
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

135 | P a g e

www.ijacsa.thesai.org

A Performance Study of Some Sophisticated

Partitioning Algorithms

D.Abhyankar

School of Computer Science

Devi Ahilya University

Indore, M.P.

M.Ingle

School of Computer Science

Devi Ahilya University

Indore, M.P.

Abstract— Partitioning is a central component of the Quicksort

which is an intriguing sorting algorithm, and is a part of C, C++

and Java libraries. Partitioning is a key component of Quicksort,

on which the performance of Quicksort ultimately depends.

There have been some elegant partitioning algorithms; Profound

understanding of prior may be needed if one has to choose among

those partitioning algorithms. In this paper we undertake a

careful study of these algorithms on modern machines with the

help of state of the art performance analyzers, choose the best

partitioning algorithm on the basis of some crucial performance

indicators.

Keywords- Quicksort; Hoare Partition; Lomuto Partition; AQTime.

I. INTRODUCTION

Partitioning is undoubtably a core part of the Quicksort on
which the performance ultimately depends. Quicksort is a
leading and widely used sorting algorithm. For instance C,
C++ and Java libraries use Quicksort as their sorting routine.
The Partitioning is a key component of the Quicksort and
selection algorithm. There are several partitioning algorithms
that accomplish the task, but only a few deserve special
attention. Hoare, Lomuto, Modified Lomuto and Modified
Hoare are those few selected partition algorithms. This paper
carries out an in depth study of the selected partitioning
algorithms. The important question is as to which partitioning
algorithm is superior so that we can call the superior algorithm
in sorting routine. This study attempts to answer the same
question. In past Scientists studied and compared these
algorithms; the comparisons however were theoretical and
were made on old architectures. An algorithm effective on old
architectures may not be effective on modern machines. A
study valid on old architectures may not be so on modern
architectures. Moreover in past researchers did not have
advanced performance analyzers to study cache miss and page
faults. Consequently researchers relied on cache simulations.
Therefore their results may be inaccurate. Hence it is
beneficial to compare the algorithms on contemporary
architectures using state of the art performance analyzers.

It has not escaped our notice that state of the art machines
are Multicore and if an algorithm has to be effective it should
be Multicore ready [13]. Future lies in parallel/multithreaded
algorithms, but even then one should not forget that parallel
algorithms or multithreaded algorithms will need sequential
algorithms at lower level. The basic question is which
sequential sorting algorithm to call at lower level. Calling a

slow sequential algorithm at lower level will neutralize the
advantage of parallel sorting gained by multiple cores. So the
question which sequential sorting is the best option at lower
level is of paramount importance. Literature suggests that
Quicksort offers the most effective answer at least today. If the
Quicksort is lower level sequential sorting algorithm, then the
very next question is which Partitioning algorithm we should
choose. This study is going to solve the same question.

 To study the performance of selected partitioning
algorithms on contemporary machines is the central idea of the
paper. A fair test of the algorithm's performance is its execution
time; however the drawback of this approach is that no
intuition is provided as to why the execution time performance
was good or bad. The reason(s) may be high instruction count,
high cache miss count and high branch misprediction count.
Even high page fault count affects the performance. Earlier
researchers studied the impact of these factors using cache
simulation and similar techniques. Fortunately today
researchers have performance analyzing softwares which are
not merely effective in capturing execution time but also
acquire accurate data about cache miss, branch mispredictions
and page faults.

II. LITERATURE REVIEW

In the past researchers did not enjoy the luxury of
sophisticated profilers which we enjoy now. Instead they
relied heavily on theoretical models and cache simulations.
Majority of algorithm researchers compare the algorithmic
performance on the basis of unit cost model. The RAM model
is a most commonly used unit cost model in which all basic
operations involve unit cost. The advantage of unit cost model
is that it is simple and easy to use. Moreover it produces
results which are easily comparable. However, this model does
not reflect the memory hierarchy present in modern machine.
It has been observed that main memory has grown slower
relative to processor cycle times, consequently Cache miss
penalty has grown significantly [12]. Thus good overall
performance cannot be achieved without keeping cache miss
count as low as possible. Since RAM model does not count
cache miss, it is no longer a useful model.

Usually algorithm researchers in sorting area only count
particular expensive operations. Analysis of sorting and
searching algorithms, for instance, only counts the number of
comparisons and swaps. There was exquisite logic behind only

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

136 | P a g e

www.ijacsa.thesai.org

Lomuto Partition

N Elapsed

Time

CPU MisPredicted

Branches

CPU Cache

Misses

10000 7.52 280360 435

20000 16.83 596571 857

30000 28.49 998545 1778

40000 30.43 1372734 3651

50000 50.65 1708752 3132

60000 52.82 2064278 7865

70000 68.02 2660145 3406

80000 72.52 2990947 5161

90000 86.64 3270575 6328

100000 103.15 3815563 6324

counting comparison operation which was expensive in the
past. That simplified the analysis and still retained accuracy
since the bulk of the costs was captured, but this is no longer
true because the shift in the technology renders the ―expensive
operations‖ inexpensive and vice versa. Same happened with
comparison operation which is not expensive anymore. Indeed
it is no more expensive than addition or copy. Hence the study
favours a practical approach and is not biased towards a single
performance indicator. The idea is to have a fairly objective
view and goal of good overall performance rather than
concentrating on a single performance indicator.

Literature reveals that every partitioning algorithm incurs
(n-1) comparisons, where n is total number of elements in the
array[1, 2, 3, 4, 5, 6, 7, 8, 9]. Partitioning algorithms differ in
swap count or data transfer operations. Hoare partition &
Modified Hoare partition algorithms lead to adaptiveness of
swap count / data transfer operation count. In the worst case,
for Hoare and Modified Hoare algorithms swap count/ data
transfer count is approximately(n/2), whereas for Lomuto and
Modified Lomuto swap count/data transfer count is
approximately (n)[14].

III. PERFORMANCE STUDY ON MODERN

ARCHITECTURES

 This paper studies the performance of Hoare partition,
Lomuto partition, Modified Hoare partition and modified
Lomuto partition on contemporary computers. Thus to study
algorithms were tested on Pseudorandom numbers using state
of the art Machines. Experiments were performed on state of
the art COMPAQ PC which was equipped with Windows
Ultimate operating system. Following tables and figure present
the average case statistics generated by the tests on 3
important performance indicators: elapsed time, CPU Cache
Miss, Branch mispredictions. AQtime software was
instrumental in gathering the reliable profiling data. Elapsed
time given in the table is in milliseconds.

TABLE I: STATISTICS OF LOMUTO PARTITION

TABLE II: STATISTICS OF MODIFIED LOMUTO PARTITION

Modified Lomuto Partition

N Elapsed

Time

CPU MisPredicted Branches CPU Cache Misses

10000 1.57 66588 82

20000 2.99 148860 60

30000 4.65 222592 171

40000 6.46 312973 269

50000 8.2 387050 447

60000 10.27 477689 422

70000 11.75 569962 590

80000 13.32 637354 1206

90000 15.32 741244 206

100000 17.62 806429 798

TABLE III: STATISTICS OF HOARE PARTITION

Hoare Partition

N Elapsed

Time

CPU MisPredicted Branches CPU Cache Misses

10000 3.52 165923 745

20000 7.55 351172 650

30000 12.26 530738 615

40000 16.04 708813 1139

50000 20.53 890882 982

60000 24.95 1141577 1566

70000 31.46 1303499 4242

80000 33.96 1561376 1686

90000 38.36 1680148 3812

100000 44.58 1862329 2100

TABLE: IV: STATISTICS OF MODIFIED HOARE PARTITION

Modified Hoare Partition

N Elapsed

Time

CPU MisPredicted Branches CPU Cache Misses

10000 1.46 83287 45

20000 3.08 173563 520

30000 4.71 267342 319

40000 6.28 369235 234

50000 7.87 463831 245

60000 9.55 575380 1014

70000 11.17 725573 714

80000 12.92 724582 785

90000 14.22 829880 1489

100000 16.15 908749 1091

Figure1. COMPARISON STATISTICS OF ALGORITHMS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

137 | P a g e

www.ijacsa.thesai.org

IV. ANALYSIS, RESULTS AND CONCLUSION

Tables and Figure 1, show the results based on random
input, depict the performance on 3 crucial performance
indicators. Since Page fault count was 0 for each one of the
algorithms, it was not shown explicitly in the tables. Zero page
fault count is due to large main memory size which was not
feasible earlier. Modified Hoare partition outperforms the
other algorithms in almost all entries in the table. Modified
Lomuto is the second one to finish and is not too behind.
Modified Lomuto is followed by Hoare partition which in turn
is followed by Lomuto which is the last one to complete. It is
easy to see that among the studied algorithms the one with the
better cache miss count is usually the first one to complete the
partitioning. Lomuto algorithm and Hoare algorithm are slow
because of their higher instruction count, poor cache miss
count and fairly high branch misprediction count. The
interesting question that emerges is why Modified Hoare and
Modified Lomuto have lower cache miss count whereas others
have cache miss count on higher side. The intuitive reason is
that instruction cache miss count is likely to go down as
overall instruction count and code size goes down. If we can
keep data cache miss count in check then overall cache miss
count will be low. Same seems to have happened with
Modified Hoare and Modified Lomuto partitioning algorithms.

REFERENCES

[1] J. L. Bentley and M. D. Mcilroy "Engineering a sort function,"
Software—practice and experience, VOL. 23(11), 1249–1265
(NOVEMBER 1993).

[2] R. Sedgewick, ‗Quicksort‘, PhD Thesis, Stanford University (1975).

[3] C. A. R. Hoare, "Partition: Algorithm 63, " "Quicksort: Algorithm 64,"
Comm. ACM 4(7), 321-322, 1961.

[4] D. E. Knuth, The Art of Computer Programming, Vol. 3, Pearson
Education, 1998.

[5] C. A. R. Hoare, "Quicksort," Computer Journal5 (1), 1962, pp. 10-15.

[6] S. Baase and A. Gelder, Computer Algorithms:Introduction to Design
and Analysis, Addison-Wesley, 2000.

[7] J. L. Bentley, "Programming Pearls: how to sort," Communications of
the ACM, Vol. Issue 4, 1986, pp. 287-ff.

[8] R. Sedgewick, "Implementing quicksort Programs," Communications of
the ACM, Vol. 21, Issue10, 1978, pp. 847-857.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

[10] G. S. Brodal, R. Fagerberg and G. Moruz, "On the adaptiveness of
Quicksort," Journal of Experimental AlgorithmsACM, Vol. 12, Article
3.2, 2008.

[11] S.Carlsson, ―A variant of HEAPSORT with almost optimal number of
comparisons,‖ Information Processing Letters Modified 24:247-
250,1987.

A. G. LaMarca, ―Caches and Algorithms,‖ PhD theses University of
Washington, 1996.

[12] M. Edahiro, ―Parallelizing fundamental algorithms such as sorting on
multi-core processors for EDA acceleration, ―ASP-DAC '09 Proceedings
of the 2009 Asia and South Pacific Design Automation Conference,
2009.

[13] D. Abhyankar and M. Ingle, ―Engineering of a Quicksort Partitioning
Algorithm,‖ Journal of Global Research in Computer Science Vol. 2,
No. 2, 2011.

[14] V. Aho, J. E. Hopcroft, J.D. Ulman, ―The Design and Analysis of
Computer Algorithms, ―Addison-Wesley, 1974.

[15] V. Aho, J. E. Hopcroft, J.D. Ulman, ―Data Structures and Algorithms,
―Addison-Wesley, 1983.

[16] J. L. Bentley, ―Writing Efficient Programs, ― Prentice-Hall, 1982.

[17] G. Brassard and P. Bratley, ―Fundamentals of Algorithmics, ―Prentice
Hall, 1996.

[18] R. Mansi, ―Enhanced Quicksort Algorithm, ― The International Arab
Journal of Information Technology, Vol. 7, No. 2, April 2010

