
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

55 | P a g e

www.ijacsa.thesai.org

Context Switching Semaphore with Data Security

Issues using Self-healing Approach

M. Anand

Research Scholar, Dept of ECE

St. Peters University

Chennai - 54 India

Kuldeep Chouhan

Research Scholar, Dept of ECE

Dr M. G. R. University

Chennai – 95 India

Dr. S. Ravi

Professor and Head, Dept of ECE

Dr M. G. R. University

Chennai – 95 India

Syed Musthak Ahmed

Head, Dept of ECE

S. R. Engineering College

Warangal India

Abstract— The main objective of a self healing scheme is to

share and secure the information of any system at the same

time. “Self-healing” techniques ultimately are dependable

computing techniques. Specifically self-healing systems have to

think for itself without human input, able to boot up backup

systems. However, sharing and protection are two

contradictory goals. Protection programs may be completely

isolated from each other by executing them on separate non-

networked computer, however, this precludes sharing.

Keywords- Self-healing; Semaphore; Data Security.

I. INTRODUCTION

Self-healing mechanisms complement approaches that
stop attacks from succeeding by preventing the injection of
code, transfer of control to injected code, or misuse of
existing code. Approaches to automatically defending
software systems have typically focused on ways to
proactively or at runtime protect an application from attack.
These proactive approaches include writing the system in a
“safe” language, linking the system with “safe” libraries,
transforming the program with artificial diversity, or
compiling the program with stack integrity checking. The
technique of program shepherding is validates branch
instructions to prevent transfer of control to injected code
and to make sure that calls into native libraries originate
from valid sources. Control Flow Integrity (CFI), observing
that high-level programming often assumes properties of
control flow that is not enforced at the machine level [3,4].
The use of CFI enables the efficient implementation of a
software shadow call stack with strong protection guarantees.
However, such techniques generally focus on integrity
protection at the expense of availability. Control flow is
often corrupted because input is eventually incorporated into
part of an instruction‟s opcode, set as a jump target, or forms
part of an argument to a sensitive system call.

II. SELF HEALING SYSTEMS

A. Self Healing Approach

Self-healing is an approach to detect improper operations
of software applications, transactions and business processes,
and then to initiate corrective action without disrupting users
[8]. Healing systems that require human intervention or
intervention of an agent external to the system can be
categorized as assisted-healing systems. The key focus or
contrasting idea as compared to dependable systems is that a
self-healing system should recover from the abnormal (or
unhealthy) state and return to the normative (healthy) state
and function as it was prior to disruption. Some scholars treat
self-healing systems as an independent one while others view
as a subclass of traditional fault tolerant computing systems.

The system monitors itself for indications of anomalous
behavior. When such behavior is detected, the system enters
a self-diagnosis mode that aims to identify the fault and
extract as much information as possible with respect to its
cause, symptoms, and impact on the system [9]. The system
tries to adapt itself by generating candidate fixes, which are
tested to find the best target state. Self-healing systems can
support decision making in a large way for managerial and
organizational situations [11]. Many of the decision support
systems (DSS) offer passive forms of decision support,
where the decision-making process depends upon the user's
initiative. Such active involvement is especially needed in
complex decision-making environments.

B. Architecture of Self-Healing (S-H)

The term „self‟ in self-healing architecture is referred to
the action or response initiated automatically within the
system. A general architecture of a self-healing system is
shown in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

56 | P a g e

www.ijacsa.thesai.org

Fig. 1 General architecture of a self-healing system

C. Self Healing technique

The effective remediation strategies include failure-
oblivious computing, error virtualization, rollback of
memory updates, and data-structure repair [5]. These
approaches may cause a semantically incorrect continuation
of execution attempts to address this difficulty by exploring
semantically safe alterations of the program‟s environment.
The technique is subsequently introduced in a modified form
as failure-oblivious computing, because the program code is
extensively rewritten to include the necessary checks for
every memory access, the system incurs overheads for a
variety of different applications. Data-structure Repair is the
most critical concerns with recovering from software faults
and vulnerability exploits is ensuring the consistency and
correctness of program data and state.

D. Why Self Healing Systems

The software notoriously buggy and crash-prone is
despite considerable work in the fault tolerance and
reliability [1]. The current approach to ensuring the security
and availability of software consists of a mix of different
techniques:

a) Proactive techniques: seek to make the code as
dependable as possible, through a combination of safe
languages, libraries and compilers, code analysis tools,
formal methods and development methodologies.

b) Debugging techniques: aim to make post-fault
analysis and recovery as easy as possible for the programmer
that is responsible for producing a fix.

c) Runtime protection techniques: try to detect the
fault using some type of fault isolation, which address
specific types of faults or security vulnerabilities.

d) Containment techniques: seek to minimize the
scope of a successful exploit by isolating the process from
the rest of the system, e.g., through use of virtual machine.

e) Byzantine fault-tolerance and quorum techniques:
rely on redundancy and diversity to create reliable systems
out of unreliable components.

E. Elements of Self-Healing model

In the Self-healing process model, there are different
categories of aspects to the self-healing system,

a) Fault model: Self-healing systems have the tenets
of

 dependable computing is that called a fault model must be
specified for any fault tolerant system. The fault model
answers the question of what faults the system is to tolerate.
Self-healing systems have a fault model in terms of what
injuries (faults), which are expected to be able to self-heal.

b) Fault duration: Faults can be permanent,
intermittent or transient due to an environmental condition. It
is important to state the fault duration assumption of a self-
healing approach to understand what situations it addresses.

c) Fault manifestation: The severity of the fault
manifestation, it affects the system in the absence of a self-
healing response. The faults cause immediate system crashes,
but, many faults cause less catastrophic consequences, such
as system slow-down due to excessive CPU loads, thrashing
due to memory hierarchy overloads, resource leakage, file
system overflow, and so on.

d) Fault source: Thee source of faults can affect self-
healing strategies due to implementation defects,
requirements defects, operational mistakes, and etc. Self-
healing software is designed only to withstand hardware
failures such as loss of memory [6] or CPU capacity and not
software failures.

e) Granularity: The granularity of a failure is the size
of the component that is compromised by that fault. Different
self-healing mechanisms are probably appropriate depending
on the granularity of the failures [7] and hence, the
granularity of recovery actions.

f) Fault profile expectations: The source of the fault
is the profile of fault occurrences that is expected. It
considered for self-healing might be only expected faults that
is based on design analysis or faults that are unexpected [12].
Additionally, faults might be random and independent, might
be correlated in space or time, or might even be intentional
due to malicious intent.

F. Conventional Methods of Security

The conventional methods can overcome only the effects
of passive threats and not the active threats for the
authenticate users. They reduce user-friendliness and also,
the amount of OS resources required to provide security is
high. Different protocol architectures are used for providing
security for each layer of the OSI model and it may not be
generic. Alternately, in this work, the information is allowed
to flow freely through the fetch and decode cycles while an
access or authentication is made only between the decode
and execute cycle before the data is permanently written into
the memory by the user (if authenticated). This is shown in
Fig. 2.

Fig. 2 Process of Execution

G. Proposed features of Security issues

The proposed hardware is shown in Figure 3. The
features of the proposed hardware are that it is (i) PCI
compliant and (ii) Mounted in a single chip

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

57 | P a g e

www.ijacsa.thesai.org

Fig. 3 Hardware Process System

a) Robustness: It provides defence against
vulnerabilities with few false positives or false negatives.

b) Flexible: It adapts easily to cover the continuously
evolving threats.

c) End-to-End: The security policy flows throughout
all the seven layers of the OSI model.

d) Scalable: It can co-exist with the existing circuitry
without any modification [2].

III. METHODOLOGY

A. Semaphores and Resource Sharing

A semaphore is a protected variable or an abstract data
type which restricts the access to shared resources such as
shared memory in a multiprogramming environment. It is a
primitive synchronization mechanism for sharing CPU time
and resources. It is a classic solution to prevent race
conditions.

B. Operation of Semaphore

The „value‟ of a semaphore is the number of units of
resources which are free. To avoid busy-waiting, a
semaphore has an associated queue of processes (usually
First in First Out). If a process performs a „P‟ operation on a
semaphore which has the value zero, the process is added to
the semaphore‟s queue. When another process increments
the semaphore by performing a „V‟ operation, and there are
processes on the queue, one of them is removed from the
queue and resumes operation.

C. Binary Semaphore

In binary semaphore, if there is only one resource, the
semaphore takes value „0‟ or „1‟.This is explained in Fig. 4.

Fig. 4 Binary Semaphore

Suppose a „P‟ operation busy-waits (uses its turn to do
nothing) or maybe sleeps (tells the system not to give it a
turn) until a resource is available, where upon it immediately
claims one. Now, let „V‟ be the operation that simply makes
a resource available again after the process has finished using
it. The „P‟ and „V‟ operations must be atomic, i.e., no
process may be preempted in the middle of one of those
operations to run another operation on the same semaphore.
When a semaphore is being used, it takes value „0‟ and when
it takes the value „1‟, the process directly starts execution
without waiting.

D. Counting Semaphore

The counting semaphore concept can be extended with
the ability of claiming or returning more than one unit from
the semaphore. When multiple resources are to be shared by
many operations, such a semaphore is used. All the resources
must be of the same type. This is shown in Fig. 5.

Fig. 5 Counting Semaphore

In this, the initial value of semaphore is set equal to
number of resources available. As the semaphores are being
used, the value keeps decrementing. As the semaphores are
being released, after use, its value keeps incrementing. „Zero‟
value refers to empty semaphore.

E. Mutex Semaphore

A mutex is a binary semaphore with extra features like
ownership or priority inversion protection. Mutexes are
meant to be used for mutual exclusion only. This is shown in
Figure 6.

Fig. 6 Mutex Semaphore

Initially the semaphore value is set to zero. Once a task
attains ownership, it can access the resources as many times
as it wants and each time, it accesses, the semaphore value
increases.

F. Characteristics of Semaphore

The characteristics of the three semaphores are shown in
TABLE I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

58 | P a g e

www.ijacsa.thesai.org

TABLE I. CHARACTERISTICS OF THREE SEMAPHORES

Binary Semaphore Counting

Semaphore

Mutex Semaphore

Anyone can release the

semaphore. Used for

mutual exclusion and

event notification.

Only after a task has

attained access, it

can release the

semaphore.

Only the owner can

release the semaphore.

Used only for mutual

exclusion.

IV. RESULTS AND DISCUSSION

A. Implementation

In the existing architecture of computers, the bottleneck
of connecting a high speed low memory device to a low
speed high memory device is solved by using an
intermediate memory module called the cache. The cache
exists between the high speed CPU and the lower speed
memories. However, there is no security between the data
link layer of the CPU and the cache. The proposed card is
placed on the PCI bus at the maximum possible speed and a
direct connection is established to the CPU via snooping. To
understand how the security layer is to be implemented, the
knowledge of the three basic terms is required: subject,
object and capability. Subject refers to the user or entity
which acts on behalf of the user on the system. Objects may
be defined as resources within the system. The main term
however is capability which is basically a „token‟. The
possession of a capability by a subject confers access right
for an object. They cannot be easily modified, but they can
be reproduced.

The capabilities of the objects are to be stored in the
non-readable section of the HDD. For a subject to access a
particular object, it must possess the capability for doing so.
Hence, before a subject accesses a resource via the CPU, it
will first go through a screening check from the hardware on
whether or not its capabilities allow it to access such
resources. Hence, a security layer is now added to the data
link layer between the CPU and the cache. Additionally,
user also must be prevented from creating arbitrary
capabilities. This can be accomplished by placing the
capabilities in special „Capability Segments‟ which users
cannot access. Another approach is to add a tag bit to each
primary storage location. This bit, inaccessible to the user is
„ON‟ if the location contains a capability. It should be noted
that the hardware restricts the manipulation of the location
contents to appropriate system routines. If the last remaining
capability is destroyed, then that object cannot be used in
any manner. In this work, special provisions are made for
controlling the copying and movement of capabilities (as
well as

interpretation) depending on the hardware involved.

B. Evolved Function is a Semaphore Selector

The schematic of the control block performing the
evolved function is shown in Fig. 7.

Fig. 7 Schematic representation of Semaphore Selector

The power consumed by the block under read and write
mode is shown in Fig. 8 and Fig. 9 respectively.

Fig. 8 Current and Voltage Variations of semaphore selector during read

cycle

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

59 | P a g e

www.ijacsa.thesai.org

Fig. 9 Current and Voltage Variations of Semaphore selector during write

 cycle

C. Evolved Function is a Resource Sharing Selector

The control block performing the evolved function of
“resource sharing selector” along with its power consumtion
is shown in Fig. 10. Similar graph corresponding to read and
write cycle is shown in Fig. 11 and Fig. 12 respectively.

Fig. 10 Schematic of Evolved resource sharing selector

Fig. 11 Current and Voltage Variations of evolved resource sharing selector

 during Read cycle

.
Fig. 12 Current and Voltage Variations of evolved resource sharing selector

 during write cycle

D. Evolved Function is a Snoop Selector Function

The schematic of the control block performing the
evolved function of a snoop selector circuit is shown in Fig.
13. The power consumed by the PE under read and write
cycles is shown in Fig. 14 and Fig. 15 respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

60 | P a g e

www.ijacsa.thesai.org

Fig. 13 Schematic of Evolved Snoop selector circuit

Fig. 14 Current and Voltage Variations of evolved Snoop selector during

read

Cycle

E. Evolved Function is a Context Switching Semaphore

The schematic of Context switching semaphore block of
the evolved function is shown in Fig. 16. The power
consumed

 by the PE during read and write cycle is shown in Fig. 17
and Fig. 18 respectively

Fig. 15 Current and Voltage Variations of evolved snoop selector during

write

 cycle

Fig. 16 Schematic of Evolved Context switching semaphore

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

61 | P a g e

www.ijacsa.thesai.org

Fig. 17 Current and Voltage Variations of evolved Context switching

 semaphore during read cycle

Fig. 18 Current and Voltage Variations of evolved Context switching

 semaphore during write cycle

The results of the discussion are tabulated in TABLE II.
It can be inferred from the table that a power level variation
exists between the read and write cycles.

TABLE II. POWER CONSUMED BY EVOLVED PE

Evolved

Function of PE

Average Power Consumed by Evolved

blocks

read write

Semaphore

selector
.3mW 2.325mW

Resource sharing

selector
.54mW 3.5mW

Snoop selector .12mW 3.665mW

Context

switching

semaphore

.456mW 3.5mW

V. CONCLUSION

In this work, self-healing systems prove increasingly
important in countering system software based attacks,
which recover and secure to the data from interrupted
services. Self-healing systems offer an active form of
decision support, without human intervention that can detect
the fault and recover from the fault. Also, with intelligent
architectural models, a self-healing system can select the
proper repair plan to deploy the broken component, if there is
more than one component that needs to be healed, can
prioritize a fault component over the others, etc.

ACKNOWLEDGMENT

This work was supported in part by Micro Logic System,
Chennai-600017.

REFERENCES

[1] Bouricius, W.G., Carter, W.C. & Schneider, P.R, “Reliability

modeling techniques for self-repairing computer systems”, in

proceedings of 24th National Conference, ACM, 1969, pp. 395-309.

[2] Shelton, C., Koopman, P.&Nace, W., “A framework for scalable

analysis and design of system-wide graceful degradation in

distributed embedded systems”, WORDS03, January 2003.

[3] G. Edward Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure

Program Execution via Dynamic Information Flow Tracking”, in

proceedings of the 11th International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS-XI), October 2004.

[4] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti,

“Control-Flow Integrity: Principles, Implementations, and

Applications”, in proceedings of the ACM Conference on Computer

and Communications Security (CCS), 2005.

[5] B. Demsky and M. C. Rinard, “Automatic Detection and Repair of

Errors in Data Structures”, in proceedings of ACM OOPSLA,

October 2003.

[6] M. Locasto, S. Sidiroglou, and A.D Keromytis, “Software Self-

Healing Using Collaborative Application Communities”, in

proceedings of the Internet Society (ISOC) Symposium on Network

and Distributed Systems Security (SNDSS), February 2006.

[7] J. Kong, X. Hong, J.-S. Park, Y. Yi, and M. Gerla, “L‟Hospital: Self-

healing Secure Routing for Mobile Ad-hoc Networks”, in Technical

Report CSD-TR040055, Dept. of Computer Science, UCLA, January

2005.

[8] Michael E. Shin and Jung Hoon An, “Self-Reconfiguration in Self-

Healing Systems”, in proceedings of the Third IEEE International

Workshop on EASE'06, pp 89-98 (2006).

[9] E. M. Dashofy, A. V. D. Hoek, and R. N. Taylor, “Towards

architecture-based self-healing systems”, in proceedings of the first

workshop on Self-healing systems, Charleston, South Carolina, pp.

21-26, 2002.

[10] H.You, V.Vittal, Z.Yang, “Self-healing in power systems: an

approach using islanding and rate of frequency decline based load

shedding”, IEEE Transaction on Power System, Vol.18, No.1, 2003,

pp.174 -181.

[11] T.A. Ramesh Kumaar and Dr.I.A.Chidambaram, “Self-Healing

Strategy for Dynamic Security Assessment and Power System

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 6, 2011

62 | P a g e

www.ijacsa.thesai.org

Restoration”, in International Journal of Computer Science &

Emerging Technologies, (E-ISSN: 2044-6004) Vol. 2, Issue 2, April

2011.

[12] J. Newsome and D. X. Song, “Dynamic Taint Analysis, and Signature

Generation of Exploits on Commodity Software”, in the Proceedings

of the Network and Distributed System Security Symposium, San

Diego,

CA, Feb.2005

AUTHORS PROFILE

1. Mr. M. Anand has completed his B.Tech. in

the faculty of ECE and M.Tech. in the area of

Applied Electronics. He is presently a research

scholar in the faculty of ECE at St. Peters

University, Avadi, Chennai. Mr. M.Anand shows

interest in the areas of Embedded system design,

Co-design of embedded systems, Scheduling etc.

2. Dr. S. Ravi was born on July 24th, 1971 at

Chennai, India and got A.M.I.E. (Electronics

Engineering) from Institution of Engineers,

Calcutta, M.Tech. (Communication systems) from

Anna University, Chennai in the Year 1994 and

Ph.D. from Anna University in the year 2003. He

has got 20 Years of Teaching Experience and 3

 Years of Industrial Experience. Presently, he is working as Professor and

Head of the Department of Electronics Engineering in Dr. M.G.R.

University, Chennai. He has so far published nearly thirty four papers in

referred International Journals and successfully guided four Ph.D. scholars.

Dr. S. Ravi is a Life Member IETE and Life Member of Indian Society for

Technical Education

3. Mr. Kuldeep Chouhan has completed his

M.Tech. in the department of Computer Science

and Engineering (CSE). He is presently a research

scholar in the faculty of ECE at Dr. MGR

University, Chennai. His area of interest is

Wireless Sensor Network, Embedded system,

MultiAgent System in Sensor Security

4. Dr. Syed Musthak Ahmed, completed his

BE(Electronics) from Bangalore University,

ME(Electronics), UVCE Bangalore, Bangalore

University, Ph.D.(ECE), Vinayaka Missions

University, Salem. He has 25 years of teaching

experience working in reputed engineering

colleges and is presently working as Professor and

HOD (ECE), SR Engineering College, Warangal.

He is a member of Various Professional Societies like SMIEEE, FIETE,

MISSS, MISTE, MIAENG, MIAMT. He has various publications in

National and International Journals / Conferences

