
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 4, 2011

68 | P a g e

http://ijacsa.thesai.org/

Coordinate Rotation Digital Computer Algorithm:

Design and Architectures

Naveen Kumar

Electronics & Communication Engineering

University College of Engineering

Punjabi University, Patiala

Punjab, India

Amandeep Singh Sappal

Electronics & Communication Engineering

University College of Engineering

Punjabi University, Patiala

Punjab, India

Abstract— COordinate Rotation DIgital Computer (CORDIC)

algorithm has potential for efficient and low-cost implementation

of a large class of applications which include the generation of

trigonometric, logarithmic and transcendental elementary

functions, complex number multiplication, matrix inversion,

solution of linear systems and general scientific computation.

This paper presents a brief overview of the developments in the

CORDIC algorithm and its architectures.

Keywords- CORDIC Algorithms; CORDIC Architectures; FPGA.

I. INTRODUCTION

FIRST described in 1959 [1], CORDIC algorithm is an
iterative algorithm, which can be used for the computation of
trigonometric functions, multiplication and division. Last half
century has witnessed a lot of progress in design and
development of architectures of the algorithm for high-
performance and low-cost hardware solutions. CORDIC
algorithm got its popularity, when [2] showed that, by varying
a few simple parameters, it could be used as a single algorithm
for unified implementation of a wide range of elementary
transcendental functions involving logarithms, exponentials,
and square. During the same time, [3] showed that CORDIC
technique is a better choice for scientific calculator
applications.

The popularity of CORDIC was very much enhanced
thereafter primarily due to its potential for efficient and low-
cost implementation. With the advent of low cost, low power
FPGAs, this algorithm has shown its potential for efficient and
low-cost implementation. CORDIC algorithm can be widely
used in as wireless communications, Software Defined Radio
and medical imaging applications, which are heavily dependent
on signal processing. Some other upcoming applications are:

 Direct frequency synthesis, digital modulation and

coding for speech/music synthesis and

communication;

 Direct and inverse kinematics computation for robot

manipulation;

 Planar and three-dimensional vector rotation for

graphics and animation.
Although CORDIC may not be the fastest technique to

perform these operations, yet it is attractive due to the
simplicity and efficient hardware implementation.

 The development of CORDIC algorithm and
architecture has taken place for achieving high throughput rate
and reduction of hardware-complexity as well as the latency of
implementation. Latency of implementation is an inherent
drawback of the conventional CORDIC algorithm. Angle
recoding schemes and higher radix CORDIC have been
developed for reduced latency realization. Parallel and
pipelined CORDIC have been suggested for high-throughput
computation.

This paper presents an overview of the development of
CORDIC algorithm. The paper is organized as follows: Section
II discusses the basics of CORDIC algorithm, different
CORDIC architectures are discussed in Section III. The
conclusion along with future research directions are discussed
in Section IV.

II. DEFINITION OF CORDIC

The CORDIC is very simple and iterative convergence
algorithm that reduces complex multiplication, greatly
simplifying overall hardware complexity. This serves as an
attractive option to system designers as they continue to face
the challenges of balancing aggressive cost and power targets
with the increased performance required in next generation
signal processing solutions. The basic principle underlying the
CORDIC-based computation, and present its iterative
algorithm for different operating modes and planar coordinate
system.

A. Overview of CORDIC Algorithm

CORDIC algorithm has two types of computing modes
Vector rotation and vector translation. The CORDIC algorithm
was initially designed to perform a vector rotation, where the
vector V with components (X,Y) is rotated through the angle

 yielding a new vector
'V with component (X’,Y’) shown

in Fig. 1.

' [][]V R V (1)

where R is the rotation matrix:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 4, 2011

69 | P a g e

http://ijacsa.thesai.org/

Figure 1: Vector Rotation

cos sin

sin cos
R

 

 

 
  
 

 (2)

2 2

2 2

1 tan

1 tan 1 tan

tan 1

1 tan 1 tan

R



 



 

 
 

  
 
 

  

 (3)

By factoring out the cosine term in (3), the rotation matrix
R can be rewritten as

 
1/2

2
1 tan

1 tan
tan 1

R





          

 (4)

and can be interpreted as a product of a scale-factor

 
1/2

21 tanK 
  

  
 with a pseudo rotation matrix cR ,

given by

1 tan

tan 1
cR





 
  
 

 (5)

In vector translation, rotates the vector V with component
(X, Y) around the circle until the Y component equals zero as
illustrated in Fig. 2. The outputs from vector translation are the

magnitude X’ and phase
' , of the input vector V.

After vector translation, output equations are:

 2 2X' = Ki X Y
 (6)

' 0Y  (7)

' tan
Y

a
X


 

  
  (8)

Figure 2: Vector Translation

To achieve simplicity of hardware realization of the
rotation, the key ideas used in CORDIC arithmetic are to
decompose the rotations into a sequence of elementary
rotations through predefined angles that could be implemented
with minimum hardware cost and to avoid scaling, that might
involve arithmetic operation, such as square-root and division.
The second idea is based on the fact the scale-factor contains
only the magnitude information but no information about the
angle of rotation.

B. Generalized CORDIC Algorithm

After few years, Walther found how CORDIC iterations
could be modified to compute hyperbolic functions [2] and
reformulated the CORDIC algorithm in to a generalized and
unified form which is suitable to perform rotations in circular,
hyperbolic and linear coordinate systems. The unified
formulation includes a new variable m , which is assigned

different values for different coordinate systems. The
generalized CORDIC is formulated as follows:

1

1

1

.2 .

.2 .

.

i

i i i i

i

i i i i

i i i i

x x m y

y y x

w w





 











 

 

 

 (9)

Here
()

()

i

i

i

sign w

sign w



 



for rotation mode

for vectoring mode

III. CORDIC ARCHITECTURES

CORDIC computation is inherently sequential due to two
main bottlenecks firstly the micro-rotation for any iteration is
performed on the intermediate vector computed by the previous
iteration and secondly the (i+1)th iteration could be started only
after the completion of the ith iteration, since the value of

1i 

which is required to start the (i+1)th iteration could be known
only after the completion of the ith iteration. To alleviate the
second bottleneck some attempts have been made for
evaluation of

i values corresponding to small micro-rotation

angles [4]. However, the CORDIC iterations could not still be
performed in parallel due to the first bottleneck. A partial
parallelization has been realized in [4] by combining a pair of
conventional CORDIC iterations into a single merged iteration
which provides better area-delay efficiency. But the accuracy is
slightly affected by such merging and cannot be extended to a
higher number of conventional CORDIC iterations since the
induced error becomes unacceptable [5]. Parallel realization of
CORDIC iterations to handle the first bottleneck by direct
unfolding of micro-rotation is possible, but that would result in
increase in computational complexity and the advantage of
simplicity of CORDIC algorithm gets degraded [6]. Although
no popular architectures are known to us for fully parallel
implementation of CORDIC, different forms of pipelined
implementation of CORDIC have however been proposed for
improving the computational throughput [7].To handle latency
bottlenecks, various architectures have been developed and
reported in this review. Most of the well-known architectures
could be grouped under bit parallel iterative CORDIC, bit
parallel unrolled CORDIC , bit serial iterative CORDIC and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 4, 2011

70 | P a g e

http://ijacsa.thesai.org/

pipelined CORDIC architecture which we discuss briefly in the
following subsections.

A. Bit Parallel Iterative CORDIC Architecture

The vector Rotation CORDIC structure is represented by
the schematics in Fig. 3. Each branch consists of an adder-
subtractor combination, a shift unit and a register for buffering
the output. At the beginning of a calculation initial values are
fed into the register by the multiplexer where the MSB of the
stored value in the z-branch determines the operation mode for
the adder-subtractor. Signals in the x and y branch pass the
shift units and are then added to or subtracted from the
unshifted signal in the opposite path. The z branch
arithmetically combines the registers values with the values
taken from a lookup table (LUT) whose address is changed
accordingly to the number of iteration. For n iterations the
output is mapped back to the registers before initial values are
fed in again and the final sine value can be accessed at the
output. A simple finite-state machine is needed to control the
multiplexers, the shift distance and the addressing of the
constant values.

When implemented in an FPGA the initial values for the
vector coordinates as well as the constant values in the LUT
can be hardwired in a word wide manner. The adder and the
subtractor component are carried out separately and a
multiplexer controlled by the sign of the angle accumulator
distinguishes between addition and subtraction by routing the
signals as required. The shift operations as implemented
change the shift distance with the number of iterations but
those require a high fan in and reduce the maximum speed for
the application. In addition the output rate is also limited by the
fact that operations are performed iteratively and therefore the
maximum output rate equals 1/n times the clock rate.

Figure 3: Iterative CORDIC

B. Bit Parallel Unrolled CORDIC Architecture

Figure 4: Unrolled CORDIC

Instead of buffering the output of one iteration and using

the same resources again, one could simply cascade the
iterative CORDIC, which means rebuilding the basic CORDIC
structure for each iteration. Consequently, the output of one
stage is the input of the next one, as shown in Fig. 4, and in the
face of separate stages two simplifications become possible.
First, the shift operations for each step can be performed by
wiring the connections between stages appropriately. Second,
there is no need for changing constant values and those can
therefore be hardwired as well. The purely unrolled design only
consists of combinatorial components and computes one sine
value per clock cycle. Input values find their path through the
architecture on their own and do not need to be controlled. As
we know, the area in FPGAs can be measured in CLBs, each of
which consist of two lookup tables as well as storage cells with
additional control components. For the purely combinatorial
design the CLB's function generators perform the add and shift
operations and no storage cells are used. This means registers
could be inserted easily without significantly increasing the
area. Pipelining ads some latency, of course, but the application
needs to output values at 48 kHz and the latency for 14
iterations equals 312.5 s which are known to be

imperceptible. However, inserting registers between stages
would also reduce the maximum path delays and
correspondingly a higher maximum speed can be achieved.

C. Bit Serial Iterative CORDIC Architecture

Both, the unrolled and the iterative bit-parallel designs,
show disadvantages in terms of complexity and path delays

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 4, 2011

71 | P a g e

http://ijacsa.thesai.org/

going along with the large number of cross connections
between single stages. To reduce this complexity one could
change the design into a completely bit-serial iterative
architecture. Bit-serial means only one bit is processed at a
time and hence the cross connections become one bit-wide data
paths. Clearly, the throughput becomes a function of In spite of
this the output rate can be almost as high as achieved with the
unrolled design. The reason is the structural simplicity of a bit-
serial design and the correspondingly high clock rate
achievable. Fig. 5 shows the basic architecture of the bit serial
CORDIC processor.

 rate

 of iterations word length

clock

number 

Figure 5: Bit-serial CORDIC

D. D. Pipelined CORDIC Architecture

Since the CORDIC iterations are identical, it is very much
convenient to map them into pipelined architectures. The main
emphasis in efficient pipelined implementation lies with the
minimization of the critical path. The earliest pipelined
architecture that we find was suggested in 1984. Pipelined
CORDIC circuits have been used thereafter for high-
throughput implementation of sinusoidal wave generation,
fixed and adaptive filters, discrete orthogonal transforms and
other signal processing applications [8].

IV. CONCLUSION

CORDIC algorithm can be implemented by using simple

 hardware through repeated shift-add operations. This feature
makes it attractive for a wide variety of applications. Moreover,
its applications in several diverse areas including signal
processing, image processing, communication, robotics and
graphics apart from general scientific and technical
computations have been explored. In the last half century,
several algorithms and architectures have been developed to
speed up the CORDIC algorithm by reducing its iteration
counts and through its pipelined implementation.

ACKNOWLEDGMENT

 The authors would thanks the reviewers for their help in
improving the document.

REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC- 8, pp. 330–334, Sept.
1959.

[2] J. S. Walther, “A unified algorithm for elementary functions,” in
Proceedings of the 38th Spring Joint Computer Conference, Atlantic
City, NJ, 1971, pp.379–385.

[3] D. S. Cochran, “Algorithms and accuracy in the HP-35,” Hewlett-Packard
Journal, pp. 1–11, June 1972.

[4] S. Wang, V. Piuri, and J. E. E. Swartzlander, “Hybrid CORDIC
algorithms,”IEEE Transactions on Computers, volume 46, no. 11, pp.
1202–1207, November1997.

[5]S. Wang and E. E. Swartzlander, “Merged CORDIC algorithm,” in IEEE
International Symposium on Circuits Systems (ISCAS’95),1995, volume
3, pp.1988–1991.

[6] B. Gisuthan and T. Srikanthan, “Pipelining flat CORDIC based
trigonometric function generators,” Microelectronics Journal, volume
33, Pp.77–89, 2002.

[7] E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC architectures
for fast VLSI filtering and array processing,” in IEEE International
Conference on Acoustic, Speech, Signal Processing, ICASSP’84, March
1984, volume 9, pp.250–253.

[8] D. E. Metafas and C. E. Goutis, “A floating point pipeline CORDIC
processor with extended operation set,” in IEEE International
Symposium on Circuits and Systems, ISCAS’91, June 1991, volume 5,
pp. 3066–3069.

AUTHORS PROFILE

 Naveen Kumar received the Bachelor of Technology (B.TECH) degree in

2009. Currently he is pursuing Master of Technology (M.Tech) in Electronics

& Communication from Punjabi University Patiala, India.

 Amandeep Singh Sappal has submitted his Ph.D. in Electronics &

Communication at Punjabi University Patiala and presently he is working as

an Assistant Professor in Punjabi University Patiala, India. He has published

more than 25 papers in reputed journals and conferences. He is reviewer of

prestigious journals like Elsevier and Springer etc. Presently he is guiding 5

M.tech students.

