
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

76 | P a g e

www.ijacsa.thesai.org

A Comprehensive Analysis of Materialized Views in

a Data Warehouse Environment

Garima Thakur

M.Tech (IT), Department of IT

USIT, Guru Gobind Singh Indraprastha University

Delhi, India

thakur_garima_27@yahoo.co.in

Anjana Gosain

Associate Professor, Department of IT

USIT, Guru Gobind Singh Indraprastha University

Delhi, India

anjana_gosain@hotmail.com

Abstract— Data in a warehouse can be perceived as a collection

of materialized views that are generated as per the user

requirements specified in the queries being generated against the

information contained in the warehouse. User requirements and

constraints frequently change over time, which may evolve data

and view definitions stored in a data warehouse dynamically. The

current requirements are modified and some novel and

innovative requirements are added in order to deal with the latest

business scenarios. In fact, data preserved in a warehouse along

with these materialized views must also be updated and

maintained so that they can deal with the changes in data sources

as well as the requirements stated by the users. Selection and

maintenance of these views is one of the vital tasks in a data

warehousing environment in order to provide optimal efficiency

by reducing the query response time, query processing and

maintenance costs as well. Another major issue related to

materialized views is that whether these views should be

recomputed for every change in the definition or base relations,

or they should be adapted incrementally from existing views. In

this paper, we have examined several ways o performing changes

in materialized views their selection and maintenance in data

warehousing environments. We have also provided a

comprehensive study on research works of different authors on

various parameters and presented the same in a tabular manner.

Keywords- Materialized views; view maintenance; view selection;

view adaptation; view synchronization.

I. INTRODUCTION

Data warehouse is referred as a subject-oriented, non-
volatile & time variant centralized repository that preserves
quality data [1]. A data warehouse extracts and integrates
information from diverse operational systems prevailing in an
organization under a unified schema and structure in order to
facilitate reporting and trend analysis. Information sources
which are integrated in the data warehouse are dynamic in
nature i.e. they may transform or evolve in terms of their
instances and schemas. Moreover, requirements specified by
the various stakeholders and developers frequently change
owing to numerous reasons as mentioned below [17] [18] 19]:

1. Ambiguous or insufficient requirements during the
developmental phase [17].

2. Change in the requirements during the operational phase of
the Data Warehouse which results in the structural
evolution of the data warehouse [18].

3. Reorganization of the data warehouse schema during the
operational phase of the data warehouse as a result of
different design solutions that are decided upon [18].

4. New user or business requirements arise or new versions
need to be created [18] [19].

5. Periodical revisions are made in order to eliminate the
errors & redundancies [17][18].

6. The data warehouse must be adapted to any changes which
occur in the underlying data sources [18] [19].

Hence, data warehouse and views present in warehouse
must evolve whenever there is any modification or update in
the requirements or base relations, in order to fulfill the needs
and constraints allocated by the various users who need the
assistance of data warehouse system. In fact, data warehouse
evolution process never ceases. Appropriate techniques
should be devised to handle the above mentioned changes in
the data sources as well as view definitions to keep the
warehouse in its most consistent state.

 Whenever any user poses a query, the query is processed
directly at this repository thereby, eliminating the need to
access the actual source of information. The resulting datasets
that are generated in the response to the queries raised by the
users are called as views, which represent functions derived
from the base relations to support viewing of snapshots of
stored data by the users according to their requirements. These
derived functions are recomputed every time the view is called
upon. Re-computing and selection of views becomes
impossible for each and every query especially; when the data
warehouse is very large or the view is quite complex or query
execution rate is high. Thus, we accumulate some pre-
calculated results (or views) in our central repository (i.e. data
warehouse) in order to provide faster access to data and
enhance the query performance. This technique is referred as
materialization of views.

Materialized views act as a data cache that gather
information from distributed databases and support faster and
reliable availability of already computed intermediate result
sets (i.e. responses to queries). Data sources in current scenario
are becoming quite vast and dynamic in nature i.e. they change
rapidly. Consequently, frequency of deletion, addition and
update operations on the base relations rises unexpectedly.
Whenever the underlying base relation is modified the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

77 | P a g e

www.ijacsa.thesai.org

corresponding materialized view also evolves in reaction to
those changes so that it can present quality data at the view
level. Hence, we need certain techniques to deal with the
problem of keeping a materialized view up-to date in order to
propagate the changes from remote data source to the destined
materialized view in the warehouse. These techniques can be
broadly classified as- view selection, view maintenance, view
synchronization and lastly, view adaptation. Each one of them
is explained in more detail in the next section.

The layout of the paper is as follows. In section 2, we
address the above mentioned techniques and also give a brief
on the literatures being reviewed for the same. Section 3,
presents a comparative study of the various research works
explored in the previous section. Lastly, we conclude in section
4.

II. STATE OF THE ART

In this section, we describe the various techniques designed
to handle the evolution of a materialized view in response to
the modifications in data sources it originated from. In
addition, we also discuss the literatures being reviewed in
context of each and every technique.

The tasks involved in evolution of materialized views in a
data warehouse can be categorized as follows:

A. View Adaptation & Synchronization

One of the factors that contribute to the changes in a
materialized view is rewriting of views that leads to changes in
the original view definition itself. This problem is addressed as
view adaptation. Re-writing of view definitions generates the
need to adapt the view schema to match it up with the most
current view definition being referenced [2, 3]. View
adaptation can be done either in incremental fashion or by
performing full re-computation of the views [3]. If re-
computation results in equivalent views then, there is no need
to implement adaptation techniques because data is preserved.
Non-equivalent definitions create new schema for the same
view resulting in evolution of the original view. Some of the
examples are listed below:

TABLE I. EXAMPLES OF SCHEMA CHANGES IN VIEW

ADAPTATION

Schema changes Description

Rename Data preserving, no adaptation
required.

Drop/Delete Data deleted, hence non-equivalent
views might be generated

Normalization Schema structure and data preserved,
hence no adaptation done.

In [2] the authors have provided a comprehensive study on
various adaptation techniques. They have also provided re-
definitions of all SQL clauses and views when local changes
are made to view definitions. But they have only handled single
materialized view changes.

In [13] author has discussed various view adaptation
techniques where only the changes in view definitions cause
adaptation in the views. Relation algebra binary operators can
be added to SQL clauses to adapt the views. Expression trees
are used to evaluate view definitions.

Another technique employed to handle materialized views
is view synchronization. This technique changes the view
definition when the structure of its base relations changes. It
addresses both equivalent & non-equivalent view re-definitions
[3]. Some of the changes that result in creation of new schema
definitions are as follow [3]:

TABLE II. EXAMPLES OF CHANGES THAT RESULT IN SCHEMA
CHANGES

Schema changes Description

Rename Renames the attributes and tables in
the original view

Drop/Delete Deleted attributes or tuples or tables
in original views

EVE (Evolvable View Environment), a general framework
has been developed in [4] to handle view synchronization in
large distributed dynamic environments like- WWW. A view
definition language, E-SQL, has also been designed along with
some replacement strategies to propagate the changes in
affected view components.

B. View Selection

The most important issue while designing a data warehouse
is to identify and store the most appropriate set of materialized
views in the warehouse so that they optimise two costs
included in materialization of views: the query processing cost
and materialized view maintenance cost.

Materialization of all possible views is not recommended
due to memory space and time constraints [6]. The prime aim
of view selection problem is to minimize either one of the
constraints or a cost function as shown below:

View

Selection

techniques

Views available Cost minimised:

Query cost

Maintenance cost

Space & time

reduced

After applying view

selection techniques

only appropriate

views are stored in

DW.

Figure 2. View Selection Process

View

Adaptation

&

Synchronization

View

Selection

View

Maintenance

Figure 1. Tasks in materialized view evolution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

78 | P a g e

www.ijacsa.thesai.org

Hence, view selection problem is formally defined as a
process of identifying and selecting a group of materialized
views that are most closely-associated to user-defined
requirements in the form of queries in order to minimize the
query response time, maintenance cost and query processing
time under certain resource constraints [6].

In [5] authors have developed a AND/OR graph based
approach to handle view selection problem in data cubes
present in the data warehouse by taking an example of TPC-D
benchmark database. They have also proposed an optimization
algorithm to select certain views, but, this algorithm does not
perform well in some of the cases.

Another graph based approach has been discussed in [6] in
order to select a set of views for special cases under disk-space
and maintenance cost constraints. AND view graphs have been
discussed to evaluate the global plan for queries and OR view
graphs focus on data cubes. They have proposed greedy
heuristics based algorithms to handle the same. But still the
approach has certain limitations like very little insight into the
approximation of view-selection problem in AND/OR view
graphs. Problem in AND view graphs is still not known to be
NP-hard.

In [7] the authors have proposed two algorithms, one for
view selection and maintenance and the second one for node
selection for fast view selection in distributed environments.
They have considered various parameters: query cost,
maintenance cost, net benefit & storage space.

In [8] presented a framework for automatically selecting
materialized views and indexes for SQL databases that has
been implemented as a part of performance tuning in SQL
Server 2000.

In [9] authors have presented a framework for selection of
views to improve query performance under storage space
constraints. It considers all the cost metrics in order to provide
the optimal set of views to be stored in the warehouse. They
have also proposed certain algorithms for selecting views based
on their assigned weightage in the storage space and query.

In [14] a clustering based algorithm ASVMRT, based on
clustering. Reduced tables are computed using clustering
techniques and then materialized views are computed based on
these reduced tables rather than original relations.

C. View Maintenance

Re-computation of materialized views is quite a wasteful
task in data warehousing environments. Instead, we can only
update a part of the views which are affected by the changes in
the base relations. Hence, View maintenance incrementally
updates a view by evaluating the changes to be incorporated in
the view so that it can evolve over time. If views are
maintained efficiently then, the overhead incurred while

performing expensive joins and aggregations is eliminated to a
larger extent.

 In [10] authors have proposed a framework for dynamic
environments called DyDa, for view maintenance in order to
handle both concurrent schema and data changes. They have
identified three types of anomalies and also proposed some
dependency detection and correction algorithms to resolve any
violation of inter-dependencies occurring between the
maintenance processes.

An algorithmic approach has been implemented in [11] for
incremental materialized view maintenance. The authors have
employed the concept of version store so that the older versions
of relations can be preserved and retrieval of correct data in the
desired state is available round the clock. They have further
proposed architecture to support of DW augmented with a
View Manager.

In [12] authors have designed algebra based algorithm for
incremental maintenance of views by schema restructuring.
They have proposed a SchemaSQL language to handle data

updates and schema changes. Moreover, transformation
operators have also been proposed to propagate data and
schema changes easily.

View maintenance problem has been dealt in [3] by means
of a compensation algorithm that eliminates interfering update
anomalies encountered during incremental computations.
Version numbers have been assigned to the updates occurring
on the base relations to arrange them in a proper order. These
numbers also help in detecting update notification messages
that might be lost in the whole process of propagating the
changes from source relation to views.

In [15] authors have presented PNUTS to handle
asynchronous view maintenance in VLSD databases. The main
approach is to defer expensive views by identifying RVTs &
LVTs. PNUTS is also supported by a consistency model to
hide details for replication of views. They have also listed the
supported as well as unsupported views. Evaluation also
reveals the performance of PNUTS on fault tolerance,
throughput, complexity, query cost, maintenance, view
staleness, latency, etc.

In [16] authors have discussed issues related to materialized
views and their maintenance in Peer Data Management systems
by using schema mappings (SPDMS). They have designed a
hybrid peer architecture that consists of peers and super peers.
Also, concepts of local, peer and global views have been
developed to handle global view maintenance by handling peer
vies in local PDMS, where, relations are numbered. Mapping
rules guide the changes to map one version number to a new
version. A push-based algorithm for view maintenance has
been developed to handle view maintenance in a distributed
manner.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

79 | P a g e

www.ijacsa.thesai.org

III. COMPARATIVE STUDY

We have analyzed the various research works on several parameters and presented their comparison in the table below.

Table III. COMPARISON OF VARIOUS RESEARCH WORKS

Features

Authors

Technique Issues

addressed

Changes

handled

Proposed

work

Query

Language

Supported

Meta

 Data

supported

Advantages Disadvanta

ges

Tool

support /

implementa

tion

Gupta,

Mumick,

Rao & Ross

(2001)

[2]

View

adaptation

Re-

materializati

on

+

In-place

adaptations

+

Non-in place

adaptations

Handling of

local

changes in

view

definition

Redefinition

s of all SQL

clauses

+

Guidelines

for users &

DBA

SQL based

view

definition

language

Additional

information

kept with

materializati

on

Query &

cost

optimization

Only single

materialized

view

changes

addressed

Not

addressed

Mohania

(1997)

[13]

View

Adaptation

Materialized

view

adaptation

in distributed

DW

Changes in

view

definition

Expression

trees

+

Relational

binary

operators

+

Join &

derive count

values

SQL clauses:

Select,

From,

Where

Additional

results also

materialized

Re-

computation

not needed

+

Cost of

computing

decreased

Overheads in

maintain

additional

materialized

results

Not

addressed

Lee, Nica

& Elke

(2002)

[4]

View

synchronizat

ion

Synchronizat

ion in

distributed

dynamic

environment

s

Schema

changes

Of data

sources

EVE

framework

+

replacement

strategies

+

Algorithms

E-SQL view

definition

language

Meta

Knowledge

base

Handling

changes in

large

dynamic

environment

(WWW)

+

A general

framework

Only

addressed

schema

changes in

sources

+

No cost and

quality

issues

addressed

JAVA

+

JDBC

+

MS-Access

Dhote

&

Ali

(2007)

[5]

 View

Selection

Selection of

views to

minimize

query

response

time

Data cube

changes

AND/OR

DAG to

minimize the

query

response

time

+

Optimization

algorithm

SQL based

Heuristic

based

algorithm

+

Simple

approach

Algorithm

does not

works well

on certain

cases

+

Cant be used

on whole

data cube

(works only

on lattice)

Not

addressed

Gupta

&

Mumick

(2005)

[6]

View

Selection

View

selection

under disk

space &

maintenance

cost

constraints.

Global

evaluation

plan for

queries

+

Data cubes

AND/OR

view graphs

+

Greedy

heuristics

based

algorithms

SQL based

Optimal

solution for

special cases

(AND/OR

views)

+

Polynomial

time

heuristics

Approximati

on in view-

selection

problem not

addressed

+

Problem in

AND view

graphs not

NP-hard

+

Solution

fairly close

to optimum

Not

mentioned

Karde

&

Thakare

(2010)

View

Selection

Query cost,

maintenance

cost, storage

space &

In

distributed

environment

s

Algorithm

for creation

and

maintenance

of views

Not

mentioned

Query

performance

improved

Only

distributed

environment

s highlighted

Not

addressed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

80 | P a g e

www.ijacsa.thesai.org

[7] +

Algorithm

for node

selection

Agrawal,

Chaudhari

&

Narasayya

(2000)

[8]

View

Selection

Automated

view and

index

selection

Framework

for index &

view

selection

+

Candidate

selection &

enumeration

techniques

SQL based

Robust tool

support

+

Both indexes

& view

selected

Only a part

of physical

design space

addressed

SQL Server

2000

Ashadevi

&

Balasubram

anian

[9]

View

selection

Cost-

effective

view

selection

under

storage

space

constraints

Framework

for selecting

views

+

Algorithm

for the same

+

Cost metrics

Not

addressed

All cost

metrics

considered

Query

response

time not

considered

+

Threshold

value not

indicated

clearly

Algorithms

implemented

in JAVA

Yang

&

Chung

(2006)

[14]

View

selection

Attribute-

value density

+

Clustered

tables

+

Selection of

views based

on clustered

/reduced

tables

Related

dimensions

or relations

ASVMRT

algorithm for

view selction

SQL based
 Faster

computation

time

+

Reduced

storage

space

+

1.8 times

performance

better than

conventional

algorithms

Maintenance

of reduced

tables not

addressed

+

Updating

Reduced

tables needs

attention

In pubs

database

+

ETRI

Chen,

Zhang

&

Elke

(2006)

[3]

View

maintenance

 Source Data

updates

+

Preserving &

non-

preserving

schema

changes

+ 3 types of

anomalies

Source

schema &

data updates

DyDa

Framework

+

Dependency

&

Correction

algorithms

SQL based

maintenance

&

compensatio

n

queries

Can handle

concurrent &

interleaved

data and

schema

changes

Extra cost on

data updates

+

Cannot

maintain

mixed

updates in

single

process

JAVA

&

Oracle 8i

Almazyad

&

Siddiqui

(2010)

[10]

View

maintenance

Incremental

view

maintenance

+

synchronizat

ion between

DW and

source

+

lost update

notifications

Source

relation

changes

Framework

with version

store

Not

mentioned

clearly

Version

store

provides

needed

metadata

Synchronizat

ion between

source and

DW

+

Detection of

update

notification

messages

Process

becomes a

bit lengthy

+

 more space

needed

+

Version

numbers

should be

handled

properly

Not

addressed

Koeller

&

Rundenstei

ner

(2004)

[11]

 View

maintenance

Schema

restructuring

of views

Data

+

Schema

changes

Algebra

based

maintenance

+

transformati

on operators

Schema SQL

queries

Not clearly

mentioned

Algebra-

based can be

adapted to

other query

languages

easily

Time

consuming

process

JAVA

+

Oracle 8

(JDBC)

Ling

&

Sze

(2001)

[12]

View

maintenance

Update

anomalies

+

Notification

messages

Modification

s in base

relations

Compensatin

g algorithms

+

Version

numbers

Not

addressed

Present in

form of log

files

+

version

numbers

Algorithms

does not

require

quiescent

state before

views can be

refreshed

Time

consuming

+

Version

numbers

should be

handled

Not

addressed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

81 | P a g e

www.ijacsa.thesai.org

IV. CONCLUSION

In this paper we have presented an analysis of different
approaches being proposed by various researchers to deal with
the materialized views in data warehouse namely- view
adaptation & synchronization, view selection and view
maintenance. We have examined these techniques on various
parameters and provided a comparative study in a tabular
manner.

V. FUTURE WORK

As future work, we will direct our research towards batch-
oriented view maintenance and selection strategies. A thorough
investigation of the methodologies to handle materialized
views in highly distributed environments for query processing
and analysis seems worth attention.

REFERENCES

[1] W. Inmon, “Building the data warehouse”, Wiley publications, pp 23,
1991.

[2] A. Gupta, I. Mumick, J. Run, and K. Ross, “Adapting materialized views
after redefinitions: techniques and a performance study”, In Elsevier
Science Ltd., pp 323-362, 2001.

[3] S. Chen, X. Zhang, and E. Rundensteiner, “A compensation based
approach for view maintenance in distributed environments”, In IEEE
transactions and data engineering, 18, 2006.

[4] A. Lee, A. Nica, and E. Rundensteiner, “The EVE approach view
synchronization in dynamic distributed environments”, In IEEE
Transactions and Data Engineering, 14, 2002.

[5] C. Dhote, and M. Ali, “Materialized view selection in data warehouse”,
In International Conference on Information Technology, 2007.

[6] A. Gupta, and I. Mumick, “Selection of views to materialize in a data
warehouse”, In IEEE Transactions on Knowledge and Data Engineering,
vol. 17, 2005.

[7] P. Karde, and V. Thakare,” Selection of materialized views using query
optimization in database management: An efficient methodology”, In
International Journal of Management Systems, vol. 2.

[8] S. Agrawal, S. Chaudhari, and V. Narasayya, “Automated selection of
materialized views and indexes for SQL databases”, In Proceedings of
26th International Conference on Very Large Databases, 2000.

[9] B. Ashadevi, and R. Balasubramanian, “Cost effective approach for
materialized views selection in data warehouse environment”, In
International Journal of Computer Science and Network Security, vol. 8,
2008.

[10] A. Almazyad, and M. Siddiqui, “Incremental view maintenance: an
algorithmic approach”, In International Journal of Electrical &
Computer Sciences, vol. 10, 2010.

[11] A. Koeller, and A. Rundensteiner, “Incremental maintenance of
schema–restructuring view in SchemaSQL”, In IEEE Transactions and
Data Engineering, 16, 2004.

[12] T. Ling, and E. Sze,” Materialized view maintenance using version
numbers”, In Proceeding of Springer Berlin, 2001.

[13] M. Mohania, “Avoiding re-computation: View adaptation in data
warehouses”, in australian research council, 1997.

+

Update

notifications

handled

efficiently

+ version

numbers

reflect state

of relations

properly

Agrawal,

Silberstein,

Cooper,

Srivastava

&

Ramakrish

nan

(2009)

[15]

View

maintenance

Asynchrono

us view

(Remote

view Tables

RVT,

Local View

Tables LVT)

+

Replication

of views

Deferred

Indexes &

Views in

Very Large

Scale

Distributed

databases,

horizontally

partitioned

PNUTS

+

consistency

model

+

RVTs

&LVTs

+

Group-by

views, select

views,

indexes

& equi-join

views

SQL based Metadata for

view

definitions &

partitions

Improved

client

latency

+

Improved

scalability

+

Balanced

view

staleness,

system

complexity

+

Improved

query cost

Views

maintenance

adds load to

system

+

VLSD are

complex

+

Decreased

throughput

+

Complex

failure

recovery

C++

+

FreeBSD 6.3

(Linux can

also be used)

Qin,

Wang

&

Du

(2005)

[16]

View

Maintenance

Global view

maintenance

by

maintaining

local views

in PDMS

Schema

changes

+

Schema

mappings

amongst

peers

Hybrid peer

architecture

(P2P &

Peer-super

peer)

+

Local, global

& peer

views

+

Rules to use

updategrams

& boosters

+

Push-based

Algorithm

Not

mentioned

One kind of

Super peer

maintains

metadata for

mapping

schemas in

intre-peers

or inter-peer

changes in

local PDMS

Decentralise

d

maintenance

strategy

+

Higher

efficiency

+

Parallelism

+

Efficient in

80-20

distribution

+

Central

bottlenecks

avoided

Information

sharing is

complex &

difficult in

PDMS

+

Querying not

addressed

Simulation

system

developed in

JAVA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

82 | P a g e

www.ijacsa.thesai.org

[14] J. Yang, and I. Chung, “ASVMRT: Materialized view selection
algorithm in data warehouse”, In International Journal of Information
Processing System, 2006.

[15] P. Agrawal, A. Silberstein, B. Cooper, U. Srivastava, and R.
Ramakrishnan, “Asynchronous view maintenance in vlsd databases”, In
SIGMOD International Conference on Management of Data, 2009.

[16] B. Qin, S. Wang, and X. Du, “Effective maintenance of materialized
views in peer data management systems”, In Proceedings of First
International Conference on Semantics, Knowledge and Grid, 2005.

[17] D. Sahpaski, G. VelInov, B. Jakimovski, and M. Kon-Popovska,
“Dynamic evolution and improvement of data warehouse design”, In
Balkan Conference in Informatics, 2009.

[18] B. Bebel, J. Eder, C. Koncilia, T. Morzy, and R. Wrembel, “Creation
and management of versions in multiversion data warehouse”, In Proc.
ACM SAC, 717–723, 2004.

[19] B. Bebel, J. Eder, C. Koncilia, T. Morzy, and R. Wrembel, “Formal
approach to modeling data warehouse”, In bulletin of the Polish
Academy of Sciences, 54, 1, 2006.

[20] Vashishta, S. (2011). Efficient Retrieval of Text for Biomedical Domain
using Data Mining Algorithm. International Journal of Advanced
Computer Science and Applications - IJACSA, 2(4), 77-80.

[21] Hanandi, M., & Grimaldi, M. (2010). Organizational and collaborative
knowledge management : a Virtual HRD model based on Web2 . 0.
International Journal of Advanced Computer Science and Applications -
IJACSA, 1(4), 11-19.

AUTHORS PROFILE

Garima Thakur is pursuing her M.Tech in Information Technology from
Guru Gobind Singh Indraprastha University, Delhi, India. She has done her
B.Tech in Computer Science branch from the same university in the year 2009.
She is doing her research work in the field of Data warehouse & Data Mining
and Knowledge Discovery.

Dr. (Mrs.) Anjana Gosain is working as reader in University school of
information technology. She obtained her Ph.D. from GGS Indraprastha
University & M.Tech in Information Systems from Netaji Subhas Institute of
Technology (NSIT) Delhi. Prior to joining the school, she has worked with
computer science department of Y.M.C.A institute of Engineering, Faridabad
(1994-2002). She has also worked with REC kurukshetra. Her technical and
research interests include data warehouse, requirements engineering, databases,
software engineering, object orientation and conceptual modeling. She has
published 18 research papers in International / National journals and
conferences.

