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Abstract— COordinate Rotation DIgital Computer (CORDIC) 

algorithm has potential for efficient and low-cost implementation 

of a large class of applications which include the generation of 

trigonometric, logarithmic and transcendental elementary 

functions, complex number multiplication, matrix inversion, 

solution of linear systems and general scientific computation. 

This paper presents a brief overview of the developments in the 

CORDIC algorithm and its architectures. 
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I.  INTRODUCTION 

FIRST described in 1959 [1], CORDIC algorithm is an 
iterative algorithm, which can be used for the computation of 
trigonometric functions, multiplication and division. Last half 
century has witnessed a lot of progress in design and 
development of architectures of the algorithm for high-
performance and low-cost hardware solutions. CORDIC 
algorithm got its popularity, when [2] showed that, by varying 
a few simple parameters, it could be used as a single algorithm 
for unified implementation of a wide range of elementary 
transcendental functions involving logarithms, exponentials, 
and square. During the same time, [3] showed that CORDIC 
technique is a better choice for scientific calculator 
applications. 

The popularity of CORDIC was very much enhanced 
thereafter primarily due to its potential for efficient and low-
cost implementation. With the advent of low cost, low power 
FPGAs, this algorithm has shown its potential for efficient and 
low-cost implementation. CORDIC algorithm can be widely 
used in as wireless communications, Software Defined Radio 
and medical imaging applications, which are heavily dependent 
on signal processing. Some other upcoming applications are:  

 Direct frequency synthesis, digital modulation and 

coding for speech/music synthesis and 

communication; 

 Direct and inverse kinematics computation for robot 

manipulation; 

 Planar and three-dimensional vector rotation for 

graphics and animation. 
Although CORDIC may not be the fastest technique to 

perform these operations, yet it is attractive due to the 
simplicity and efficient hardware implementation. 

       The development of CORDIC algorithm and 
architecture has taken place for achieving high throughput rate 
and reduction of hardware-complexity as well as the latency of 
implementation. Latency of implementation is an inherent 
drawback of the conventional CORDIC algorithm. Angle 
recoding schemes and higher radix CORDIC have been 
developed for reduced latency realization. Parallel and 
pipelined CORDIC have been suggested for high-throughput 
computation. 

This paper presents an overview of the development of 
CORDIC algorithm. The paper is organized as follows: Section 
II discusses the basics of CORDIC algorithm, different 
CORDIC architectures are discussed in Section III. The 
conclusion along with future research directions are discussed 
in Section IV. 

II. DEFINITION OF CORDIC 

The CORDIC is very simple and iterative convergence 
algorithm that reduces complex multiplication, greatly 
simplifying overall hardware complexity. This serves as an 
attractive option to system designers as they continue to face 
the challenges of balancing aggressive cost and power targets 
with the increased performance required in next generation 
signal processing solutions. The basic principle underlying the 
CORDIC-based computation, and present its iterative 
algorithm for different operating modes and planar coordinate 
system. 

A. Overview of CORDIC Algorithm 

CORDIC algorithm has two types of computing modes 
Vector rotation and vector translation. The CORDIC algorithm 
was initially designed to perform a vector rotation, where the 
vector V with components  (X,Y) is rotated through the angle 

  yielding a new vector 
'V  with component  (X’,Y’) shown 

in Fig. 1. 

' [ ][ ]V R V                                                (1) 

where R is the rotation matrix: 
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Figure 1:  Vector Rotation 
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By factoring out the cosine term in (3), the rotation matrix 
R can be rewritten as 
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and can be interpreted as a product of a scale-factor 

 
1/2

21 tanK 
  

  
  with a pseudo rotation matrix cR  , 

given by 

 

1 tan
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                                           (5) 

In vector translation, rotates the vector V with component 
(X, Y) around the circle until the Y component equals zero as 
illustrated in Fig. 2. The outputs from vector translation are the 

magnitude X’ and phase 
'  , of the input vector V. 

After vector translation, output equations are:  

 2 2X' = Ki X Y
                                       (6)

 

' 0Y                                                          (7) 
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Figure 2: Vector Translation 

 

To achieve simplicity of hardware realization of the 
rotation, the key ideas used in CORDIC arithmetic are to 
decompose the rotations into a sequence of elementary 
rotations through predefined angles that could be implemented 
with minimum hardware cost and to avoid scaling, that might 
involve arithmetic operation, such as square-root and division. 
The second idea is based on the fact the scale-factor contains 
only the magnitude information but no information about the 
angle of rotation.   

B. Generalized CORDIC Algorithm 

After few years, Walther found how CORDIC iterations 
could be modified to compute hyperbolic functions [2] and 
reformulated the CORDIC algorithm in to a generalized and 
unified form which is suitable to perform rotations in circular, 
hyperbolic and linear coordinate systems. The unified 
formulation includes a new variable m , which is assigned 

different values for different coordinate systems. The 
generalized CORDIC is formulated as follows: 
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III. CORDIC ARCHITECTURES 

CORDIC computation is inherently sequential due to two 
main bottlenecks firstly the micro-rotation for any iteration is 
performed on the intermediate vector computed by the previous 
iteration and secondly the (i+1)th iteration could be started only 
after the completion of the ith iteration, since the value of 

1i 
 

which is required to start the (i+1)th iteration  could be known 
only after the completion of the ith iteration. To alleviate the 
second bottleneck some attempts have been made for 
evaluation of 

i  values corresponding to small micro-rotation 

angles [4]. However, the CORDIC iterations could not still be 
performed in parallel due to the first bottleneck. A partial 
parallelization has been realized in [4] by combining a pair of 
conventional CORDIC iterations into a single merged iteration 
which provides better area-delay efficiency. But the accuracy is 
slightly affected by such merging and cannot be extended to a 
higher number of conventional CORDIC iterations since the 
induced error becomes unacceptable [5]. Parallel realization of 
CORDIC iterations to handle the first bottleneck by direct 
unfolding of micro-rotation is possible, but that would result in 
increase in computational complexity and the advantage of 
simplicity of CORDIC algorithm gets degraded [6]. Although 
no popular architectures are known to us for fully parallel 
implementation of CORDIC, different forms of pipelined 
implementation of CORDIC have however been proposed for 
improving the computational throughput [7].To handle latency 
bottlenecks, various architectures have been developed and 
reported in this review. Most of the well-known architectures 
could be grouped under bit parallel iterative CORDIC, bit 
parallel unrolled CORDIC , bit serial iterative CORDIC and 
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pipelined CORDIC architecture which we discuss briefly in the 
following subsections. 

A. Bit Parallel Iterative CORDIC Architecture 

The vector Rotation CORDIC structure is represented by 
the schematics in Fig. 3. Each branch consists of an adder-
subtractor combination, a shift unit and a register for buffering 
the output. At the beginning of a calculation initial values are 
fed into the register by the multiplexer where the MSB of the 
stored value in the z-branch determines the operation mode for 
the adder-subtractor. Signals in the x and y branch pass the 
shift units and are then added to or subtracted from the 
unshifted signal in the opposite path. The z branch 
arithmetically combines the registers values with the values 
taken from a lookup table (LUT) whose address is changed 
accordingly to the number of iteration. For n iterations the 
output is mapped back to the registers before initial values are 
fed in again and the final sine value can be accessed at the 
output. A simple finite-state machine is needed to control the 
multiplexers, the shift distance and the addressing of the 
constant values.  

When implemented in an FPGA the initial values for the 
vector coordinates as well as the constant values in the LUT 
can be hardwired in a word wide manner. The adder and the 
subtractor component are carried out separately and a 
multiplexer controlled by the sign of the angle accumulator 
distinguishes between addition and subtraction by routing the 
signals as required. The shift operations as implemented 
change the shift distance with the number of iterations but 
those require a high fan in and reduce the maximum speed for 
the application. In addition the output rate is also limited by the 
fact that operations are performed iteratively and therefore the 
maximum output rate equals 1/n times the clock rate.  

 
 

Figure 3: Iterative CORDIC 

B. Bit Parallel Unrolled CORDIC Architecture 

  
Figure 4: Unrolled CORDIC 

 
Instead of buffering the output of one iteration and using 

the same resources again, one could simply cascade the 
iterative CORDIC, which means rebuilding the basic CORDIC 
structure for each iteration. Consequently, the output of one 
stage is the input of the next one, as shown in Fig. 4, and in the 
face of separate stages two simplifications become possible. 
First, the shift operations for each step can be performed by 
wiring the connections between stages appropriately. Second, 
there is no need for changing constant values and those can 
therefore be hardwired as well. The purely unrolled design only 
consists of combinatorial components and computes one sine 
value per clock cycle. Input values find their path through the 
architecture on their own and do not need to be controlled. As 
we know, the area in FPGAs can be measured in CLBs, each of 
which consist of two lookup tables as well as storage cells with 
additional control components. For the purely combinatorial 
design the CLB's function generators perform the add and shift 
operations and no storage cells are used. This means registers 
could be inserted easily without significantly increasing the 
area. Pipelining ads some latency, of course, but the application 
needs to output values at 48 kHz and the latency for 14 
iterations equals 312.5 s  which are known to be 

imperceptible. However, inserting registers between stages 
would also reduce the maximum path delays and 
correspondingly a higher maximum speed can be achieved.  

C. Bit Serial Iterative CORDIC Architecture  

Both, the unrolled and the iterative bit-parallel designs, 
show disadvantages in terms of complexity and path delays 
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going along with the large number of cross connections 
between single stages. To reduce this complexity one could 
change the design into a completely bit-serial iterative 
architecture. Bit-serial means only one bit is processed at a 
time and hence the cross connections become one bit-wide data 
paths. Clearly, the throughput becomes a function of In spite of 
this the output rate can be almost as high as achieved with the 
unrolled design. The reason is the structural simplicity of a bit-
serial design and the correspondingly high clock rate 
achievable. Fig. 5 shows the basic architecture of the bit serial 
CORDIC processor. 

       
 rate

 of iterations  word length

clock

number 
 

 
Figure 5: Bit-serial CORDIC 

D. D.  Pipelined CORDIC Architecture 

Since the CORDIC iterations are identical, it is very much 
convenient to map them into pipelined architectures. The main 
emphasis in efficient pipelined implementation lies with the 
minimization of the critical path. The earliest pipelined 
architecture that we find was suggested in 1984. Pipelined 
CORDIC circuits have been used thereafter for high-
throughput implementation of sinusoidal wave generation, 
fixed and adaptive filters, discrete orthogonal transforms and 
other signal processing applications [8]. 

IV. CONCLUSION 

CORDIC algorithm can be implemented by using simple

 hardware through repeated shift-add operations. This feature 
makes it attractive for a wide variety of applications. Moreover, 
its applications in several diverse areas including signal 
processing, image processing, communication, robotics and 
graphics apart from general scientific and technical 
computations have been explored. In the last half century, 
several algorithms and architectures have been developed to 
speed up the CORDIC algorithm by reducing its iteration 
counts and through its pipelined implementation.  
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