customers and the development 
team. 

Internal aspects in the organization relate to the 
development team. External aspects relate to the customers or 
stakeholders. Technical aspects relate to different stages of 
development. Social aspects relate to the people, their working 
style, communication, job satisfaction.   

The first principle which tells team to show highest priority 
as mentioned above relates to all the four aspects of the 
organization. The second principle relates to external - social 
aspects and also external – Technical aspects since it deals with 
the basic goal of agile software development. The third 
principle relates to technical aspects with external 
implementation and also to technical aspects with internal 
implementation. Principle four relates to social aspects with 
internal and external implementation since it deals with 
coordination and collaboration between people and developers.  

The fifth principle relates to internal –social aspects of the 
organization, principle six relates to social aspects in 
coordination with to internal and external aspects since 
communication is the most important issue. Principle seven 
relates to technical aspects with external implementation and 
also to technical aspects with internal implementation which is 
the ultimate goal of agile software development. The eighth 
principle relates to social aspects with external implementation 
and also to social aspects with internal implementation 

The ninth principle which is the key strength and success 
factor of the organization relates to technical and internal 
aspects, principle 10 also relates to technical and internal 
aspects, the eleventh principle relates to internal and social 
aspects. 

The involvement of the subject matter expert is very 
important for smooth running of the project. Since the subject 
matter experts have the domain knowledge he can help the 
development team in following the principles and practices. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

47 | P a g e  

http://ijacsa.thesai.org/ 

 

Figure 4.  An ingenious and organized theoretical framework 

CONCLUSION 

Most of the agile techniques are repacking of well-known 
techniques like ignoring documentation of meetings, 
maintaining reviews, writing test cases before writing code, etc. 
This research paper suggests that small and mid-sized 

companies can have a Quality Facilitator who should play an 
important role to eliminate all the discussed worthwhile risks to 
the extent possible to produce a defect free product.  Since 
certifications like ISO, CMMI emphasize more on 
documentation of the activities/work items, we need to 
concentrate on the documentation work for agile also [10]. So 

6. The most efficient and 

effective method of  

conveying information to and 

within a development team is 

face-to-face conversation. 

 

 

7. Working software is the 

primary measure of progress. 

 
 

8. Agile processes promote 

sustainable development.  

The sponsors, developers, and 

users should be able 

to maintain a constant pace 

indefinitely. 

 

 

9. Continuous attention to 

technical excellence  

and good design enhances 

agility. 
 
 

 

10. Simplicity--the art of 

maximizing the amount  

of work not done--is essential. 

 

 

 

11. At regular intervals, the 

team reflects on how to 

become more effective, then 

tunes and adjusts its behavior 

accordingly. 

 

SUBJECT MATTER EXPERT 

QUALITY FACILITATOR 

1. Our highest priority is to 

satisfy the customer through 

early and continuous delivery 

of valuable software. 
 

 

2. Welcome changing 

requirements, even late in  

development. Agile processes 

harness change for the 

customer's competitive 

advantage. 

 
 

3. Deliver working software 

frequently, from a couple of 

weeks to a couple of months, 

with a preference to the shorter 

timescale. 

 
 

4. Business people and 

developers must work together 

daily throughout the project. 

 
 

 

5. Build projects around 

motivated individuals.  

Give them the environment 

and support they need, and 

trust them to get the job done. 

 
 

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.3, March 2011 

48 | P a g e  

http://ijacsa.thesai.org/ 

our research suggests a QF role for ensuring the process is 
followed and the documentation is done properly so that there 
won’t be any quandary for the project while facing the 
internal/external audits.  

The proposed collaborative and innovative framework can 
be implemented along with the suggested possible solutions for 
the mentioned levelheaded difficulties. Also the organizations 
have to take steps in implementing the suggested theoretical 
framework which can lead in developing successful projects. 

REFERENCES 

[1] Weisert, C., (2002), The #1 Serious Flaw in Extreme Programming 
(XP), Information Disciplines, Inc., Chicago. [Online]. Available from: 
http://www.idinews.com/Xtreme1.html. 

[2] B. Boehm and R. Turner, "Using Risk to Balance Agile and Plan-Driven 
Methods," IEEE Computer, vol. 36, no. 6, pp. 57-66, June 2003. 

[3] Agile  Alliance.2002.  Agile  Manifesto.  http://www.agilealliance.org/ 

[4] Coram, M., and Bohner, S., “The Impact of Agile Methods on Software 
Project Management”, In Proceedings of the 12th IEEE International 
Conference and Workshops on the Engineering of Computer-Based 
Systems (ECBS), April 2005, pp. 363-370. 

[5] V. Esther Jyothi and K. Nageswara Rao, “Effective implementation of 
agile practices – A collaborative and innovative framework”, published 
in CiiT International Journal of Software Engineering and Technology, 
Vol 2, No 9, September 2010. 

[6] Maurer, F. and Martel, S. (2002a). Extreme programming:                                                              
Rapid development for Web-based applications. IEEE Internet 
Computing 6(1): 86-90.  

[7] Highsmith, J. and Cockburn, A.  (2001). Agile Software Development: 
The Business of Innovation. Computer 34(9): 120-122.  

[8] Schwaber, K. and Beedle, M. (2002). Agile Software Development with 
Scrum. Upper Saddle River, NJ, Prentice-Hall.  

[9] Robert C. Martin, Agile Software Development, Principles, Patterns, and 
Practices, Prentice Hall, 2002 

[10] Baker, Steven W. Formalizing Agility: An Agile Organization’s Journey 
toward CMMI Accreditation. Agile 2005 Proceedings, IEEE Press, 
2005. 

[11] Alleman, Glen. Agile Program Management: Moving from Principles to 
Practice. Agile Product & Project Management, Vol. 6 No. 9, Cutter 
Consortium, September, 2005. 

[12] Leffingwell, Dean, Scaling Software Agility: Best Practices for Large 
Enterprises, Addison-Wesley Professional, 2007. 

[13] Anderson, David J., and Eli Schragenheim, Agile Management for 
Software Engineering: Applying the Theory of Constraints for Business 
Results, Prentice Hall, 2003. 

[14] Poppendieck, Mary and Tom Poppendieck, Lean Software 
Development: An Agile Toolkit. Addison Wesley Professional, 2003. 

[15] Ming Huo, June Verner, Liming Zhu, Mohammad Ali Babar, “Software 
Quality and Agile Methods”, COMPSAC ’04, IEEE 2004. 

[16] Craig Larman, Victor R. Basili. Iterative and Incremental Development: 
A Brief History, 0018-9162/03/ © 2003 IEEE 

[17] Salem, A. M. (2010). A Model for Enhancing Requirements Traceability 
and Analysis. International Journal of Advanced Computer Science and 
Applications - IJACSA, 1(5), 14-21. 

 

AUTHORS PROFILE 

 

Mrs. Veerapaneni Esther Jyothi is a Microsoft certified 

professional, currently pursuing Ph.D Computer Science 

from Raylaseema University, Kurnool. She is working as 

a Lecturer in the department of Computer Applications, 

Velagapudi Siddhartha Engineering college since 2008 

and also has Industrial experience. She has published 

papers in reputed international conferences recently. Her 

areas of interest include Software Engineering, Object 

Oriented Analysis and Design and DOT NET.  

 

Dr. K. Nageswara Rao is currently working as Professor 

and Head in the Department of Computer Science 

Engineering, Prasad V. Potluri Siddhartha Institute of 

Technology, Kanuru, Vijayawada-7. He has an excellent 

academic and research experience. He has contributed 

various research papers in the journals, conferences of 

International/national. His area of interest includes 

Artificial Intelligence, Software Engineering, Robotics, & 

Datamining. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Software 

Configuration 

Management 

http://www.agilealliance.org/

