
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 5, 2011 

101 | P a g e  

www.ijacsa.thesai.org 

Generating PNS for Secret Key Cryptography Using 

Cellular Automaton 
 

Bijayalaxmi Kar 

Dept. of Computer Science & Engg.  

College of Engineering Bhubaneswar  

Bhubaneswar, Odisha, INDIA 

D.Chandrasekhra Rao 

Dept. of Computer Sc. & Engg. 

College of Engineering Bhubaneswar  

Bhubaneswar, Odisha, INDIA 

Dr. Amiya Kumar Rath 

Dept. of Computer Sc. & Engg. 

College of Engineering Bhubaneswar  

Bhubaneswar, Odisha, INDIA 

 

 
Abstract - The paper presents new results concerning application 

of cellular automata (CAs) to the secret key using vernam cipher 

cryptography.CA are applied to generate pseudo-random 

numbers sequence (PNS) which is used during the encryption 

process. One dimensional, non-uniform CAs is considered as a 

generator of pseudorandom number sequences (PNSs) used in 

cryptography with the secret key. The quality of PNSs highly 

depends on a set of applied CA rules. Rules of radius r = 1 and 2 

for non-uniform one dimensional CAs have been considered. The 

search of rules is performed with use of evolutionary technique 

called cellular programming. As the result of collective behavior 

of discovered set of CA rules very high quality PNSs are 

generated. The quality of PNSs outperforms the quality of known 

one dimensional CA-based PNS generators used in the secret key 

cryptography. The extended set of CA rules which was found 

makes the cryptography system much more resistant on breaking 

a cryptography key. 
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I.  INTRODUCTION 

Confidentiality is mandatory for a majority of network 
applications for example commercial uses of the internet. Two 
classes of algorithms exist on the market for Data encryption: 
secret key systems and public key systems. An emerging 
cryptography techniques used in both types of system. One of 
such a promising cryptography techniques are cellular 
automata. Cellular automata are highly parallel and distributed 
systems which are able to perform complex computations. New 
perspectives in this area have been opened when evolutionary 
techniques appeared and have been used to design 
automatically CA based system. 

CAs were proposed for public key cryptosystems by Guan 
[15] and Kari [9] .In such systems two keys are required: one 
key is used for encryption and other is used for decryption, and 
one of them is held in private, other is published. However the 
main concern of this paper is secret key cryptosystems. In such 
system the same key is used for encryption and decryption. The 
encryption process is based on the generation of pseudorandom 
bit sequences, and CA is used for this purpose. In the context of 
secret key systems, CA were first studied by wolfram [17], and 
later by Nandi et al. [20] and Gutowitz [8]. Recently they were 
a subject of study by Tomassini and his colleagues [12]. This 
paper extends these recent studies and describes the application 
of one-dimensional (1D) CAs for the secret key cryptography. 

The paper is organized as follows. The following section 
presents the idea of an encryption process based on Vernam 
cipher and used in CA-based secret key cryptosystems. Section 
3 outlines the main concepts of CAs, overviews current state of 
applications of CAs in secret key cryptography and states the 
problem considered 

In this paper Section IV outlines evolutionary technique 
called cellular programming and shows how this technique is 
used to discover new CA rules suitable for encryption process. 
Section V contains the analysis of results and Section VI 
concludes the paper.  

II. VERNAM CIPHER AND SECRET KEY CRYPTOGRAPHY 

Let P be a plain-text message consisting of m  bits P1 P2 
. . . Pm, and k1 k2 . . . km be a bit stream of a key K. Let C i  be 

the ith bit of a cipher-text obtained by applying a    

(exclusive-or) enciphering operation: Ci = Pi   Ki 

The original bit Pi of a message can be recovered by 

applying the same operation   on ci with use of the same bit 

stream key k: Pi =  Ci   Ki 

The enciphering algorithm called Vernam cipher is known 

to be [5, 9] perfectly safe if the key stream is truly 

unpredictable and is used only one time. 

III. CELLULAR AUTOMATA AND CRYPTOGRAPHY 

One-dimensional CA is in a simplest case a collection of 
two-state elementary automata arranged in a lattice of the 
length N, and locally interacted in a discrete time t. For each 
cell i called a central cell, a neighborhood of a radius r is 
defined, consisting of ni = 2r + 1 cells, including the cell i. 
When considering a finite size of CAs a cyclic boundary 
condition is applied, resulting in a circle grid as shown in 
Figure 1. 

It is assumed that a state qi
t+1 of a cell i at the time t + 1 

depends only on states of  its neighborhood at the time t, i.e. 
qi

t+1 = f (qi 
t, qi1 

t, qi2
t
 ,. . . , qin 

t), and a transition function f , 
called a rule, which defines a rule of updating a cell i. A 
length L of a rule and a number of neighborhood states for a 
binary uniform CAs is L = 2n, where n = ni is a number of 
cells of a given neighborhood, and a number of such rules can 
be expressed as 2L. For CAs with e.g. r = 2 the length of a rule 
is equal to L = 32, and a number of such rules is 232 and grows 
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very fast with L. When the same rule is applied to update cells 
of CAs, such CAs are called uniform CAs, in contrast with 
non uniform CAs when different rules are assigned to cells 
and used to update them. 

Wolfram was the first to apply CAs to generate PNSs. He 
used uniform, 1D CAs with r = 1, and rule 30. Hortensius  and 
Nandi et al. [20] used nonuniform CAs with two rules 90 and 
150, and it was found that the quality of generated PNSs was 
better than the quality of the Wolfram system. Recently 
Tomassini and Perrenoud [12] proposed to use nonuniform, 1D 
CAs with r = 1 and four rules. 

 

Figure 1.  1D cellular automata with neighbourhood = 1 

90, 105, 150 and 165, which provide high quality PNSs and 
a huge space of possible secret keys which is difficult for 
cryptanalysis. Instead to design rules for CAs they used 
evolutionary technique called cellular programming (CP) to 
search for them.  

In this study we continue this line of research. We will use 
finite, 1D, non uniform CAs. However, we extend the potential 
space of rules by consideration of two sizes of rule 
neighborhood, namely neighborhood of radius r = 1 and 2. To 
discover appropriate rules in this huge space of rules we will 
use CP. 

IV. CELLULAR PROGRAMMING ENVIRONMENT 

A. Cellular programming 

CP is an evolutionary computation technique similar to the 
diffusion model of parallel genetic algorithms and introduced 
[13] to discover rules for non uniform CAs. Fig.2 shows a CP 
system implemented [2] to discover such rules. In contrast 
with the CP used in [12] the system has a possibility to 
evaluate non uniform rules of two types. The system consists 
of a population of N rules (left) and each rule is assigned to a 
single cell of CAs (right). After initiating states of each cell, 
i.e. setting an initial configuration, the CAs start to evolve 
according to assigned rules during a predefined number of 
time steps. Each cell produces a stream of bits, creating this 
way a PNS.  

After stopping evolving CAs all PNSs are evaluated. The 
entropy Eh is used to evaluate the statistical quality of each 
PNS. To calculate a value of the entropy each PNS is divided 
into subsequences of a size h. In all experiments the value h = 4 
was used. Let l be the number of values which can take each 
element of a sequence (in our case of binary values of all 

elements l = 2) and lh a number of possible states of each 
sequence (lh = 16). Eh can be calculated in the following way:  

 

Figure 2.  CP environment for evolution of rules of nonuniform CAs. 

Eh =  


hl

j hjhj PP
1 2log                          (1)  

where Phj is a measured probability of occurrence of a 
sequence hj in a PNS. The entropy achieves its maximal value 
Eh = h when the probabilities of the kh possible sequences of 
the length h are equal to 1/lh. The entropy will be used as a 
fitness function of CP.  

A single PNS is produced by a CA cell according to 
assigned rules and depends on a configuration ci of states of 
CAs. To evaluate statistically reliable value of the entropy, 
CAs run with the same set of rules C times for different 
configurations ci, and finally the average value of entropy is 
calculated and serves as a fitness function of each rule from 
the population of rules.   

After evaluation of a fitness function of all rules of the 
population genetic operators of selection, crossover and 
mutation are locally performed on rules. The evolutionary 
algorithm stops after some predefined number of generations 
of CP. 

The algorithm can be summarized in the following way:  

1. Initiate randomly population of N rules of type 1 (r = 
1) or type 2 (r = 2), or both  types, and create CAs 
consisting of N cells 

2. Assign kith rule from the CP population to kith cell of 
CAs 

3. for i = 1 . . . C do { create randomly configuration ci 
of CAs evolve CAs during M time steps evaluate 
entropy of each PNS } 

4. Evaluate fitness function of each rule 

5. Apply locally to rules in a specified sequence genetic 
operators of selection, cross-over and mutation 

6. If STOP condition is not satisfied return to 2. 
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B. Discovery of rules in 1D, non uniform CAs 

In all conducted experiments a population of CP and the 

size of non uniform CAs were equal to 50 and the population 

was processing during 50 generations. The CAs with initial 

random configuration of states and a set of assigned rules 

evolved during M = 4096 time steps. Running CAs with a 

given set of rules was repeated for C = 300 initial 

configurations. Fig. 3 shows an example of running CP for the 

evolutionary neighborhood i - 3, i - 2, i, i + 2, i + 3. One can 

see that whole CAs is able to produce very good PNSs after 

about 40 generations (see, the average value avg of the 

entropy close to 4). 

 

 
Figure 3.  A single run of CP evolutionary process 

A typical result of a single run of an evolutionary process 
starting with a random rules assigned to cells of CAs is 
discovering by CP a small set of good rules which divide the 
cellular space of CAs into domains-areas where the same rules, 
short (r = 1) or long (r = 2), live together (see Table 1). 
Evolutionary process is continued on borders of domains  

where different rules live. This process may result in 
increasing domains of rules which are only slightly better than 
neighboring rules, which domains will decrease and finally 
disappear. 

This happens in particular when two neighboring domains 
are occupied respectively by the same short rules and the same 
long rules. The search space of short rules is much smaller than 
the search space of the long rules. Therefore better short rules 
are discovered faster than better long rules, and for this reason 
long rules are gradually replaced by short rules. To limit this 
premature convergence of short rules, the short and long rules 
are initially randomly assigned to cells in the proportion of 1:3 
in all subsequent experiments. 

The purpose of the experiments which followed was to 
discover an enlarged set of rules (to enlarge the key space of 
cryptography system) which working collectively would 
produce very high quality PNSs. It was noticed that in a single 
run of CP the evolutionary algorithm produces typically a small 
set of rules with a very high value of the entropy. In the result 
of evolutionary searching process a set of 8 short rules 
(including 5 rules found by [16]) and a set of 39 long rules was 
found. 

TABLE I.   DOMAINS IN A FINAL POPULATION OF A EVOLUTIONARY PROCESS 

Rule Rule name Fitness value 

Generation 50 

01011010 

 

90 
 

3.98924 

01011010 90 3.98943 

01011010 90 3.98920 

01011010 90 3.98981 

00110011110011000011001111001100  869020620 3.98924 

00110011110011000011001111001100 869020620 3.98959 

00110011110011000011001111001100 869020620 3.98940 

00110011110011000011001111001100 869020620 3.98906 

00110011110011000011001011001100 869020364 3.94157 

00110011110011000011001111001100 869020620 3.98960 

00110011110011000011001111001100 869020620 3.98952 

00110011110011000011001111001100 869020620 3.98929 

00110011110011000011001111001100 869020620 3.98931 

00110011110011000011001111001100 869020620 3.98933 

00110011110011000011001111001100 869020620 3.98955 

00110011110011000011001111001100 869020620 3.98964 

00110011110011000011001111001100 869020620 3.98911 

00110011110011000011001111001100 869020620 3.98941 

00110011110011000011001111001100 869020620 3.98952 

00110011110011000011001111001100 869020620 3.98933 

00110011110011000011001111011100 869020636 3.97190 

00110011110011000011001111001100 869020620 3.98981 

00110011110011000011001111001100 869020620 3.98940 

00110011110011000011001111001100 869020620 3.98930 

00110011110011000011001111001100 869020620 3.98978 

00110011110011000011001111001100 869020620 3.98922 

00110011110011000011001111001100 869020620 3.98922 

00110011110011000011001111001100 869020620 3.98957 

01011010 9

0 
3.98977 

00110011110011000011001111001100 869020620 3.98949 

01011010 9

0 
3.98971 

01011010 9

0 
3.98988 

01011010 9

0 
3.98950 

01011010 9

0 
3.98945 

01011010 9

0 
3.98934 

01011010 9

0 
3.98935 

01011010 9

0 
3.98897 

01011010 9

0 
3.98942 

01011010 9

0 
3.98961 

01011010 9

0 
3.98962 

01011010 9

0 
3.98960 

01011010 9

0 
3.98970 

01011010 9

0 
3.98962 

01011010 9

0 
3.98933 

01011010 9

0 
3.98943 

01011010 9

0 
3.98955 

01011010 9

0 
3.98927 

01011010 9

0 
3.98925 

01011010 9

0 
3.98935 

01011010 9

0 
3.98948 

Global fitness of automata: 3.99976   

V. ANALYSIS AND COMPARISON OF RESULTS 

The entropy used as the fitness function for evolution CA 
rules producing high quality PNSs is only one of existing 
statistical tests of PNSs. None of them is enough strong to 
claim statistical randomness of a PNS in the case of passing a 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 5, 2011 

104 | P a g e  

www.ijacsa.thesai.org 

given test. For this purpose uniform CAs consisting of 50 cells 
evolved during 65536 time steps with each single discovered 
rule. Each PNS produced by CAs was divided into 4-bit words 
and tested on general statistical tests such as the entropy, v2 
test, serial correlation test [6] (some weaker rules after this 
testing were removed). 

The best scores were achieved by rules 30, 86, 101, 153 
and by 8 long rules. Rules 90,105,150 and  65  working 
separately in uniform CA obtained good results in test of 
entropy and long runs test, quite good results in serial 
correlation test and monobit test but were week in X2 test 
,poker test, runs test.sult weak in v2 test, poker test and runs 
test. However this set of rules work-ing collectively in non 
uniform CAs achieves good results (see, Table 2). For this 
reason only 10 rules were removed from discovered set of 
rules which have passed the FIPS 140-2 standard testing. 
These rules were worse than Tomassini and Perrenoud rules. 
However passing all statistical tests does not exclude a 
possibility that the PNS is not suitable for cryptographic 
purposes. Before a PNS is accepted it should pass special 
cryptographic tests. Therefore rules which passed tests were 
next submitted to a set of Marsaglia tests [7]––a set of 23 very 
strong tests of randomness implemented in the Diehard 
program. Only 11rules passed all 23 Marsaglia tests. These are 
short rules 30, 86, 101, and long rules 869020563, 
1047380370, 1436194405, 1436965290, 1705400746, 
1815843780, 2084275140 and 2592765285. 

The purpose of the last set of experiments was a selection 
of a small set of short and long rules for non uniform CAs 
which working collectively would provide a generation of 
very high quality PNSs suitable for the secret key 
cryptography. Simple combination of different rules which 
passed all Marsaglia tests in non uniform CAs have shown that 
resulting PNSs may have worse statistical characteristic than 
PNSs obtained using uniform CAs. On the other hand, 
experiments with Tomassini and Perrenoud rules show that 
rules that separately are working worse can provide better 
quality working collectively. For these reasons rules 153 and 
some long rules which obtained very good results in general 
tests but not passed all Marsaglia tests were also accepted for 
the set of rules to search a final set of rules. In the result of 
combining rules into sets of rules and testing collective 
behavior of these sets working in no non uniform CAs the 
following set of rules has been selected: 86, 90, 101, 105, 150, 
153, 165 (r = 1), and 1436965290 (r = 2). Among the rules 
are 4 rules discovered in [16]. The set of found rules have 
been tested again on statistical and cryptographic tests using 
non uniform CAs with random assignment of rules to CA 
cells. Table II presents the results of testing this new set of 
rules and compares the results with ones obtained for 
Tomassini and Perrenoud rules. One can see that results of 
testing both sets on general tests and FIPS 140-2 tests are 
similar. However, the main difference between these results 
can be observed in passing Marsaglia test. 

The secret key K which should be exchanged between two 

users of considered CA- based cryptosystem consists of a pair 

of randomly created vectors: the vector Ri informing about 

assigning 8 rules to N cells of CAs and the vector C(0) 

describing an initial binary state of CA cells. The whole key 

space has therefore the size 8N x 2N. The key space is much 

larger than the key space (4N x 2N) of 1D CA-based system 

[16]. Therefore the proposed system is much more resistant for 

cryptographic attacks. 

TABLE II.  COMPARISON OF RULES FOUND BY TOMASSINI AND PERRENOUD 

[12] AND NEW SET OF DISCOVERED RULES 

Test 
Tomassini and 

Perrenoud rules (90, 
105, 150, 165) 

Discovered rules  (86, 

90, 101,105, 150, 153, 

165,1436965290) 

Min entropy 3.9988 3.9987 

Max entropy 3.9998 3.9997 
Min v2 5.0254 6.998 
Max v2 26.396 30.805 
Min correlation 0.00007 -0.00006 
Max correlation 0.02553 0.01675 
Monobit test 50 50 
Poker test 50 50 
Run test 50 50 
Long run test 50 50 

Number of passed 

Marsaglia   tests  
11 23 

VI. CONCLUSIONS 

CA are an attractive approach for cryptographic 

applications. They are simple, modular logic systems that can 

generate good quality pseudorandom bit streams as required in 

robust cryptographic systems. In the paper we have reported 

results of the study on applying CAs to the secret key 

cryptography. The purpose of the study was to discover a set 

of CA rules which produce PNSs of a very high statistical 

quality for a CA-based cryptosystem which is resistant on 

breaking a cryptography key. The main assumption of our 

approach was to consider non uniform 1D CAs operating with 

two types of rules. Evolutionary approach called CP was used 

to discover suitable rules. After discovery of a set of rules they 

were carefully selected using a number of strong statistical and 

cryptographic tests. Finally, the set consisting of 8 rules has 

been selected. Results of experiments have shown that 

discovered rules working collectively are able to produce 

PNSs of a very high quality outperforming the quality of 

known 1D CA-based secret key cryptosystems, which also are 

much more resistant for breaking cryptography keys that 

know. 
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