
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

7 | P a g e

www.ijacsa.thesai.org

QVT transformation by modeling
From UML Model to MD Model

I.Arrassen

Laboratory for Computer Science Research

Faculty of Sciences

Mohammed First University

524, Oujda, Morocco

R.Sbai
Laboratory of Applied Mathematics and Computer Signal

Processing

Superior School of Technology

Mohammed First University

524, Oujda, Morocco

A.Meziane
Laboratory for Computer Science Research

Faculty of Sciences

Mohammed First University

524, Oujda, Morocco

M.Erramdani
Laboratory of Applied Mathematics and Computer Signal

Processing

Superior School of Technology

Mohammed First University

524, Oujda, Morocco

Abstract – To provide a complete analysis of the organization, its

business and its needs, it is necessary for leaders to have data that

help decision making. Data warehouses are designed to meet such

needs; they are an analysis and data management technology.

This article describes an MDA (Model Driven Architecture)

process that we have used to automatically generate the

multidimensional schema of data warehouse. This process uses

model transformation using several standards such as Unified

Modeling Language, Meta-Object Facility, Query View

Transformation, Object Constraint Language, ... From the UML

model, especially the class diagram, a multidimensional model is

generated as an XML file, the transformation is carried out by

the QVT (Query View Transformation) language and the OCL

(Object Constraint Language) Language. To validate our

approach a case study is presented at the end of this work.

Key-Words: Datawarehouse; Model Driven Architecture;

Multidimensional Modeling; Meta Model; Transformation rules;

Query View Transformation.

I. INTRODUCTION

To support the process of making management decisions,
development of data warehouses is important for
organizations. According to the definition given by Bill Inmon
(1996), data warehouse is a collection of data that is subject-
oriented, integrated, time-varying and non-volatile. His
ultimate goal is integrating data from all corners of the
enterprise in a single directory, from which users can easily
find answers to queries, generate reports and perform analysis.

A data warehouse is a management and data analysis
technology. On this basis, the establishment of a process of
building data warehouse is very important. Through this work,
we use a UML class diagram summarizing the activities:
requirements expression, analysis and design of information
system of the organization. From this diagram, we will
generate future objects decision diagram such as facts and
dimensions. The decisional diagram will be in the form of a
multidimensional schema, in fact, multidimensional modeling
is the one that best represents the data warehouse schema.

The approach used in this work is the MDA. A models
transformation process is used to transform a UML model
(Class Diagram) into a multidimensional model, the QVT and
the OCL languages was chosen as implementation language
processing.

In Section 2, we will discuss the works that are related to
our theme. In section 3 we explain the concepts of
multidimensional modeling. In Section 4 we outline the main
concepts of the MDA architecture (Model Driven
Architecture), which is at the heart of the approach followed in
our work. Then in Section 5 we present the source and target
Meta models used in the transformation program. In Section 6,
we present the work of generating the multidimensional
model. A case study is presented in Section 7. We conclude
this work in Section 8, with suggestions and possible
extensions.

II. RELATED WORKS

In recent years, several approaches to developing data
warehouse have been proposed. In this section, we present a
brief overview of some best known approaches.

In [1] several DWH case studies are presented. DWH
design is based on using the star schema and its variants
(snowflake schema and fact in constellation) using a relational
approach: tables, columns, foreign keys and so on. However
this work is considered as a benchmark in the field of DWH,
the authors are only interested in the representation of
relational DWH, and they regarded any other technology.

In [2], the authors propose a model Fact-Dimension
(Dimensional-Fact Model DFM), in which they define a
special notation for the conceptual model of the DWH. They
also show how to derive a DWH schema from the data sources
described by the entity-relationship diagram.

A goal-oriented approach has been added to DFM in [3].
This approach does not consider important aspects such as the
ETL (Extract Transform Load) process. In addition, the
authors consider that relational schemas of data exist, which is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

8 | P a g e

www.ijacsa.thesai.org

not always true, in addition, the use of special notations makes
it difficult to apply this approach.

In [4], a model for the design of the DWH was proposed:
YAM2. It is an object oriented model that uses UML notation
to represent the multidimensional structure of data. However,
no method that shows how to get the conceptual model is
described in the paper.

In [5] the authors propose a multidimensional meta-model
extended by generalizing the model heart, based on medical
data, this work was done under the MAP project (Personalized
Medicine Anticipation). In our opinion this type model is
specific to medical data; in addition, the authors do not specify
the modeling approach.

In [6] the authors created a decision support system called
BIRD integrated data grid Decrypthon which is designed to
process data in functional genomics. This system is a specific
platform that does not meet all requirements of any DWH.

III. MULTIDIMENSIONAL MODELING

It is a logical design technique that aims to present data in
a standard, intuitive way, which allows high performance
access.

Figure 1. Dimensionnel Model Schema

IV. MDA ARCHITECTURE

In November 2000, the OMG, a consortium of over 1,000
companies, initiates the MDA approach [7]. The purpose of
this standard is to separate the business logic of the enterprise,
from any technical platform. It is a new way to design
applications. Indeed, the technical architecture is unstable and
undergoes many changes over time, unlike the business logic.
It is therefore easy to separate the two to face the increasing
complexity of information systems and high costs of
technology migration. This separation then allows the
capitalization of software knowledge and the know-how of the
company.

Figure 2 below shows schematically the architecture of
MDA [7]. It is divided into four layers. The OMG was based
on several standards. In the center are the standard UML
(Unified Modeling Language) [8], MOF (Meta-Object
Facility) [9] and CWM (Common Warehouse Meta-model)
[10].

Figure 2. MDA Architecture [7]

In the next layer, it is also a standard XMI (XML Metadata
Interchange), which allows communication between the
middlewares (Java, CORBA, .NET and Web Services). The
third layer contains the services that manage events, security,
directories, and transactions. The final layer offers specific
frameworks in fields (Finance, Telecommunications,
Transportation, Space, Medicine, Commerce,
Manufacturing ...)

A. CIM (Computation Independent Model)

CIM stands for Computation Independent Model [12]. In
UML, a requirements model can be summarized as a use case
diagram. Because they contain the functionality provided by
the application and the various entities that interact with them
(actors) without providing information on the operation of the
application. The role of requirements models in an MDA
approach is the first models to be perennial. The modeled
requirements provide a contractual basis validated by the
customer and vary little.

B. PIM (Platform Independent Model)

The PIM represents the business logic specific to the
system or the design model. It represents the operating entities
and services. It must be perennial and last over time. It
describes the system, but shows no details of its use on the
platform. At this level, the formalism used to express a PIM is
a class diagram in UML, which can be coupled with a
constraint language like OCL (Object Constraint Language).
Analysis models and design are independent of platforms
where they are implemented J2EE, .NET, PHP, etc.. [12].

C. PSM (Platform Specific Model)

The PSM is the work of code generation after performing
the analysis models and design. This phase, the most delicate
of MDA, must also use templates. It includes the application
of design patterns techniques [12]. PSM code models facilitate
the generation of code from a model analysis and design. They
contain all information necessary to operate an execution
platform, such as information systems to manipulate file
systems or authentification systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

9 | P a g e

www.ijacsa.thesai.org

D. OCL (Object Constraint Language)

OCL [11] was developed in 1997 by Jos Warmer (IBM),
on the basis of language IBEL (Integrated Business
Engineering Language). It was formally incorporated into
UML 1.1 in 1999. It is a formal language that is based on the
notion of constraint. A constraint is a boolean expression that
can be attached to any UML element. It usually indicates a
restriction or gives information on a model. The constraints
are used in particular to describe the semantics of UML and its
various extensions, participating in the definition of profiles.

E. MOF2.0 (MétaObject Facility) QVT

MOF [9] defines the structure that should have any meta-
model. A meta-model is a set of meta-classes with meta-
associations. MOF2.0 meta-meta-model is unique, and UML
2.0 meta-model is dedicated to the modeling of object-oriented
applications. Among the objectives of MOF2.0: capitalize on
existing commonalities between UML and MOF-level class
diagrams and to explain the differences. The advantage of the
MOF is to structure all meta-models in the same way.

QVT (Query / View / Transformation) in the MDA
architecture is a standard for model transformations defined by
the OMG (Object Management Group) in 2007. It is central to
any proposed MDA. It defines a way to transform source
models to target models. These source and target models must
conform to the MOF meta-model. Specifically, this means that
the abstract syntax of QVT must conform to the MOF 2.0
meta-model. QVT defines three specific languages named:
Relations, Core Operational/Mapping. These languages are
organized in a layered architecture. Relations and Core are
declarative languages to two different levels of abstraction.
QVT Core is to relational, what is the Java byte code to Java
source code. The QVT Operational / Mapping is an imperative
language, it provides common constructions in imperative
languages (loops, conditions ...).

F. Kinds of MDA transformation.

The MDA identifies several transformations during the
development cycle [12]. It is possible to make four different
types of transformations:

1) CIM to CIM

2) CIM to PIM

3) PIM to PIM

4) PIM to PSM

There are three approaches in MDA to perform these
transformations:

 Approach by programming: using the object-oriented

programming languages such as Java, to write computer

programs that are unique to manipulate models. This

approach was used in [13] and [14].The authors

automatically generate a web application from a

simplified class diagram.

 Approach by template: Consists of taking a "template

model", canvas of configured target models, these settings

will be replaced by the information contained in the

source model. This approach requires a special language

for defining model template.

 Approach by Modeling: The objective is to model the

transformations of models, and make transformation

models sustainable and productive and to express their

independence of execution platforms. The standard

MOF2.0 QVT [9] is used to define the meta model for the

development of models for the models transformations.

In this paper we chose to transform PIM to PSM, with an
approach by modeling. This type of transformation will allow
us to automatically generate the multidimensional data
warehouse schema from UML schema. Indeed, as shown in
Figure 2, the definition of model transformation is a model
structured according to the meta-model MOF2.0 QVT. Models
instances of meta-model MOF2.0 QVT express structural
mapping rules between meta-model source and meta-model
target of transformation. This model is a sustainable and
productive, it must be transformed to allow the execution of
processing on an execution platform. The following figure
illustrates the approach by modeling MOF2.0 QVT [12].

Figure 3. Modeling approach (MOF2.0 QVT)

V. SOURCE META MODEL - TARGET META MODEL

In our MDA approach, we opted for the modeling
approach to generate the data warehouse multidimensional
schema. As mentioned above, this approach requires a source
meta-model and a target meta-model.

A. Source Meta-Model

We present in this section the different meta-classes which
form the source UML meta model used in [13], and our target
meta-model MD to achieve the transformation between the
source and target model. This transformation is based on that
proposed by [13]. The source meta-model is a simplified UML
model based on packages containing Class and Datatype.
These classes contain typed properties and are characterized
by multiplicities (upper and lower). The classes contain
operations with typed parameters. The following figure
illustrates the source meta-model:

 UmlPackage: expresses the notion of UML package. This

meta-class is related to the meta-class Classifier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

10 | P a g e

www.ijacsa.thesai.org

 Classifier: it is a meta abstract class that represents both

the concept of UML class and the concept of data type.

 Class: represents the concept of UML class.

 DataType: represents the data type of UML.

 Operation: expresses the concept of operations of a UML

class

 Parameter: parameter expresses the concept of an

operation. They can be of two types or Class Datatype.

This explains the link between meta-Parameter class and

meta-class Classifier.

 Property: expresses the concept of Property of a UML

class. These properties are represented by the

multiplicities and meta-attributes upper and lower. A

UML class is composed of properties, which explains the

link between the meta-class Property and meta-class

Class. These properties can be primitive type or class

type. This explains the link between the meta-class and

the Classifier meta-class Property.

B. Target Meta-Model

The target is a simplified dimensional meta-model based
on packages containing Facts and Dimensions.
A Fact contains attributes related to dimensions. Figure 5
shows the Target Meta Model:

 FactPackage: expresses the concept of package and we

consider that each class contains a FactPackage.

 Fact: expresses the concept of Fact in a multidimensional

schema. Each fact is contained in FactPackage, which

explains the link between FactPackage and Fact.

 FactAttribute: expresses the concept of attributes for the

element Fact and Fact contains FactAttribute

 Dimension: expresses the concept of dimension in a

multidimensional schema.

 DimensionAttribute: expresses the concept of

dimensions attributes. A dimension contains attributes,

which explains the link between a DimensionAttribute

and Dimension.

 Datatype: represents the type of data in a

multidimensional schema.

Figure 4. Simplified Meta-Model class diagram of UML.

Figure 5. Simplified Meta-Model of multidimensional star schema.

VI. QVT TRANSFORMATION OF THE UML META MODEL

TO THE MULTIDIMENSIONAL META MODEL.

A. SmartQvt

To achieve the transformation cited above, we opted for
the tool SmartQvt. This tool appeared in 2007 [17] which is
also an implementation of the QVT-Operational language
standard that allows the transformation of models. This tool
compiles model transformations specified in QVT to produce
Java code used to performs these transformations. This tool is
provided as Eclipse plug-ins based on the meta-modeling
framework, EMF, and is composed of three elements:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

11 | P a g e

www.ijacsa.thesai.org

 QVT Editor: helps end users to write QVT specifications.

 QVT Parser: converts the textual concrete syntax on its

corresponding representation in terms of meta-model

QVT.

 QVT Compiler: produces, from the QVT model, a Java

API on top of EMF generated for the implementation of

transformations. The input format is a QVT specification

provides in XMI 2.0 format in accordance with the QVT

meta-model.

B. The QVT transformation

The QVT transformation is a function of two arguments:
the first is the source model, the second is the target model as
shown in the figure below:

Figure 6. Transformation function uml2md()

In this figure, we see the transformation function called
uml2md() that takes as input source model, the simplified
UML model shown in Figure 4, and as output the target
model, the simplified multidimensional model shown in
Figure 5.

As explained in the previous section, we consider a
simplified UML model that consists of a package called
UmlPackage. This package will be transformed into a
multidimensional package called MDPackage, using the
transformation rule sets in Figure 7. The MDPackage
generated will be named MD followed by with the name of
UmlPackage. The Association class will be transformed into a
Fact by using the function associationclass2fait ().

Figure 7. Transformation rule of UMLPackage to MDPackage

Figure 8. Transformation rule of Associationclass to a Fact

Figure 8 shows the transformation rule of an association
class in a UML class diagram to a Fact.

Figure 9. Transformation rule of a Classifier to a Dimension

Figure 9 shows the transformation rule of Classifier to an
element Dimension of Dimensional Model.

Figure 10. Transformation rule of Property to FactAttribut

Figure 10 shows the transformation rule of UML class
property to a Fact entity attribute, this rule uses the function
property2factattribute ().

Figure 11. Transformation rule of Parameter to FactAttribut

Figure 12. Transformation rule of Property to DimensionAttribut

VII. CASE STUDY

In our case study, we use the UML model representing a
business, among its activities, the sale of products to its
customers, these products are classified under categories, and
several sub categories form a category. The UML model
representing part of the Information System of the company is
represented in a format file XMI2.0. This file is composed of
the element UmlPackage, which contains the following
elements:

mapping UmlPackage::UmlPackage2MDPackage () :
MDPackage { name := 'MD' + self.name;

fact:=srcModel.objects()[AssociationClass]->map
associationclass2fact();}

mapping AssociationClass::associationclass2fact () : Fact {

name := 'Fait'+self.name;

factattribute:=self.assoproperty->map
property2factattribute();

dimension= self.assoproperty->select (upper=-1)->type-
>map type2dimension(); }

mapping Classifier::type2dimension () : Dimension {

srcModel.objects()[Class]->forEach(c){

if(self=c){ name:='Dimension'+self.name ;

base:= c._property->select (upper=-1)->type-> map
type2base(); } } }

 mapping Property::property2factattribute(): FactAttribute

 { name:=self.name; }

mapping Parameter::property2factattribute () :
FactAttribute {

name:=self.name; }

 mapping Property::property2dimensionAttribute () :
DimensionAttribute

 { name:=self.name;}

transformation uml2md(in srcModel:UML,out dest:MD);

main(){
srcModel.objects()[UmlPackage] ->

map UmlPackage2MDPackage(); }

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

12 | P a g e

www.ijacsa.thesai.org

Figure 13. Overview of the instance of the UML model of our case study

An element named Customer, type of class, which has the
following properties:

 CustomerID : Custormer Identifier.

 CustomerName : Customer Name.

 AccountNumber:Numbre of the Customer Account.

 Customer Type: type of Customer, I=Individual, S=Store.

 AddressID: the Adress Identifier.

An element named Address, type of class, which has the
following properties:

 AddressID: Identifier of customer address.

 AdressLine1: Line 1 of the address.

 AdressLine2: Line 2 of the address.

 City: defines the city of customer.

 State: defines the state of customer.

 PostalCode: defines the postal code.

An element named Product, type of class, which has the
following properties:

 ProductID: Product Identifier.

 ProductName: Product Name.

 StandardCost: Product Standard Cost.

 ListPrice : sale price

 Weight : Product Weight

 Style : W=Women, M=Male, U=Both

 Color: Product Color.

 DayToManufacture: Number of days to manufacture the
product.

 ProductSubcategoryID : he product belongs to this sub
category.

An element named ProductSubcategory, type of class,
which has the following properties:

 ProductSubcategoryID: Product Sub category Identifier.

 ProductSubcategoryName: Product Sub category Name.

 ProductCategoryID: the sub category belongs to this
category.

An element named ProductCategory, type of class, which
has the following properties:

 ProductCategoryID: Product Category Identifier.

 ProductCategoryName : Product Category Name.

An element named SalesOrderDetail, type of class, which
has the following properties:

 SalesOrderDetailID: Identifier of sales order.

 OrderQty: Quantity of Sales.

 UnitPrice: the selling price of a single product.

 OrderDate: Creation date of the sales order.

 CustomerID: Customer Identifier.

 ProductID: Product Identifier.

This file in XMI format is provided as input of QVT
transformation, achieved under Eclipse Europa. As output of
the QVT transformation, file in XMI format is generated

<?xml version="1.0" encoding="ASCII"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:UmlMdMM="http:///UmlMdMM.ecore">

<UmlMdMM:UmlPackage name="Factory">

<elements xsi:type="UmlMdMM:DataType" name="String"/>

<elements xsi:type="UmlMdMM:Class" name="Custommer">

<_property upper="1" lower="1" name="CustomerID"
type="//@elements.0"/>

<_property upper="1" lower="1" name="AccountNumber"
type="//@elements.0"/>

<_property upper="1" lower="1" name="CustomerType"
type="//@elements.0"/>

</elements>

<elements xsi:type="UmlMdMM:Class" name="Product">

<_property upper="1" lower="1" name="ProductID"
type="//@elements.0"/>

<_property upper="1" lower="1" name="Name"
type="//@elements.0"/>

<_property upper="1" lower="1" name="StandardCost"
type="//@elements.0"/>

<_property upper="1" lower="1" name="ListPrice"
type="//@elements.0"/>

<_property upper="1" lower="1" name="Weight"
type="//@elements.0"/>

<_property upper="1" lower="1" name="Style"
type="//@elements.0"/>

<_property upper="1" lower="1" name="Color"
type="//@elements.0"/>

<_property upper="1" lower="1" name="DayToManufacture"
type="//@elements.0"/>

</elements>

 <association xsi:type="UmlMdMM:AssociationClass"
name="SalesOrder">

 <assoproperty upper="1" lower="1" name="SalesOrderID"
type="//@elements.0"/>

 <assoproperty upper="1" lower="1" name="OrderQty"
type="//@elements.0"/>

<assoproperty upper="1" lower="1" name="UnitPrice"
type="//@elements.0"/>

<assoproperty upper="1" lower="1" name="OrderDate"
type="//@elements.0"/>

 <assoproperty upper="-1" lower="1" name="CustomerID"
type="//@elements.1"/>

<assoproperty upper="-1" lower="1" name="ProductID"
type="//@elements.3"/>

 </association>

 </UmlMdMM:UmlPackage>

</xmi:XMI>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

13 | P a g e

www.ijacsa.thesai.org

automatically. It represents the multidimensional schema of
company Datawarehouse in our case study. This file is
composed of a Fact named FactSalesOrderDetail surrounded
by Dimensions: Customer, Adress, Product, Category,
SubCategory.

The generated XMI file contains the element MDPackage
composed of the following:

Figure 14. Overview of the instance of Multidimensional Model generated

after execution of the transformation

VIII. CONCLUSION AND FUTURE WORKS

We applied the MDA approach for the engineering of SID.
The objective is to define a model transformation. It is based
on a UML source model and a Multidimensional target model.
This transformation takes as input the source model and as
output the target model. Once done, we can generate from a
simplified UML model instance, a simplified
multidimensional model.

Looking ahead, we plan to develop a graphical plug-in
integrated to Eclipse, which automatically generates from a
UML class diagram, a multidimensional diagram. In addition,
we can extend this work to more generalized meta-models.

REFERENCES

[1] R. Kimball The Data Warehouse Toolkit, Second Edition, Wiley
Computer Publishing 2002.

[2] M. Golfarelli, D. Maio, S. Rizzi, The dimensional fact model: a
conceptual model for data warehouses, International Journal of
Cooperative Information Systems 7 (2-3) (1998) 215–247.

[3] P. Giorgini, S. Rizzi, M. Garzetti, Goal-oriented requirement analysis for
data warehouse design, DOLAP, 2005, pp. 47–56

[4] A. Abelló, J. Samos, F. Saltor, YAM2: a multidimensional conceptual
model extending UML, Information Systems 31 (6) (September 2006)
541–567

[5] Dj. Midouni, J.Darmont, F.Bentayeb, Approach to modeling complex
multidimensional data: Application to medical data, « 5ème journée
francophones sur les entrepôts de données et l’analyse en ligne »
Montpellier, France (EDA 2009).

[6] A. Nguyen, A. Friedrich, G. Berthommier, L. Poidevin, L. Moulinier, R.
Ripp,O. Poch, Introduction du nouveau Centre de Données
Biomédicales Décrypthon, CORIA - Conférence en Recherche
d'Information et Applications-, 2008

[7] Object Management Group (OMG), MDA Guide 1.0.1.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[8] Object Management Group (OMG) Unified Modeling Language
Specification 2.0. http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[9] Object Management Group (OMG), MOF 2.0
Query/View/Transformation.http://www.omg.org/spec/MOF/2.0/PDF/

[10] Object Management Group (OMG), Common WarehouseMetamodel
(CWM) Specification 1.1. http://www.omg.org/spec/cwm/1.1/PDF/

[11] Object Management Group (OMG), Object Constraint Language (OCL)
Specification 2.0. http://www.omg.org/spec/OCL/2.2/PDF/

[12] MDA en action Ingénierie logicielle guidée par les modèles, Xavier
Blanc, édition Eyrolles 2005.

[13] S. Mbarki, M. Erramdani, Model-Driven Transformations: From
Analysis to MVC 2 Web Model. (I.RE.CO.S.), Vol 4 N 5 Septembre
2009.

[14] S. Mbarki, M. Erramdani, Toward automatic generation of mvc2 web
applications InfoComp, Journal of Computer Science, Vol.7 n.4, pp. 84-
91, December 2008, ISSN: 1807-4545

[15] J. Trujillo, S. Lujan-Mora, , I.Song , a UML profile for multidimensional
modeling in data warehouses, Data & knowledge Engineering, (2006)
725-769

[16] JN. Mazón , J. Trujillo, An MDA approach for the development of data
warehouses, Decision Support Systems 45 (2008) 41–58

[17] SmartQVT, http://smartqvt.elibel.tm.fr/

[18] Ganapathy, G., & Sagayaraj, S. (2011). Extracting Code Resource from
OWL by Matching Method Signatures using UML Design Document.
International Journal of Advanced Computer Science and Applications -
IJACSA, 2(2), 90-96.

[19] Dhindsa, K. S. (2011). Modelling & Designing Land Record
Information System Using Unified Modelling Language. International
Journal of Advanced Computer Science and Applications - IJACSA,
2(2), 26-30.

[20] Acharya, A. A. (2010). Model Based Test Case Prioritization for Testing
Component Dependency in CBSD Using UML Sequence Diagram.
International Journal of Advanced Computer Science and Applications -
IJACSA, 1(6).

AUTHORS PROFILE

I.Arrassen Graduate as Computer Science Enginner from the INPT(National
Institut of Poste and Telecommunication) and Ph-D-Student at Faculty of
Sciences, Laboratory for Computer Science Research, Mohammed First
University, Oujda, Morocco.

A.Meziane is a Professor of Computer Sciences, Laboratory for Computer
Science Research , Mohammed First University, Oujda, Morocco.

<?xml version="1.0" encoding="ASCII"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:BdMdMM="http:///BdMdMM.ecore">

 <BdMdMM:MDPackage name="MDFactory">

 <fact name="FactSalesOrder" factattribute="/1 /2 /3 /4 /5 /6"/>

 </BdMdMM:MDPackage>

 <BdMdMM:FactAttributename="SalesOrderID" fact="/0/@fact.0"/>

 <BdMdMM:FactAttribute name="OrderQty" fact="/0/@fact.0"/>

 <BdMdMM:FactAttribute name="UnitPrice" fact="/0/@fact.0"/>

 <BdMdMM:FactAttribute name="OrderDate" fact="/0/@fact.0"/>

 <BdMdMM:FactAttribute name="CustomerID" fact="/0/@fact.0"/>

 <BdMdMM:FactAttribute name="ProductID" fact="/0/@fact.0"/>

 <BdMdMM:Dimension name="DimensionCustommer">

 <dimensionattribute name="CustomerID"/>

 <dimensionattribute name="AccountNumber"/>

 <dimensionattribute name="CustomerType"/>

 <dimensionattribute name="AddressID"/>

 </BdMdMM:Dimension>

 <BdMdMM:Dimension name="DimensionProduct">

 <dimensionattribute name="ProductID"/>

 <dimensionattribute name="Name"/>

 <dimensionattribute name="StandardCost"/>

 <dimensionattribute name="ListPrice"/>

 <dimensionattribute name="Weight"/>

 <dimensionattribute name="Style"/>

 <dimensionattribute name="Color"/>

 <dimensionattribute name="DayToManufacture"/>

 <dimensionattribute name="ProductSubcategoryID"/>

 </BdMdMM:Dimension>

</xmi:XMI>

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/cwm/1.1/PDF/
http://www.omg.org/spec/OCL/2.2/PDF/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

14 | P a g e

www.ijacsa.thesai.org

R.Esbai Ph-D-Student at Faculty of Sciences, Laboratory AMCSP: Applied
Mathematics and Computer Signal Processing, Mohammed First University,
Oujda, Morocco.

M.Erramdani is a Professor of Computer Sciences at Superior School of
TechnologyLaboratory AMCSP: Applied Mathematics and Computer Signal
Processing Mohammed First University, Oujda, Morocco.

