
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

72 | P a g e  

http://ijacsa.thesai.org/ 

Managing Knowledge in Development of Agile 

Software 

Mohammed Abdul Bari 

Department of Computer Science, College of Science & 

Arts 

University of Al-Kharj 

Wadi Al-Dawasir-11991, Kingdom of Saudi Arabia 

Dr. Shahanawaj Ahamad 

Department of Computer Science, College of Science & 

Arts 

University of Al-Kharj 

Wadi Al-Dawasir-11991, Kingdom of Saudi Arabia 

 

 
Abstract— Software development is a knowledge-intensive work 

and the main attention is how to manage it.  The systematic 

reviews of empirical studies presents, how knowledge 

management is used in software engineering and development 

work. This paper presents how knowledge is used in agile 

software development and how knowledge is transferred to agile 

software using agile manifesto. It then argues for the need to 

scale agile development strategies in knowledge management to 

address the full delivery. The paper explores the eight agile 

software scaling factors with knowledge management and their 

implication for successfully scaling of agile software delivery to 

meet the real world needs of software development organization. 

Keywords- Knowledge management; Agile software; Scaling factor; 

Agility; Knowledge capturing 

I.  INTRODUCTION 

Knowledge management is “A method that simplifies the 
process of sharing, distributing, creating, capturing and 
understanding the company knowledge [1]. Argyris [2] define 
“Knowledge is a fluid mix of framed experience, values, 
contextual information and expert insight that provide a frame 
work for evaluation and incorporating new experience and new 
information. According to Nonoka and Takeuchie [3] 
Knowledge passes through different modes of conversion , 
which makes the knowledge more refined and spreads it across 
different layers in an organization.  

II. KNOWLEDGE MANAGEMENT IN SOFTWARE 

DEVELOPMENT 

Software development is a knowledge intensive activity. 
The main assets of software development are not 
manufacturing plants, building and machines but the 
knowledge held by the employees and development culture of 
organization. Software development has long recognized the 
need for managing knowledge so that the community could 
learn from the knowledge management. As the field of 
software engineering matures, there is an increase demand for 
empirically validated results and not just the testing of 
technology [4]. 

Companies developing information system have fail to 
learn effective means for problem solving to an extent that they 
have learned to fail [5]. The main differences between methods 
are they are plan based or traditional, which rely primary on 
managing explicit knowledge or agile method [6]. There has 

been much discussion in software development, how to manage 
knowledge reusing life cycle experience which is gain by 
processing and producing software development projects which 
is often referred as experience factory [7] which is stored in 
experience base, by storing generalizing, tailoring and 
formalizing experience so that it is easy to reuse. In May 2002 
issue of IEEE software [8] was devoted to knowledge 
management in software engineering, giving several example 
of knowledge management, applications in software 
companies. In 2003, the book “Managing Software 
Engineering Knowledge “[9] was published touching various  
range of topics from identifying why knowledge management 
is important in software engineering and development [10]. 

III. KNOWLEDGE MANAGEMENT IN AGILE SOFTWARE 

A. Agile Software development  

It consists of set of practice for software development, 
which has been created by experience practitioners [11]. In 
Williams and Cockburn [12] stated that agile development is 
“about feedback and change “. Agile software development 
techniques have taken the industry by storm, nearly 76% of 
software organization reported in 2009 that they had one or 
more agile software underway [13]. According to Agile 
manifesto 2001[14], it underlines 12 basic principles which are 
given below: 

1. The organization highest priority is to satisfy the 

customer by continuous delivery of software. 

2. Welcoming the changes in requirement even at the later 

part of development. 

3. Delivering the software frequently. 

4. Business people and developers must work together 

throughout the project. 

5. Build project around individuals, give them environment 

and support they needed. 

6. Face to face conversation in team with developers. 

7. Working software is only means to progress. 

8. Agile process prototype sustainable developed. 

9. Continuous attention result is excellent product. 

10. The act of maximizing the amount of work done. 

11. Self-organized the team with requirement, architectures 

and others. 

12. Give regular interval to the project team. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

73 | P a g e  

http://ijacsa.thesai.org/ 

 

Figure 1: Knowledge Life Cycle 

 

B. Agile Methods  

 Agile Modeling (AM): it is a practice based methodology 

for modeling and documentation of software based system. 

It is planned to be a collection of values, principal and 

practice for modeling software that can be applied on 

software development project in flexible manner. [15]  

 Agile Unified Process (AUP): it is simplified version of 

RUP (Rational Unified Process). It describe a simple, easy 

to understand approach to developed business application 

software using agile technology and concept [16] 

 Dynamic System Development Method (DSDM): It is 

based upon Rapid application development methodology 

[17]. In 2004 DSDM become generic approach to project 

management and solution delivery. It emphasized 

continuous user /customer involvement [18]. 

 Essential Unified Process (EssUP): It was invented by Ivar 

Jacobson [19] which is an improvement of Rational 

Unified Process. It uses use case, iterative development, 

architecture driven development, team practice and process 

practice which is borrowed from RUP (Rational 

Unified Process) [19]. The main idea here is that you can 

pick those practices that are applicable to your situation 

and combine them in to yours own process. 

 Extreme Programming (XP): It is a software development 

methodology which is planned to improve software quality 

by changing customer requirement. It frequently releases a 

short development cycle which is intended to improve 

productivity and introduce check point where the new 

customer requirement can be adopted.[20] 

 Open Unified Process (OpenUP): It is an open source 

process developed within conceals foundation. It preserves 

the essential characteristics of RUP/unified process [21] 

which include incremental development, use case and 

scenarios deriving development. [22]. 

 Scrum: It is an iterative increment methodology for project 

management often seen in agile software development. 

Although it is mainly used for management of software 

development. It can also be used to run software 

maintenance.[23] 

 Velocity: It measure the productivity in agile software 

development .Velocity tracking is an act of measuring said 

velocity. The velocity is calculated by counting the number 

of unit of work completed in certain interval, determined at 

the start of the project. [24] 

 Feature Driven Development (FDD): It is an iterative and 

incremental software development process. FDD blends a 

number of industry recognized best practices like domain 

object modeling, developing by feature, individual class, 

feature teams, inspections, configuration management, 

regular builds and visibility of progress and result in to 

cohesive whole. These practices are all driven from client-

valued feature perspective. Its main purpose is to deliver 

tangible, working software repeatedly in timely manner. 

[25] 

IV. KNOWLEDGE MANAGEMENT IN AGILE SOFTWARE 

The knowledge is capture from agile software, it is also 
capture from market research, surrounding area and scientific 
method, kept in knowledge management box (which consist of 
people, rules, method (old and new) files etc.). Whenever an 
organization gets a project the developers will search their 
knowledge box, they learn from it before starting of project or 
during the making and also after making the project. Sometime 
an innovative method is developed for a particular project , 
once the project is developed the method is send to knowledge  
management box so that it can used at later part for different 
project . 

V. AGILE SOFTWARE IN SCALE 

In early days agile software development techniques were 
small and relatively straight forward. Today the picture has 
changed and organization want to apply agility software 
techniques to a broader set of project. They are dealing with 
problems which requires large teams, distribute work force 
many more. They are eight scaling factor that define agility 
software. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

74 | P a g e  

http://ijacsa.thesai.org/ 

 

Figure 2: Agile Manifesto 

 

 Team Size: Agility process work very good when the team 

size is small, as the team size increases communication risks 

increases and co-ordination become more difficult. In order 

to learn something from the past, they have to go through 

the knowledge management capture process which is 

created by previous projects. 

 Geographical Distribution: when the team size is distributed 

in different countries, effective collaboration become more 

difficult, more challenging and more error likely to occur 

and it became more difficult to capture the knowledge    

from knowledge management capture process. 

 Regulatory Compliance: Issues such as ISO 9000[26], these 

mandates bring requirement of their own, this means, the 

formality of the work has to increase. 

 Domain Complexity: some project team find themselves 

addressing a straight forward problem, more complex 

domain require greater emphasis on exploring and 

experimenting [27]. 

 Organization Distribution: many project teams includes 

members from different division, different partner 

companies or from some external service firms. The more 

organizationally distributed teams, the more the relationship 

will be contractual.  

 Technical Complexity: Some applications are more complex 

than others. It is easy to achieve high level quality if you’re 

building a new system from scratch but it is not easy to 

develop a new application with the existing agility software.  

 Organization complexity: your existing organization 

structure and culture may reflect waterfall [28] values, 

which increases the complexity of adopting and scaling 

agile strategies within your organization. 

 Enterprise Discipline: Many organizations want to have 

common infrastructure platform to lower the cost, reduce 

time, and improve consistency, that is very difficult if 

project team focus only on their immediate needs. 

VI. FUTURE SCOPE 

The scope of this study suggested that agile software 
development is effective and suitable for many situation and 
environment. However, at present only few empirically 
validated studies can be found to support the claims. More 
ever, the frequent releases of new agile software development 
methods also bring confusions rather than clarity. The urgent 
need now (more than new model) is to adopt a few particular 
methods which can be used by software professional, projects 
and organizations to choose a particular method to produce a 
right product at a right time.    

VII. CONCLUSION 

Knowledge management may provide important 
contribution in developing software. Today, there is no doubt 
that organizations have exploited their potential to create 
knowledge by focusing on their developing software members 
by not only focusing on externally developed information, 
knowledge or data. Studies have shown that traditional plan-
driven software development methodologies are not used in 
practice. Many organizations have been successful at adopting 
agile software development approaches. Agile scaling model 
provides a road map for complexities which occur when 
adopting and tailoring agile method. The knowledge 
management used in agile software development method 
provide a novel way of approaching software development 
problem’s , while also maintaining that the method are by no 
means capable of solving all problems.  

 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

75 | P a g e  

http://ijacsa.thesai.org/ 

Knowledge Management Capture from the Agile Software 

Knowledge Capture

from market or

Surrounding Organization 

Individuals

Or Team

Learn 

during

Learn 

Before

Learn

After 

Innovating new

Method or

Techniques 

Developer 

Goal
Result 

Figure 3: Knowledge Management in Agile Software 

Figure 4: Scaling Factor in Agility



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 4, 2011 

76 | P a g e  

http://ijacsa.thesai.org/ 

REFERENCES 

[1] T.H.Davenprot, L.prusak,” Working Knowledge: how organizations 
Manage what they Know”, Harvard Business School Press, Boston, 
USA, 1998. 

[2] Argyris C.,”Knowledge for Action “. (1993), San Francisco, CA: Jossey-
Bass. 

[3] I.Nonaka, H.Takeuchi.,” The Knowledge-Creating Company” , Oxford 
University Press 1995. 

[4]  Finn Olav Bjornson , Torgeir Dingsoyr , “ Knowledge management in 
software engineering : A systematic review of studied concepts , finding 
and search methods used “, (2008), International Journal of Information 
and Software Technology . 

[5] K.Lyytinen, D.Robey, “Learning failure in information systems 
development “, (1999), Information system journal. 

[6] S.Nerur, V. Baligepally,” Theoretical reflections on agile development 
methodologies “, (2007), Communications of the ACM 50 79-83.  

[7] V.R.Basili, G.Caldiera, H.D. Rombach,” The experience factory: ,”(1994) 
in JJ Marciniak (Ed),Encyclopedia of Sofware Engineering ,J.John 
WILEY , New York. 

[8] M. Lindvall , I.Rus , “ Knowledge management in software engineering “, 
(2002), IEEE  software . 

[9] H.D Doran,” Agile knowledge management in practice” ,( 2004) in 
:Proceeding of the Sixth International Workshop on Learning Software 
Organization , Springer Verlag, Banff, Canada. 

[10] M. Lindvall, I.Rus,” Knowledge Management for Software 
Organization”, (2003) in A. Aybuke et al.(Eds.), Managing Software 
Engineering Knowledge , Springer Verlag, Berlin.. 

[11] D.Kolb ,” Experiential Learning: Experience as the Source of Learning 
and Development “,(1984), Prentice Hall, Englewood Cliffs,USA. 

[12]S. Koening, “Integrated process and knowledge  management for product 
definition , development and delivery ,(2003)  in : Proceeding of the 
IEEE  International Conference on Software-Science , Technology  & 
Engineering . 

[13] Dobb’s Journal’s July 2009 State of the IT Union Survey - 
www.ambysoft.com/surveys/state-OfITUnion200907.html 

[14] Principles Behind the Agile Manifesto - 
www.agilemanifesto.org/principles.html 

[15] Scott w. Ambler, “Effective practice for modeling and documentation 
“(.2007)   

http://www.agilemodeling.com/. 

[16] Scott w.Ambler.” The Agile Unified Process “, (2009) 
http://www.ambysoft.com/unifiedprocess/agileUP.html 

[17] Casemaker Totem,”what is Rapid Application Development?”,(2000) 

http://www.casemaker.com/download/products/totem/rad_wp.pdf 

[18] Benjamin J.J.Voigt, Dr.M.Glinz,”Dynamic System Development 
Method”, (2004), Department of Information Technology, University of 
Zurich, Retrieve on. 

[19] Ivar Jacobson ,” Essential Unified  Process “ (2010), 
http://en.wikipedia.org/wiki/Essential_Unified_Process 

[20] Kent Beck ,Cynthia Andres ,” Extreme Programming Explained”,(2004), 
Addison –Wesley Professional. 

[21] Wikipedia ,”IBM Rational Unified Process “,(2003).

 http://en.wikipedia.org/wiki/RUP. 

[22] Wikipedia ,” OpenUP “, (2009) 
http://en.wikipedia.org/wiki/Open_Unified_Process 

[23] Mike Cohn,” Succeeding with Agile: Software Development Using 
Scrum” ,(2009),The Addison –Wesley Series. 

[24] Jeremy Weiskotten,” Velocity : Measuring and Planning an Agile Project 
,(2009, 

http://agilesoftwaredevelopment.com/blog/jeremy/velocity-measuring 
and-planning-agil 

[25] Wikipedia,”Feature Driven Development “, (2009), 
http://en.wikipedia.org/wiki/Feature_Driven_Development 

[26] Hongyi Sun, "Total quality management, ISO 9000 certification and 
performance improvement",(2000) International Journal of Quality & 
Reliability Management, Vol. 17 Iss: 2, pp.168 – 179. 

[27] Kruchten, P. (2009). “The Context of Software Development “- 
http://pkruchten.wordpress.com/2009/07/22/the-context-of-software-
development/ 

[28] Ambler, S.W.,” Agile Modeling: Effective Practices for Extreme 
Programming and the Unified Process”, (2002) New York: Wiley Press. 

[29] Dobb’s Journal’s July 2009 State of the IT Union Survey - 
www.ambysoft.com/surveys/state-OfITUnion200907.html 

[30] Dobb’s Journal’s 2008,”Project Success Survey” - 
www.ambysoft.com/surveys/success2008.html 

[31] Pekka Abrahamsson ,Outi Salo , Jussi Ronkainen & Juhani Warsta ,” 
Agile software development method”, (2002), VVT Publication 

AUTHORS PROFILE 

Mr. Mohammed Abdul Bari is an 
Information System     Architect and 
expert in handling software process 
improvement. His research area includes 
Business Process Reengineering, Process 
Modeling, Information System Redesign 
and Reengineering. He did B.E. in 
Computer Science & Engineering from 
Bangalore University, INDIA and M.S. in 
Information Systems from London South 

Bank University, United Kingdom, currently pursuing Ph.D. in Computer 
Science from University of Newcastle, District Columbia, U.S.A. 

 

Dr. Shahanawaj Ahamad is an 
active academician and researcher in the 
field of Software Reverse Engineering 
with experience of ten years, working 

with Al-Kharj University’s College of 

Science & Arts in Wadi Al-Dawasir, 
K.S.A. He is the member of various 
national and international academic and 
research groups, member of journal 
editorial board and reviewer. He is 
currently working on Legacy Systems 
Migration, Evolution and Reverse 

Engineering, published more than twenty papers in his credit in national and 
international journals and conference proceedings. He holds M. Tech. followed 
by Ph.D. in Computer Science major Software Engineering, supervised many 
bachelor projects and master thesis, currently supervisor of Ph.D. theses.  

 

 


