
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

117 | P a g e

www.ijacsa.thesai.org

Image Compression using Approximate Matching and

Run Length

Samir Kumar Bandyopadhyay, Tuhin Utsab Paul, Avishek Raychoudhury

Department of Computer Science and Engineering,

University of Calcutta

Kolkata-700009, India

Abstract— Image compression is currently a prominent topic for

both military and commercial researchers. Due to rapid growth

of digital media and the subsequent need for reduced storage and

to transmit the image in an effective manner Image compression

is needed. Image compression attempts to reduce the number of

bits required to digitally represent an image while maintaining its

perceived visual quality. This study concentrates on the lossless

compression of image using approximate matching technique and

run length encoding. The performance of this method is

compared with the available jpeg compression technique over a

wide number of images, showing good agreements.

Keywords- lossless image compression; approximate matching; run

length.

I. INTRODUCTION

Images may be worth a thousand words, but they generally
occupy much more space in a hard disk, or bandwidth in a
transmission system, than their proverbial counterpart. So, in
the broad field of signal processing, a very high-activity area is
the research for efficient signal representations. Efficiency, in
this context, generally means to have a representation from
which we can recover some approximation of the original
signal, but which doesn‟t occupy a lot of space. Unfortunately,
these are contradictory requirements; in order to have better
pictures, we usually need more bits.

The signals which we want to store or transmit are normally
physical things like sounds or images, which are really
continuous functions of time or space. Of course, in order to
use digital computers to work on them, we must digitize those
signals. This is normally accomplished by sampling (measuring
its instantaneous value from time to time) and finely quantizing
the signal (assigning a discrete value to the measurement) [1].
This procedure will produce long series of numbers. For all
purposes of this article, from here on we will proceed as if
these sequences were the original signals which need to be
stored or transmitted, and the ones we will eventually want to
recover. After all, we can consider that from this digitized
representation we can recover the true (physical) signal, as long
as human eyes or ears are concerned. This is what happens, for
example, when we play an audio CD. In our case, we will focus
mainly on image representations, so the corresponding example
would be the display of a picture in a computer monitor.
However, the discussion in this paper, and especially the theory
developed here, apply equally well to a more general class of
signals.

There are many applications requiring image compression,
such as multimedia, internet, satellite imaging, remote sensing,

and preservation of art work, etc. Decades of research in this
area has produced a number of image compression algorithms.
Most of the effort expended over the past decades on image
compression has been directed towards the application and
analysis of different coding techniques to compress the image
data. Here in this paper also, we have proposed a two step
encoding technique that transform the image data to a stream of
integer values. The number of values generated by this
encoding technique is much less than the original image data.
The main philosophy of this encoding technique is based on the
intrinsic property of most images, that similar patterns are
present in close locality of images.

The coding technique makes use of this philosophy and
uses an approximate matching technique along with the
concept of run length to encode the image data into a stream of
integer data. Experimental results over a large number of
images have shown good amount of compression of image
size.

II. RELATED WORKS

Image compression may be lossy or lossless. Lossless
compression is preferred for archival purposes and often for
medical imaging, technical drawings, clip art, or comics. This
is because lossy compression methods, especially when used at
low bit rates, introduce compression artifacts. Lossy methods
are especially suitable for natural images such as photographs
in applications where minor (sometimes imperceptible) loss of
fidelity is acceptable to achieve a substantial reduction in bit
rate. The lossy compression that produces imperceptible
differences may be called visually lossless.

Methods for lossless image compression are:

 Run-length encoding – used as default method in PCX
and as one of possible in BMP, TGA, TIFF

 DPCM and Predictive Coding

 Entropy encoding

 Adaptive dictionary algorithms such as LZW – used in
GIF and TIFF

 Deflation – used in PNG, MNG, and TIFF

 Chain codes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

118 | P a g e

www.ijacsa.thesai.org

Run-length encoding (RLE) is a very simple form of data
compression in which runs of data (that is, sequences in which
the same data value occurs in many consecutive data elements)
are stored as a single data value and count, rather than as the
original run. This is most useful on data that contains many
such runs: for example, simple graphic images such as icons,
line drawings, and animations. It is not useful with files that
don't have many runs as it could greatly increase the file size.

DPCM or differential pulse-code modulation is a signal
encoder that uses the baseline of PCM but adds some
functionalities based on the prediction of the samples of the
signal. The input can be an analog signal or a digital signal.

Entropy encoding is a lossless data compression scheme
that is independent of the specific characteristics of the
medium.

One of the main types of entropy coding creates and assigns
a unique prefix-free code to each unique symbol that occurs in
the input. These entropy encoders then compress data by
replacing each fixed-length input symbol by the corresponding
variable-length prefix-free output codeword. The length of each
codeword is approximately proportional to the negative
logarithm of the probability. Therefore, the most common
symbols use the shortest codes.

Lempel–Ziv–Welch (LZW) is a universal lossless data
compression algorithm created by Abraham Lempel, Jacob Ziv,
and Terry Welch. It was published by Welch in 1984 as an
improved implementation of the LZ78 algorithm published by
Lempel and Ziv in 1978. The algorithm is simple to implement,
and has the potential for very high throughput in hardware
implementations.

Deflate is a lossless data compression algorithm that uses a
combination of the LZ77 algorithm and Huffman coding. It
was originally defined by Phil Katz for version 2 of his PKZIP
archiving tool, and was later specified in RFC 1951.

A chain code is a lossless compression algorithm for
monochrome images. The basic principle of chain codes is to
separately encode each connected component, or "blot", in the
image. For each such region, a point on the boundary is
selected and its coordinates are transmitted. The encoder then
moves along the boundary of the image and, at each step,
transmits a symbol representing the direction of this movement.
This continues until the encoder returns to the starting position,
at which point the blot has been completely described, and
encoding continues with the next blot in the image.

III. OUR WORK

The main philosophy behind selecting approximate
matching technique along with run length encoding technique
is based on the intrinsic property of most images, that they have
similar patterns in a localized area of image, more specifically
the adjacent pixels row differ in very less number of pixels.
This property of image is exploited to design a very effective
image compression technique. Testing on a wide variety of
images has provided satisfactory results. The technique used in
this compression methodology is described in this section.

We consider approximate matching algorithm and run
length for our image compression. The approximate matching
algorithm does a comparison between two strings of equal
length and represent the second string with respect to the first
only with the information of the literal position where the string
mismatches.

Replace. This operation is expressed as (p; char) which
means replacing the character at position p by character char.

Let C denote “copy", and R denote “replace” then the
following are two ways to convert the string
“11010001011101010" to “11010001111001010" (0,1 are
stored in ASCII)via different edit operation sequences:

C C C C C C C C R C C R C C C C C

1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0

1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0
A list of edit operations that transform a string u to another

string v is called an EditTranscription of the two strings [9].
This will be represented by an edit operation sequence (u; v)
that orderly lists the edit operations. For example, the edit
operation sequence of the edit transcription in the above
example is (\11010001011101010",\11010001111001010") = (
9; 1),(12,0);

Approximate matching method. In this case, the string
\11010001011101010" can be encoded as f(17; 2)= (9;
1),(12,0), storing the ASCII characters require 136 bit or 17
byte where as storing 4 characters will require 4 byte. Thus a
compression of approximate 76.4% is achieved. This technique
is very useful in image compression because of the inherent
property of an image because two consecutive rows of an
image has almost same string of pixel values. Only a few pixel
varies. Experimental results prove this hypothesis.

Apart from the concept of approximate matching method,
the concept of run length is also used because using run length
a row of image can be represented using much less literals than
the original.

Run-length Encoding, or RLE is a technique used to reduce
the size of a repeating string of characters. This repeating string
is called a run, typically RLE encodes a run of symbols into
two bytes , a count and a symbol. RLE can compress any type
of data regardless of its information content, but the content of
data to be compressed affects the compression ratio. Consider a
character run of 15 'A' characters which normally would
require 15 bytes to store :

AAAAAAAAAAAAAAA is stored as 15A

With RLE, this would only require two bytes to store, the
count (15) is stored as the first byte and the symbol (A) as the
second byte.

In this compression technique, we have used the
approximate matching method in unison with run length.
Starting from the left uppermost row of image, every three
rows are considered at a time. Of these, the middle row is
represented using run length, and the row above and below it
are matched with the middle row using approximate matching
method. This method is continued iteratively until the whole
image is scanned and compressed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

119 | P a g e

www.ijacsa.thesai.org

The algorithms designed as per our technique are as
follows:

A. COMPRESS (Source Raw Image file)

This is the main algorithm for compression. This algorithm
will be used to compress the data part of the Source Image File.

Output: It will output the Compressed-Image file.

Input: This function will take Source Image file as input.

1. Read the Source Image file as input. Obtain it‟s size

(say r*c).Store the data part(pixel values) of the

image in an array A of the same size.

2. Quantize the color palate of the image, i.e array A

with quantization factor 17.

3. If r is not divisible by 3, then duplicate the last row 1

or 2 times at the bottom of A such that the number of

rows become divisible by 3. Reset r with the

corresponding new size of A.

4. Take a blank array say „Compress‟ of size n*2(n is a

positive integer).Starting with the 1st row, choose

consecutive 3 rows at a time and perform the

following operations(say, we have chosen row

number k-1,k and k+1) in each iterations:

a. For each column in the array A, if any mismatch

is found in the row k-1 and k, the corresponding

column number and the value at that

corresponding column with row number k-1 in

array A, is stored in array Compress. For every

mismatch, those two values are stored in a single

row of array Compress.

b. For row number k, the corresponding value

(starting from the 1st column) and its runlength

(Number of consecutive pixels with same pixel

value) for kth row is stored in array Compress.

Every set of value and it‟s runlength is stored in a

single row of array Compress.

c. For each column in the array A, if any mismatch

is found in the row k and k+1, the corresponding

column number and the value at that

corresponding column with row number k+1 is

stored in array Compress. For every mismatch,

those two values are stored in a single row of

array Compress.

5. Repeat Step 4 until all the rows are compressed. A

marker should be used to distinguish between the

encrypted versions of each row. Store also the value

of „r‟ and „c‟ in Compress.

6. Array Compress now constitutes the compressed data

part of the corresponding Source Image File.

B. DECOMPRESS (Compressed-Image file)

This is the main algorithm for decompression or decoding
the image. This algorithm will be used to decompress the data
part of the Source Image File i.e. the image from the
„Compress‟ array.

Output: It will output the Decompressed or Decoded Image
file.

Input: This function will take the Compressed-Image file
(„Compress‟ array) as input.

1. Read the Compress array. Obtain the size of the image

(say r*c) from the array. Take a blank array say „Rec‟

of the same size for reconstruction of the data part of

the image.

2. Starting from the 1st row, consider the compressed

values of consecutive 3 rows from Temp and perform

the following operations(say, we have chosen row

number k-1,k and k+1) in each iterations:

a. Firstly, construct the kth row of Rec array with

the corresponding positional value and runlength

value in the Compress array, by putting the same

positional value in runlength number of

consecutive places in the same row.

b. Then, construct the (k-1)th row. In the

corresponding Compress array for this particular

row for each column if an entry for column

number „v‟ is not present, then Rec[(k-

1),v]=Rec[k,v]. Else, if Compress[i,1]=v then,

Rec[(k-1),v]= Compress[i,2].

c. Then, construct the (k+1)th row. In the

corresponding Compress array for this particular

row for each column if an entry for column

number „v‟ is not present, then

Rec[(k+1),v]=Rec[k,v]. Else, if Compress [i,1]=v

then, Rec[(k+1),v]= Compress [i,2].

3. Step 2 is repeated until the full Rec array is filled.

4. Rec array is stored as the Decompressed Image File.

IV. RESULT AND DISCUSSION

A. Complexity analysis of the stated algorithm

Let the size of the image be r*c. Then, at the time of
Compression, 3 rows are considered at a time and for each
compression of rows „c‟ number of columns are read. At this
process 3 rows are compressed at a time taking 3*c number of
comparisons. So, for compression of the whole image, total

number of compression required is

 *3*c=r*c ,that is

O(r*c).So, for an image of size n*n, the time complexity of the
compression algorithm is O(n2).

In the receiver end, the Compress array is read and the Rec
array is reconstructed which also takes number of
comparisons=r*c ,that is O(r*c).So, for an image of size nxn,
the time complexity of the de-compression algorithm is O(n2).

B. Test Results

Before Compression (For each image) :

Size : 300 x 280 = 84000 [Row x Col]

Size in bytes : 1,68000 byte = 168kb

After Compression (For each image) :

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

120 | P a g e

www.ijacsa.thesai.org

Figure 1. Nature

Size in bytes : 51348 byte = 102.69 kb

Compression percentage : 38.87 %

Figure 2. Library

Size in bytes : 55234 byte = 110.64 kb

Compression percentage : 34.14 %

Figure 3. Landscape

Size in bytes : 28790 byte = 57.58 kb

Compression percentage : 65.73 %

Figure 4. Crowd

Size in bytes : 13616 byte = 27.23 kb

Compression percentage : 83.79 %

Figure 5. Tom_Jerry

Size in bytes : 35504 byte = 71.00 kb

Compression percentage : 57.73 %

Figure 6. Thumbnail

Size in bytes : 76680 byte = 153.36 kb

Compression percentage : 8.71 %

Figure 7. Model_face

Size in bytes : 63094 byte = 126.18 kb

Compression percentage : 24.89 %

C. Conclusion

The algorithm proposed here is for lossless image
compression ass it is evident from the algorithm, that the exact
image data (pixel values) are extracted from the compressed
data stream without any loss. This is possible because the
compression algorithm does not ignores or discards any

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

121 | P a g e

www.ijacsa.thesai.org

original pixel value. Moreover the techniques such as
approximate matching and run length encoding technique are
intrinsically lossless.

This compression technique proves to be highly effective
for images with large similar locality of pixel lay out. This
technique will find extensive use in medical imaging sector
because of its lossless characteristics and the medical images
has large area of similar pixel layout pattern, like in X – ray
images large area are black.

REFERENCES

[1] P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto, Digital Signal
Processing: System Analysis and Design. Cambridge University Press,
2002.

[2] J. M. Shapiro, “Embedded Image Coding Using Zero-Trees of Wavelet
Coefficients”, IEEE Transactions on Signal Processing, vol. 41, pp.
3445–3462, December 1993.

[3] A. Said and W. A. Pearlman, “A New, Fast and Efficient Image Codec
Based on Set Partitioning in Hierarchical Trees”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243– 250,
June 1996.

[4] D. Taubman, “High Performance Scalable Image Compression with
EBCOT”, IEEE Transactions on Image Processing, vol. 9, no. 7, July
2000.

[5] Tse-Hua Lan and A. H. Tewfik, “Multigrid Embedding (MGE) Image
Coding”, Proceedings of the 1999 International Conference on Image
Processing, Kobe.

[6] Civarella and Moffat. Lossless image compression using pixel
reordering. Proceedings of twenty seventh Australian Computer Science
conference,pp 125-132,2004.

[7] K.Veeraswamy, S.Srinivaskumar and B.N.Chatterji. Lossless image
compression using topological pixel re-ordering. IET international
conference, India, pp 218-222,2006.

[8] Memon and Shende. An analysis of some scanning techniques for
lossless image coding. IEEE Transactions on Image Processing,9 (11),pp
1837-1848,2000.

[9] Memon and Wu X. Recent developments in context based predictive
techniques for lossless image compression. The computer Journal,40,pp
127-136,1997.

[10] K.Sayood. Introduction of data compression. Acdemic press, 2nd
edition,2000.

[11] D.Salomon. Data Compression. Springer,2nd edition, 2000.

AUTHORS PROFILE

Dr. Samir K. Bandyopadhyay, B.E., M.Tech., Ph. D (Computer Science &

Engineering), C.Engg., D.Engg., FIE, FIETE, currently,

Professor of Computer Science & Engineering,

University of Calcutta, visiting Faculty Dept. of Comp.

Sc., Southern Illinois University, USA, MIT, California

Institute of Technology, etc. His research interests

include Bio-medical Engg, Image processing, Pattern

Recognition, Graph Theory, Software Engg.,etc. He has

25 Years of experience at the Postgraduate and under-graduate Teaching &

Research experience in the University of Calcutta. He has already got several

Academic Distinctions in Degree level/Recognition/Awards from various

prestigious Institutes and Organizations. He has published more than 300

Research papers in International & Indian Journals and 5 leading text books

for Computer Science and Engineering. He has visited round the globe for

academic and research purposes.

Tuhin Utsab Paul received his Bachelors degree in Computer science in 2008
and Masters degree in Computer and Information Science
in 2010, both from the University of Calcutta. He is
currently doing his M.Tech course in Computer science
and engineering from the University of Calcutta. His
research interest include Image processing, pattern
recognisation, image steganography and image
cryptography. He has published quite a few Research
papers in International & Indian Journals and

conferences. He is an IEEE member since 2009.

Avishek Raychoudhury received his Bachelors degree
in Computer science in 2008 and Masters degree in
Computer and Information Science in 2010, both from
the University of Calcutta. He is currently doing his
M.Tech course in Computer science and engineering
from the University of Calcutta. His research interest
include Image processing, image steganography, graph
theory and its applications. He has published quite a few

Research papers in International & Indian Journals and conferences.

