
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

135 | P a g e  

www.ijacsa.thesai.org 

Multi-Agent System Testing: A Survey 
 

Zina  Houhamdi 

Software Engineering Department, Faculty of Science and IT 

Al-Zaytoonah University 

Amman, Jordan 

 

 

Abstract—In recent years, agent-based systems have received 

considerable attention in both academics and industry. The 

agent-oriented paradigm can be considered a natural extension to 

the object-oriented (OO) paradigm. Agents differ from objects in 

many issues which require special modeling elements but have 

some similarities. Although there is a well-defined OO testing 

technique, agent-oriented development has neither a standard 

development process nor a standard testing technique. In this 

paper, we will give an introduction to most recent works 

presented in the area of testing distributed systems composed of 

complex autonomous entities (agents). We will provide pointers 

to work by large players in the field. We will explain why this 

kind of system must be handled differently than less complex 

systems. 

Keywords-Software agent; Software testing; Multi-agent system 

testing. 

I.  INTRODUCTION 

As the technology evolving, the more we are driven 
towards abstraction and generalization. The increasing use of 
Internet as the spine for all interconnected services and 
devices makes software systems highly complex and in 
practice open in scale. These systems nowadays need to be 
adaptive, autonomous and dynamic to serve different user's 
community and heterogeneous platforms. These systems are 
developed very fast in past few decades. They are changed 
continuously to satisfy the business and technology 
modifications.  

Software agents are key technologies to meet modern 
business needs. They offer also an efficient conceptual 
methodology to design such complex systems. In practice, 
research on software agents' development and Multi-Agent 
System (MAS) has become too large and used in different 
active area focusing mainly on architectures, protocols, 
frameworks, messaging infrastructure and community 
interactions. Thus, these systems receive more industrial 
attention as well.  

Since these systems are increasingly taking over operations 
and controls in organization management, automated vehicles, 
and financing systems, assurances that these complex systems 
operate properly need to be given to their owners and their 
users. This calls for an investigation of appropriate software 
engineering frameworks, including requirements engineering, 
architecture, and testing techniques, to provide adequate 
software development processes and supporting tools.  

Software agents and MAS testing is a challenging task 
because these systems are distributed, autonomous, and 

deliberative. They operate in an open world, which requires 
context awareness. In particular, the very particular character 
of software agents makes it difficult to apply existing software 
testing techniques to them. There are issues concerning 
communication and semantic interoperability, as well as 
coordination with peers. All these features are known to be 
hard not only to design and to program [3], but also to test. 

There are several reasons for the increase of the difficulty 
degree of testing MAS: 

 Increased complexity, since there are several 
distributed processes that run autonomously and 
concurrently; 

 Amount of data, since systems can be made up by 
thousands of agents, each owning its own data;  

 Irreproducibility effect, since we can’t ensure that two 
executions of the systems will lead to the same state, 
even if the same input is used. As a consequence, 
looking for a particular error can be difficult if it is 
impossible to reproduce it each time [22]. 

 They are also non-deterministic, since it is not 
possible to determine a priori all interactions of an 
agent during its execution. 

 Agents communicate primarily through message 
passing instead of method invocation, so existing 
object-oriented testing approaches are not directly 
applicable.  

 Agents are autonomous and cooperate with other 
agents, so they may run correctly by themselves but 
incorrectly in a community or vice versa. 

As a result, testing software agents and MAS asks for new 
testing methods dealing with their specific nature. The 
methods need to be effective and adequate to evaluate agent's 
autonomous behaviors and build confidence in them. From 
another perspective, while this research field is becoming 
more advanced, there is an emerging need for detailed 
guidelines during the testing process. This is considered a 
crucial step towards the adoption of Agent-Oriented Software 
Engineering (AOSE) methodology by industry. 

Several AOSE methodologies have been proposed [17, 
34]. While some work considered specification-based formal 
verification [11, 14], others borrow object-oriented testing 
techniques, taking advantage of a projection of agent-oriented 
abstractions into object-oriented constructs, UML for instance 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

136 | P a g e  

www.ijacsa.thesai.org 

[9, 33]. However, to the best of our knowledge, none of 
existing work provides a complete and structured testing 
process for guiding the testing activities. This is a big gap that 
we need to bridge in order for AOSE to be widely applicable.  

II. SOFTWARE TESTING 

Software testing is a software development phase, aimed at 
evaluating product quality and enhancing it by detecting errors 
and problems. Software testing is an activity in which a 
system or component is executed under specified conditions, 
the results are observed or recorded and compared against 
specifications or intended results, and an estimation is made of 
some aspect of the system or component. A test is a set of one 
or more test cases. 

The principal test goal is to find faults different from 
errors. An error is a mistake made by the developer 
misunderstanding something. A fault is an error in a program. 
An error may lead to one or more faults. When a fault is 
executed then an execution error may occur. An execution 
error is any result or behavior that is different from what has 
been specified or is expected by the user. The observation of 
an execution error is a failure. Notice that errors may be 
unobservable and as a consequence may play severe disrupt 
with the left over computation and use of the results of this 
computation. The greater the period of unobserved operation, 
the larger is the probability of serious damage due to errors 
that is caused by unnoticed failures. 

As showed in Figure 1, software testing consists of the 
dynamic verification of the program behavior on a set of 
suitably selected test cases. Different from static verification 
activities, like formal proofing or model checking, testing 
implies running the system under test using specified test 
cases [22]. 

 

Figure 1. Kinds of Tests 

There are several strategies for testing software and the 
goal of this survey is not to explain all of them. Nevertheless, 
we will describe the main strategies found in literature [22, 
35]. Here they are: 

 Black-box testing: also know as functional testing or 
specification-based testing. Testing without reference 
to the internal structure of the component or system. 

 White-box testing: testing based on an analysis of the 
internal structure of the component or system. Test 
cases are derived from the code e.g. testing paths. 

 Progressive testing: it is based on testing new code to 
determine whether it contains faults. 

 Regressive testing: it is the process of testing a 
program to determine whether a change has 

introduced faults (regressions) in the unchanged code. 
It is based on reexecution of some/all of the tests 
developed for a specific testing activity. 

 Performance testing: verify that all worst case 
performance and any best-case performance targets 
have been met. 

There are several types of tests. The most frequently 
performed are the unit test and integration test. A unit test 
performs the tests required to provide the desired coverage for 
a given unit, typically a method, function or class. A unit test 
is white-box testing oriented and may be performed in parallel 
with regard to other units. An integration test provides testing 
across units or subsystems. The test cases are used to provide 
the needed system, as a whole, coverage. It tests subsystem 
connectivity. There are several strategies for implementing 
integration test:  

 Bottom-up, which tests each unit and component at 
lowest level of system hierarchy, then components that 
call these and so on;  

 Top-down, which tests top component and then all 
components called by this and so on;  

 Big-bang, which integrates all components together; 

 Sandwich, which combines bottom-up with top-down 
approach. 

On the other hand, the goal of software testing is also to 
prevent defects, as it is clearly much better to prevent faults 
than to detect and correct them because if the bugs are 
prevented, there is no code to correct. This approach is used in 
cleanroom software development [22]. Designing tests is 
known as one of the best bug prevention activities. Tests 
design can discover and eliminate bugs at every stage in the 
software construction process [2]. Therefore, the idea of "test 
first, then code" or test-driven is quite widely discussed today. 
To date, several techniques have been defined and used by 
software developers [1].  

Recently, a new testing technique called Evolutionary 
testing (ET) [27, 41] has been presented. The technique is 
inspired by the evolution theory in biology that emphasizes 
natural selection, inheritance, and variability. Fitter individuals 
have a higher chance to survive and to reproduce offspring; 
and special characteristics of individuals are inherited. In ET, 
we usually encode each test case as an individual; and in order 
to guide the evolution towards better test suites, a fitness 
measure is a heuristic approximation of the distance from 
achieving the testing goal (e.g., covering all statements or all 
branches in the program). Test cases having better fitness 
values have a higher chance to be selected in generating new 
test cases. Moreover, mutation is applied during reproduction 
in order to generate more different test set. The key step in ET 
is the transformation from testing objective to search problem, 
specifically fitness measure. Different testing objective gives 
rise to different fitness definitions. Once a fitness measure has 
been defined, different optimization search techniques, such as 
local search, genetic algorithm, particle swarm [27] can be 
used to generate test cases towards optimizing fitness measure 
(or testing objective, i.e. finding faults). 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

137 | P a g e  

www.ijacsa.thesai.org 

III. SOFTWARE AGENTS AND MAS TESTING 

A software agent is a computer program that works toward 
goals in a dynamic context on behalf of another entity (human 
or computational), perhaps for a long period of time, with 
discontinuous direct supervision or control, and exhibits a 
significant flexibility and even creativity degree in how it tries 
to transform goals into action tasks [18]. 

Software agents have (among others) the following properties: 
1. Reactivity: agents are able to sense contextual changes 

and react appropriately; 

2. Pro-activity: agents are autonomous, so they are able 
to select which actions to take in order to reach their 
goals in given situations; 

3. Social ability: that is, agents are interacting entities, 
which cooperate, share knowledge, or compete for 
goal achievement 

A multi-agent system (MAS) is a computational context in 
which individual software agents interact with each other, in a 
collaborative (using message passing) or competitive manner, 
and sometimes autonomously trying to attain their individual 
goals, accessing resources and services of the context, and 
occasionally producing results for the entities that initiated 
those software agents [25]. The agents interact in a concurrent, 
asynchronous and decentralized manner [21] hence MAS turn 
out to be complex systems [23]. Consequently, they are 
difficult to debug and test. 

Due to those peculiar characteristics of agents and MAS as 
a whole, testing them is a challenging task that should address 
the following issues. (Some of them were stated in [37]): 

Distributed/asynchronous: Agents operate concurrently 
and asynchronously. An agent might have to wait for other 
agents to fulfill its intended goals. An agent might work 
correctly when it operates alone but incorrectly when put into 
a community of agents or vice versa. MAS testing tools must 
have a global view over all distributed agents in addition to 
local knowledge about individual agents, in order to check 
whether the whole system operate accordingly to the 
specifications. In addition, all the issues related to testing 
distributed systems are applied in testing software agent and 
MAS as well, for example problems with controllability and 
observability [6]. 

Autonomous: Agents are autonomous. The same test inputs 
may result in different behaviors at different executions, since 
agents might modify their knowledge base between two 
executions, or they may learn from previous inputs, resulting 
in different decisions made in similar situations. 

Message passing: Agents communicate through message 
passing. Traditional testing techniques, involving method 
invocation, cannot be directly applied. 

Environmental and normative factors: Context and 
conventions (norms, rules, and laws) are important factors that 
govern or influence the agents' behaviors. Different contextual 
settings may affect the test results. Occasionally, a context 
gives means for agents to communicate or itself is a test input.  

Scaled agents: In some particular cases, agents could be 
seen as scaled in that they provide no or little observable 
primitives to the outside world, resulting in limited access to 
the internal agents' state and knowledge. An example could be 
an open MAS that allows third-party agents to come in and 
access to the resources of the MAS, how do we assure that the 
third-party agents with limited knowledge about their 
intentions behave properly? 

The agent oriented methodologies provide a platform for 
making MAS abstract, generalize, dynamic and autonomous. 
However, many methodologies like MASE, Prometheus, and 
Tropos do exist for the agent oriented framework but on 
contrary to it the testing techniques for the methodologies are 
not clearly supported [10]. 

A. Test Levels 

Over the last years, the view of testing has evolved, and 
testing is no longer seen as a step which starts only after the 
implementation phase is finished. Software testing is now seen 
as a whole process that filters in the development and 
maintenance activities. Thus, each development phase and 
maintenance phase should have a corresponding test level. 
Figure 2 shows V model in which the correspondence between 
development process phases and test levels are highlighted 
[28]. 

 
Figure 2. V model 

Work in testing software agents and MAS can be classified 
into different testing levels: unit, agent, integration, system, 
and acceptance. Here we use general terminologies rather than 
using specific ones used in the community like group, society. 
Group and society, as called elsewhere, are equivalent to 
integration and system, respectively. The testing objectives, 
subjects to test, and activities of each level are described as 
follows: 

 Unit testing tests all units that make up an agent, 
including blocks of code, implementation of agent 
units like goals, plans, knowledge base, reasoning 
engine, rules specification, and so on; make sure that 
they work as designed. 

 Agent testing tests the integration of the different 
modules inside an agent; test agents' capabilities to 
fulfill their goals and to sense and effect the 
environment. 

 Integration or Group testing tests the interaction of 
agents, communication protocol and semantics, 
interaction of agents with the environment, integration 
of agents with shared resources, regulations 
enforcement; Observe emergent properties, collective 
behaviors; make sure that a group of agents and 
environmental resources work correctly together. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

138 | P a g e  

www.ijacsa.thesai.org 

 System or Society testing tests the MAS as a system 
running at the target operating environment; test the 
expected emergent and macroscopic properties of the 
system as a whole; test the quality properties that the 
intended system must reach, such as adaptation, 
openness, fault tolerance, performance. 

 Acceptance testing tests the MAS in the customer's 
execution environment and verifies that it meets 
stakeholder goals, with the participation of 
stakeholders. 

B. MAS Testing Problems 

Defining a structured testing process for software agents 
and MAS: Currently, AOSE methodologies have been 
interesting principally on requirement analysis, design, and 
implementation; limited attention was given to validation and 
verification, as in Formal Tropos [11, 14]. A structured testing 
process that complements analysis and design is still absent. 
This problem is determinant because without detailed and 
systematic guidelines, the development cost may increase in 
terms of effort and productivity. 

1. They have their own reasons for engaging in proactive 
behaviors that might differ from a user's concrete 
expectation, yet are still appropriate.  

2. The same test input can give different results in 
different executions. 

3. Agents cooperate with other agents, so they may run 
correctly by themselves but incorrectly in a 
community or vice versa. 

4. Moreover, agents can be programmed to learn; so 
successive tests with the same test data may give 
different results. 

As a conclusion, defining adequate and effective 
techniques to test software agents is, thus, a key problem in 
agent development. 

IV. A SURVEY OF TESTING MULTI-AGENT SYSTEMS 

There is very brief written work that describes agents 
software testing. The remainder of this section surveys recent 
and active work on testing software agents and MAS, with 
respect to previous categories. This classification is intended 
only to facilitate easily understand the research work in the 
field. It is also interesting to notice that this classification is 
incomplete in the sense that some work addresses testing in 
more than one level, but we put them in the level they 
principally focus. 

A. Unit Testing 

Unit testing approach calls attention to the test of the 
smallest building blocks of the MAS: the agents. Its essential 
idea is to check if each agent in isolation respects its 
specifications under normal and abnormal conditions. Unit 
testing needs to make sure that all units that are parts of an 
agent, like goals, plans, knowledge base, reasoning engine, 
rules specification, and even blocks of code work as designed. 
Effort has been spent on some particular elements, such as 
goals, plans. Nevertheless, a complete approach addressing 

unit testing in AOSE still opens room for research. An analogy 
of expected results can be those of unit testing research in the 
object-oriented development. At the unit level,  

1. Zhang et al. [42] introduced a model based testing 
framework using the design models of the Prometheus 
agent development methodology [31]. Different from 
traditional software systems, units in agent systems 
are more complex in the way that they are triggered 
and executed. For instance, plans are triggered by 
events. The framework focuses on testing agent plans 
(units) and mechanisms for generating suitable test 
cases and for determining the order in which the units 
are to be tested. 

2. Ekinci et al. [13] claimed that agent goals are the 
smallest testable units in MAS and proposed to test 
these units by means of test goals. Each test goal is 
conceptually decomposed into three sub-goals: setup 
(prepare the system), goal under test (perform actions 
related to the goal), and assertion goal (check goal 
satisfaction).  The first and last goal prepares pre-
conditions and check post-conditions while testing the 
goal under test, respectively. Moreover, they introduce 
a testing tool, called as SEAUnit that provides necessary 

infrastructure to support proposed approach. 

B. Agent testing 

At the agent level we have to test the integration of the 
different modules inside an agent, test agents' capabilities to 
achieve their goals and to sense and effect the context. There 
is several works in agent testing level. 

1. Agile PASSI [7] proposes a framework to support 
tests of single agents. They develop a test suite 
specifically for agent verification. Test plans are 
prepared before the coding phase in according with 
specifications and the AgentFactory tool is also able of 
generating driver and stub agents for speeding up the 
test of a specific agent. Despite proposing valuable 
ideas concerning MAS potential levels of tests, PASSI 
testing approach is poorly documented and does not 
offer techniques to help developers in the low level 
design of unit test cases. 

2. Lam and Barber [26] proposed a semi-automated 
process for comprehending software agent behaviors. 
The approach imitates what a human user (can be a 
tester) does in software comprehension: building and 
refining a knowledge base about the behaviors of 
agents, and using it to verify and explain behaviors of 
agents at runtime. Although the work did not deal with 
other problems in testing, like the generation and 
execution of test cases, the way it evaluates agent 
behaviors is interesting and relevant for testing 
software agents. 

3. Nunez et al. [30] introduced a formal framework to 
specify the behavior of autonomous e-commerce 
agents. The desired behaviors of the agents under test 
are presented by means of a new formalism, called 
utility state machine that embodies users' preferences 
in its states. Two testing methodologies were proposed 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

139 | P a g e  

www.ijacsa.thesai.org 

to check whether an implementation of a specified 
agent behaves as expected (i.e., conformance testing). 
In their active testing approach, they used for each 
agent under test a test (a special agent) that takes the 
formal specification of the agent to facilitate it to 
reach a specific state. The operational trace of the 
agent is then compared to the specification in order to 
detect faults. On the other hand, the authors also 
proposed to use passive testing in which the agents 
under test were observed only, not stimulated like in 
active testing. Invalid traces, if any, are then identified 
thanks to the formal specifications of the agents. 

4. Coelho et al. [8] proposed a framework for unit testing 
of MAS based on the use of Mock Agents. Even 
though they called it unit testing but their work 
focused on testing roles of agents at agent level 
according to our classification. Mock agents that 
simulate real agents in communicating with the agent 
under test were implemented manually; each 
corresponds to one agent role. Sharing the inspiration 
from JUnit [15] with Coelho et al. [8], Tiryaki et al. 
[40] proposed a test-driven MAS development 
approach that supported iterative and incremental 
MAS construction. A testing framework called SUnit, 
which was built on top of JUnit and Seagent [12], was 
developed to support the approach. The framework 
allows writing tests for agent behaviors and 
interactions between agents. 

5. Gomez-Sanz et al. [16] introduced advances in testing 
and debugging made in the INGENIAS methodology 
[33]. The meta-model of INGENIAS has been 
extended with concepts for defining tests to 
incorporate the declaration of testing, i.e., tests and 
test packages. The code generation facilities are 
augmented to produce JUnit-based test case and suite 
skeletons based on these definitions with respect to 
debugging and it is the developer's task to modify 
them as needed. The work also provided facilities to 
access mental states of individual agents to check 
them at runtime. The system is integrated with 
ACLAnalyzer [4], a data mining facility for capturing 
agent communication and exploring them with 
different graphical representations. 

6. Houhamdi [18] introduces a suite test derivation 
approach for Agent testing that takes goal-oriented 
requirements analysis artifact as the core elements for 
test case derivation. The proposed process has been 
illustrated with respect to the Tropos development 
process. It provides systematic guidance to generate 
test suites from agent detailed design. These test 
suites, on the one hand, can be used to refine goal 
analysis and to detect problems early in the 
development process. On the other hand, they are 
executed afterwards to test the achievement of the 
goals from which they were derived. 

C. Integration Testing 

Integration testing test the interaction of agents, 
communication protocol and semantics, interaction of agents 

with the context, integration of agents with shared resources, 
regulations enforcement; observe emergent properties; make 
sure that a group of agents and environmental resources work 

correctly together. 

Only a few of methodologies define an explicit verification 
process by proposing a verification phase based on model 
checking to support automatic verification of inter-agent 
communications. Only some iterative methodologies propose 
incremental testing processes with supporting tools. At the 
integration level, effort has been put in agent interaction to 
verify dialogue semantics and workflows.  

1. Agile [24] defines a testing phase based on JUnit test 
framework [15]. In order to use this tool, designed for 
OO testing, in MAS testing context, they needed to 
implement a sequential agent platform, used strictly 
during tests, which simulates asynchronous message-
passing. Having to execute unit tests in an 
environment different from the production 
environment results in a set of tests that does not 
explore the hidden places for failures caused by the 
timing conditions inherent in real asynchronous 

applications. 

2. The ACLAnalyser [4] tool runs on the JADE [39] 
platform. It intercepts all messages exchanged among 
agents and stores them in a relational database. This 
approach exploits clustering techniques to build agent 
interaction graphs that support the detection of missed 
communication between agents that are expected to 
interact, unbalanced execution configurations, 
overhead data exchanged between agents. This tool 
has been enhanced with data mining techniques to 
process results of the execution of large scale MAS 
[5]. 

3. Padgham et al. [32] use design artifacts (e.g., agent 
interaction protocols and plan specification) to provide 
automatic identification of the source of errors 
detected at run-time. A central debugging agent is 
added to a MAS to monitor the agent conversations. It 
receives a carbon copy of each message exchanged 
between agents, during a specific conversation. 
Interaction protocol specifications corresponding to 
the conversation are fired and then analyzed to detect 
automatically erroneous conditions. 

4. Also at the integration level but pursuing a deontic 
approach, Rodrigues et al. [36] proposed to exploit 
social conventions, i.e. norms, rules, that prescribe 
permissions, obligations, and/or prohibitions of agents 
in an open MAS to integration test. Information 
available in the specifications of these conventions 
gives rise to a number of types of assertions, such as 
time to live, role, cardinality, and so on. During test 
execution a special agent called Report Agent will 
observe events and messages in order to generate 
analysis report afterwards. 

5. Ekinci et al. [13] view integration testing of MAS 
rather abstract. They considered system goals as the 
source cause for integration and use them as driving 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

140 | P a g e  

www.ijacsa.thesai.org 

criteria. They apply the same approach for testing 
agent goals (unit according to their view) to test these 
goals. They define the concept of test goal. This 
concept represents the group of tests needed in order 
to check if the system goal is achieved correctly.  

6. Nguyen et al. [29] propose using ontologies extracted 
from MAS under test and a set of OCL constraints, 
which act as a test oracle. Having as input a 
representation of the ontologies used, the idea is to 
construct an agent able to deliver messages whose 
content is inspired by these ontologies. The resulting 
behaviors are regarded as correct using the input set of 
OCL constraints: if the message content satisfies the 
constraints, the message is correct. The procedure is 
support by eCAT, a software tool. 

7. Houhamdi and Athamena [19] introduced a novel 
approach for goal-oriented software integration 
testing. They propose a test suite derivation approach 
for integration testing that takes goal-oriented 
requirements analysis artifact for test case derivation. 
They have discussed how to derive test suites for 
integration test from architectural and detailed design 
of the system goals. These test suites can be used to 
observe emergent properties resulting from agent 
interactions and make sure that a group of agents and 
contextual resources work correctly together. This 
approach defines a structured and comprehensive 
integration test suite derivation process for 
engineering software agents by providing a systematic 
way of deriving test cases from goal analysis. 

D. System and Acceptance Testing 

System testing tests; test for quality properties, such as 
adaptation, openness, fault-tolerance, performance. 

At the system level of testing MAS, one has to test the 
MAS as a system running at the target operating environment; 
test the expected emergent and macroscopic properties and/or 
the expected qualities that the intended system as whole must 
reach. Some initial effort has been devoting to the validation 
of macroscopic behaviors of MAS.  

 Sudeikat and Renz [38] proposed to use the system 
dynamics modeling notions for the validation of MAS. 
These allow describing the intended, macroscopic 
observable behaviors that originate from structures of 
cyclic causalities. System simulations are then used to 
measure system state values in order to examine 
whether causalities are observable. 

 Houhamdi and Athamena [20] introduced a suite test 
derivation approach for system testing that takes goal-
oriented requirements analysis artifact as the core 
elements for test case derivation. The proposed 
process has been illustrated with respect to the Tropos 
development process. It provides systematic guidance 
to generate test suites from modeling artifacts 
produced along with the development process. They 
have discussed how to derive test suites for system test 
from late requirement and architectural design. These 
test suites, on the one hand, can be used to refine goal 

analysis and to detect problems early in the 
development process. On the other hand, they are 
executed afterwards to test the achievement of the 
goals from which they were derived. 

Acceptance testing tests the MAS in the customer 
execution environment and verifies that it meets the 
stakeholder goals, with the participation of stakeholders. To 
the best of our knowledge, there is no work dealing explicitly 
with testing MAS at the acceptance level, currently. In fact, 
agent, integration, and system test harnesses can be reused in 
acceptance test, providing execution facilities. However, as 
testing objectives of acceptance test differ from those of the 
lower levels, evaluation metrics at this level, such as metrics 
for openness, fault-tolerance and adaptivity, demand for 
further research. 

V. CONCLUSION 

In summary, most of the existing research work on testing 
software agent and MAS focuses mainly on agent and 
integration level. Basic issues of testing software agents like 
message passing, distributed/asynchronous have been 
considered; testing frameworks have been proposed to 
facilitate testing process. And yet, there is still much room for 
further investigations, for instance: 

 A complete and comprehensive testing process for 
software agents and MAS. 

 Testing MAS at system and acceptance level: how do 
the developers and the end-users build confidence in 
autonomous agents? 

 Test inputs definition and generation to deal with open 
and dynamic nature of software agents and MAS. 

 Test oracles, how to judge an autonomous behavior? 
How to evaluate agents that have their own goals from 
human tester's subjective perspectives? 

 Testing emergent properties at macroscopic system 
level: how to judge if an emergent property is correct? 
How to check the mutual relationship between 
macroscopic and agent behaviors? 

 Deriving metrics to assess the qualities of the MAS 
under test, such as safety, efficiency, and openness. 

 Reducing/removing side effects in test execution and 
monitoring because introducing new entities in the 
system, e.g., mock agents tester agents, and 
monitoring agent as in many approaches, can 
influence the behavior of the agents under test and the 
performance of the system as a whole. 

REFERENCES 

[1] K. Beck, “Test Driven Development: By Example”, Addison-Wesley 
Longman Publishing Co., Boston, USA, 2005. 

[2] B. Beizer, “Software Testing Techniques”, 2nd edition, Van Nostrand 
Reinhold Co., New York, NY, USA, 1990. 

[3] F. Bergenti, M. Gleizes, and F. Zambonelli, “Methodologies and Software 
Engineering for Agent Systems”, The Agent-Oriented Software 
Engineering Handbook, Springer, Vol. 11, 2004. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No. 6, 2011 

141 | P a g e  

www.ijacsa.thesai.org 

[4] J. Botia, A. Lopez-Acosta, and G. Skarmeta, “ACLAnalyser: A tool for 
debugging multi-agent systems”, Proceeding of the 16th European 
Conference on Artificial Intelligence, pp. 967-968, IOS Press 2004. 

[5] J. Botia, J. Gomez-Sanz,  and J. Pavon, “Intelligent Data Analysis or the 
Verification of Multi-Agent Systems Interactions”, 7th International 
Conference of Intelligent Data Engineering and Automated Learning, 
Burgos, Spain, September 20-23, pp. 1207-1214, 2006. 

[6] L. Cacciari, and O. Rafiq, “Controllability and observability in 
distributed testing”, Information and Software Technology, Vol. 41, 11-
12, pp. 767-780. 1999.  

[7] G. Caire, M. Cossentino, A. Negri, and A. Poggi, “Multi-agent systems 
implementation and testing”, Proceedings of the 7th European Meeting 
on Cybernetics and Systems Research - EMCSR2004, Vienna, Austrian 
Society for Cybernetic Studies, pp. 14-16, 2004. 

[8] R. Coelho, U. Kulesza, A. Staa, and C. Lucena, “Unit testing in multi-
agent systems using mock agents and aspects”, Proceedings of the 
international workshop on Software engineering for large-scale multi-
agent systems, ACM Press, New York, pp. 83–90, 2006. 

[9] M. Cossentino, “From Requirements to Code with PASSI 
Methodology”, In Vijayan Sugumaran (Ed.), Intelligent Information 
Technologies: Concepts, Methodologies, Tools, and Applications, USA, 
2008. 

[10] K.H. Dam, and M. Winikoff, “Comparing Agent-Oriented 
Methodologies”, 5th International Bi-Conference Workshop, AOIS 
2003 at AAMAS 2003, Melbourne, Australia, July 14, pp. 78-93, 2003.  

[11] A. Dardenne, A. Lamsweerde, and S. Fickas, “Goal-directed 
requirements acquisition”, Science of Computer Programming 20(1-2), 
pp.3-50, 1993. 

[12] O. Dikenelli, R. Erdur, and O. Gumus, “Seagent: a platform for 
developing semantic web based multi agent systems”, AAMAS'05 
Proceedings of the fourth International Joint Conference on 
Autonomous agents and multi-agent systems, ACM Press, New York, 
pp. 1271–1272, 2005. 

[13] E. Ekinci, M. Tiryaki, O. Cetin, and O. Dikenelli, “Goal-Oriented 
Agent Testing Revisited”, Proceeding of the 9th International 
Workshop on Agent-Oriented Software Engineering, pp. 85-96, 2008. 

[14] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, and M. Roveri, 
“Specifying and analyzing early requirements in Tropos”, Requirement 
Engineering, Springer Link, Vol. 9, 2, pp. 132-150, 2004. 

[15] E. Gamma, and K. Beck, “JUnit: A Regression Testing Framework”, 
http://www.junit.org, 2000. 

[16] J. Gomez-Sanz, J. Botia, E. Serrano, and J. Pavon, “Testing and 
Debugging of MAS Interactions with INGENIAS”, Agent-Oriented 
Software Engineering IX, Springer, Berlin, pp. 199-212, 2009. 

[17] B. Henderson-Sellers, and P. Giorgini, “Agent-Oriented 
Methodologies”, Proceedings of the 4th International Workshop on 
Software Engineering for Large-Scale Multi-Agent Systems - 
SELMAS'05, Idea Group Incorporation, 2005. 

[18] Z. Houhamdi, “Test Suite Generation Process for Agent Testing”, 
Indian Journal of Computer Science and Engineering, Vol. 2, 2, 2011. 

[19] Z. Houhamdi, and B. Athamena, “Structured Integration Test suite 
Generation Process for Multi-Agent System”, Journal of Computer 
Science, Vol. 7, 5,  2011. 

[20] Z. Houhamdi, and B. Athamena, “Structured System Test Suite 
Generation Process for Multi-Agent System”, International Journal on 
Computer Science and Engineering, Vol.3, 4, pp.1681-1688, 2011. 

[21] M. Huget, and Y. Demazeau, “Evaluating multi agent systems: a 
record/replay approach”, Intelligent Agent Technology, IAT 2004, 
Proceedings IEEE/WIC/ACM International Conference, pp. 536 – 539, 
2004. 

[22] I. Sommerville, “Software Engineering”, 9th edition, Addison Wesley, 
2011. 

[23] N.R. Jennings, “An Agent-Based Approach for Building Complex 
Software Systems”, Communications of the ACM, Vol. 44, 4, pp. 35-
41, 2001. 

[24] H. Knublauch, “Extreme programming of multi-agent systems”, 
International Joint Conference on Autonomous Agent and Multi-Agent 
Systems, Bologna. ACM Press, pp. 704–711, 2002. 

[25] J. Krupansky, “What is a software Agent?”, Advancing the Science of 
Software Agent Technology, 2008. http://agtivity.com/agdef.htm. 

[26] D. Lam, and K. Barber, “Debugging Agent Behavior in an 
Implemented Agent System”, 2nd International Workshop, ProMAS, 
Springer, Berlin, pp. 104-125, 2005. 

[27] P. McMinn, and M. Holcombe, “The state problem for evolutionary 
testing”, Proceedings of the International Conference on Genetic and 
Evolutionary Computation, Springer, Berlin, pp. 2488-2498, 2003. 

[28] G. Myers, “The Art of Software Testing”, Wiley, 2nd Edition New 
Jersey, John Wiley & Sons, 2004. 

[29] C. Nguyen, A. Perini, and P. Tonella, “Goal-oriented testing for MAS”, 
Agent-Oriented Software Engineering VIII, Lecture Notes in Computer 
Science, Volume 4951, pp. 58-72, 2008. 

[30] M. Nunez, I. Rodriguez, and F. Rubio, “Specification and testing of 
autonomous agents in e-commerce systems”, Software Testing, 
Verification and Reliability, Vol. 15, 4, pp. 211-233, 2005. 

[31] L. Padgham, and M. Winikoff, “Developing Intelligent Agent Systems: 
A Practical Guide”, John Wiley and Sons, 2004. 

[32] L. Padgham, M. Winikoff, and D. Poutakidis, “Adding debugging 
support to the Prometheus methodology”, Engineering Applications of 
Artificial Intelligence, Vol. 18, 2, pp. 173-190, 2005. 

[33] J. Pavon, J. Gomez-Sanz, and R. Fuentes-Fernandez, “The INGENIAS 
Methodology and Tools”, In Agent Oriented Methodologies (eds. 
Henderson-Sellers and Giorgini), Idea group, pp. 236-276, 2005. 

[34] A. Perini, “Agent-Oriented Software”, Wiley Encyclopedia of 
Computer Science and Engineering, John Wiley and Sons, Chapter 1, 
pp. 1-11, 2008. 

[35] R.S. Pressman, “Engenharia de Software”, 6th edition, Rio de Janeiro, 
McGraw-Hill, 2002. 

[36] L. Rodrigues, G. Carvalho, P. Barros, and C. Lucena, “Towards an 
integration test architecture for open MAS”, 1st Workshop on Software 
Engineering for Agent-Oriented Systems/SBES. pp. 60-66. 2005. 

[37] C. Rouff, “A test agent for testing agents and their communities”, 
Aerospace Conference Proceedings IEEE, Vol. 5. pp. 5-2638, 2002. 

[38] J. Sudeikat, and W. Renz, “A systemic approach to the validation of 
self-organizing dynamics within MAS”, Proceeding of the 9th 
International Workshop on Agent-Oriented Software Engineering, pp. 
237-248, 2008. 

[39] TILAB. Java agent development framework. http://jade.tilab.com/. 

[40] A. Tiryaki, S. Oztuna, O. Dikenelli, and R. Erdur, “Sunit: A unit testing 
framework for test driven development of multi-agent systems”, 
AOSE'06 Proceedings of the 7th International Workshop on Agent-
Oriented Software Engineering VII, Springer, Berlin, pp. 156-173, 
2007. 

[41] J. Wegener, “Stochastic Algorithms: Foundations and Applications”, In 
Evolutionary Testing Techniques, Springer Berlin, Heidelberg, Chapter 
9, pp. 82-94, 2005. 

[42] Z. Zhang, J. Thangarajah, and L. Padgham, “Automated unit testing for 
agent systems”, 2nd International Working Conference on Evaluation of 
Novel Approaches to Software Engineering, ENASE'07, Spain, pp. 10-
18, 2007. 

AUTHORS PROFILE 

Dr. Zina Houhamdi received the M.Sc. and PhD. degrees in Software 
Engineering from Annaba University in 1996 and 2004, respectively. She is 
currently an Associate Professor at the department of Software Engineering, 
Al-Zaytoonah University of Jordan. Her research interest includes Agent 
Oriented Software Engineering, Software Reuse, Software Testing, Goal 
Oriented Methodology, Software Modeling and Analysis, Formal Methods. 
She has published several Research Papers in referred National/ International 
journals. She has referred presentations in National / International 
Conferences and Seminars.  

 

http://www.junit.org/
http://agtivity.com/agdef.htm
http://www.springerlink.com/content/978-3-540-79487-5/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://jade.tilab.com/

