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Abstract—Bayesian networks (BN) are used in a big range of 

applications but they have one issue concerning parameter 

learning. In real application, training data are always incomplete 

or some nodes are hidden. To deal with this problem many 

learning parameter algorithms are suggested foreground EM, 

Gibbs sampling and RBE algorithms. In order to limit the search 

space and escape from local maxima produced by executing EM 

algorithm, this paper presents a learning parameter algorithm 

that is a fusion of EM and RBE algorithms. This algorithm 

incorporates the range of a parameter into the EM algorithm. 

This range is calculated by the first step of RBE algorithm 

allowing a regularization of each parameter in bayesian network 

after the maximization step of the EM algorithm. The threshold 

EM algorithm is applied in brain tumor diagnosis and show some 
advantages and disadvantages over the EM algorithm. 
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I.  INTRODUCTION 

Machine Learning is now considered among the essential 
tools for making decisions and solving problems that affect the 
uncertainty. This science allows automation of methods that 
helps the expert to take an effective decision in several areas. 
This work is functional by means of artificial intelligence that 
combines the concepts of learning, reasoning and problem-
solving. In recent years, Bayesian networks have become 
important tools for modeling uncertain knowledge. They are 
used in various applications such as information retrieval          
[6], data fusion [5], bioinformatics [11], and medical 
diagnostics [2].  

Bayesian networks [ (Jensen, 1996)] are graphical models 
that can apply these concepts in daily life by modeling a given 
problem as a causal structure as a graph indicating the 
independence between the different actors of the problem and 
using qualitative state which is in the form of conditional 
probability tables. The clarity of the semantics and 
comprehensibility by humans are the major advantages of 
using Bayesian networks for modeling applications. They 
offer the possibility of causal interpretation of models of 
learning. 

The concepts of learning in bayesian network are devised 
into two types; the first one is to learn the parameters when the 
structure is known. The second one is to learn the structure 
and the parameters at the same moment. In this paper, we 
assume that the structure is known. The parameter learning in 
this case is divided into two categories. If the training data are 

complete this problem is resolved by statistic approach or a 
bayesian approach. In real application, to find complete 
training data is difficult for various reasons. When data are 
incomplete two classical approaches are usually used to 
determine the parameters of a bayesian network that include 
EM algorithm [1] and Gibbs Sampling [3].  

Other methods are suggested to deal with the 
disadvantages of these classical approaches. The most robust 
is the RBE algorithm [8]. In order to regularize the learning 
problem, some modifications are needed to reduce the search 
space and help escape from local maxima.  

These problems in learning parameter in bayesian network 
motivate us to add some modification in the existing parameter 
learning algorithm where the network structure is known and 
the data are incomplete. 

II. LEARNING BAYESIAN NETWORK PARAMETERS 

A bayesian network is defined by a set of variables χ = 
{X1, X2, ..., Xn} that represent the actors of the problem and a 
set of edge that represent the conditional independence 
between these variables. If there is an arc from Xi to Xj then Xi 

is called parent of Xj and is noted by pa(Xj). Each node is 
conditionally independent from all the other nodes given its 
parents. The conditional distribution of all nodes is described 
as: 

   i i

1

X pa(X )
n

i

P P


                                  (1) 

Each node is described by a conditional probability table 
which we denote by the vector θ. The entire vector is 

composed by a set of parameters value i,j,k and it’s defined 

by: 

  i,j,k i iX pa(X )
k j

P x x                        (2) 

Where i=1…n represents the range of all variables, k=1…ri 

describes all possible states taken by Xi and j=1...qi ranges all 
possible parent configurations of node Xi.   

The process of learning parameters in bayesian network is 
discussed in many papers. The goal of parameter learning is to 
find the most probable θ that explain the data. Let D = {D1, 
D2,…, DN} be a training data where Dl = {x1[l], x2[l],…,xn[l]} 
consists of instances of the bayesian network nodes. Parameter 
learning is quantified by the log-likelihood function denoted as 
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LD (θ). When the data are complete, we get the following 
equations: 

        1 2 n

1

L log x ,  x , , x :
N

D

l

P l l l 


 
  

 
     (3) 

       
1 1

L log x x :
D

n N

i i

i l

P l pa l 
 

 
  

 
   (4) 

The equation (3) and (4) are not applied where the training 
data is incomplete. 

A. Learning parameter with complete data 

In the case where all variables are observed, the simplest 
method and most used is the statistical estimate. It estimats the 
probability of an event by the frequency of occurrence of the 
event in the database. This approach (called maximum 
likelihood (ML)) then gives us: 

  i,j,k

i,j,k

i i i,j,k

N
X pa(X )

N
k j

k

P x x    


 (5)  

Where Ni,j,k is the number of events in the database for which 
the variable Xi is in state xk and his parents are in the 
configuration xj. 

The principle, somewhat different, the Bayesian estimation 
is to find parameters most likely knowing that the data were 
observed. Using a Dirichlet distribution as a priori parameters 
which are written as: 

, ,
, ,
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where αi,j,k are the parameters of the Dirichlet distribution 

associated with the prior distribution. 
The approach to maximum a posteriori (MAP) gives us:  

  i,j,k i,j,k

i,j,k i,j,k

+

i i i,j,k

N 1
X pa(X )

N 1
k j

k

P x x






   

 
    (7) 

B. Learning parameter with incomplete data 

In most applications, databases are often incomplete. Some 
variables are observed only partially or never. The classical 
approaches are EM, Gibbs sampling and RBE algorithms. 
These algorithms are approximate except RBE which 
determinate a low bound and an upper bound for each 
parameter in the bayesian network. 

The method of parameter estimation with incomplete data 
and the most commonly used is based on the iterative 
Expectation-Maximization (EM) proposed by Dempster [1] 
and applied to the RB in [7]. 

The EM above is as follows: repeat the steps expectation 
and maximization until the convergence. 
Each iteration ensures that the likelihood function increases 
and eventually converges to a local maximum. By cons, when 
we have multiple nodes admitting a large number of missing 

data, the method of learning by the EM method converges 
quickly to a local maximum. In the first step, the algorithm 
starts by depending arbitrary quantities on missing data. The 
second steps consist of employing the expectation entries and 
maximizing them with respect to the unknown parameters. 
The results of the second step are used as arbitrary quantities 
in the next expectation step. The algorithm converges when 
the difference between successive estimates is smaller than a 
fixed threshold or the number of iterations is bigger than a 
fixed maximum iteration.  

Algorithm Expectation Maximization EM (input : DAG, data 
base D,  E function that calculate expectation) 

output :        

Begin 

1. t=0 

2. Randomly  initialize the parameters 

3. Repeat 

4. Expectation 

          use the current parameters       
 (t) 

to estimate  

           missing parameters :                               

                         E(t) (N i, j, k) = Σ p(t) (Xi=xk | pa(Xi)=xj)  

    For i from 1 to N 

5. Maximization 

           use estimate date to apply the learning   

          procedure  

        (for example the maximum likelihood) 

                            
 (t+1) = E (N i, j, k) / E (N i, j) 

6. t=t+1 

      Until convergence (      
 (t+1) =       

 (t)) 

End 

Algorithm  : EM algorithm 

The second algorithm is Gibbs sampling [3] introduced by 
Heckerman. Gibbs sampling is described as a general method 
for probabilistic inference. It can be applied in all type of 
graphical models whether the arcs are directed or not and 
whether the variables are discrete or continuous. Gibbs 
sampling is a special case of MCMC (Markov Chain Monte 
Carlo). It generates a string of samples with accepting or 
rejecting some interesting points. In other words, Gibbs 
sampling consists in completing the sample by inferring the 
missing data from the available information. In learning the 
parameters, Gibbs sampling is a method that converges slowly 
or has no solution if the number of hidden variables is very 
large. 

The third algorithm is Robust Bayesian Estimator RBE [8]. 
It’s composed of two steps Bound and Collapse [10]. The first 
step consists of calculating a lower bound and an upper bound 
for each parameter in the bayesian network. The second step 

uses a convex combination to determine the value of i,j,k . 

RBE is considered a procedure that runs through all the 
data D recorded observations about the variables and then it 
allows to bound the conditional probability of a variable Xi. 
This procedure begins by identifying the virtual frequencies 
following: 
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 n (Xi = xk |?): calculating the number of observations 

where the variable Xi takes the value xk and the value 

of pa (Xi) is not completely observed. 

 n (? | pa (Xi) = xj) calculating the number of 

observations where parents pa (Xi) takes the value xj 

and the value of Xi is missing. 

 n (? |?): calculating the number of observations where 

both values of Xi and pa (Xi) are unknown and the 

value of pa(Xi) can be completed as xj. 

These frequencies help us to calculate the minimum and 
maximum number of observations that may have 
characteristics Xi = xk and pa (Xi) = xj in the database D: 

      min i i kjn  n ? | pa X x n X x | ? n ? | ?    
      (8)

                                                                              

 

 is the minimum number of observations with characteristics 

Xi = xk and pa (Xi) = xj. 

    
 

max i j i k
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(9)

                                                                              

 

 is the maximum number of observations with characteristics 

Xi = xk and pa (Xi) = xj. 
Virtual frequencies defined above can be set to zero, which 

is called the Dirichlet distribution with parameters αi,j,k. We 

define the lower bound of the interval by: 
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                                                                       And the upper bound by: 

, ,

,

i,j,k

( | ( ) )

( )
a

)
x

(
m

i j k i k i j

i j i j

max

max

n X x pa X x n

n pa X x n





   

  
  

                                                                            (11) 
A detailed example mentioned in [8] shows the use of 

these equations in calculating conditional probabilities by 
determining the minimum and maximum bounds of the 
interval. This phase of determining mini,j,k and maxi,j,k depends 
only on the frequency of observed data in the database and 
virtual frequencies calculated by completing the records. The 
major advantage of this method is the independence of the 
distribution of missing data without trying to infer.  

To find the best parameters for this method, a second phase 
is necessary. It estimates the parameters using a convex 
combination from each distribution calculated for each given 
node. This convex combination can be determined either by 
external knowledge about the missing data, or by a dynamic 
estimate based on valid information in the database. A 
description of the execution of this phase is articulated in [10]. 

 

III. THE THRESHOLD EM ALGORITHM FOR PARAMETER 

LEARNING IN BAYESIAN NETWORK WITH INCOMPLETE DATA  

The set of parameter in bayesian network using EM 
algorithm is approximate. In addition, the use of the bound 

step of the RBE algorithm gives a lower bound and an upper 
bound for each parameter in the network which is defined by : 

mini,j,k  <= 
i,j,k <= max i,j,k                              (12) 

Our work consists of performing the optimization of the 
bayesain network parameter using the EM algorithm and 
verifying the bound step of the RBE algorithm. 

For doing that, the threshold EM algorithm consists of 
verifying the constrain mentionned in equation (12) after the 
two steps of the EM algorithm. 

Let 
i,j,k (t) be the maximized parameter after the execution 

of the two steps of the EM algorithm. The threshold EM 
algorithm is composed by three steps. The first two steps are 
the same as the EM algorithm. The third step consists of the 

regularization of 
i,j,k (t) with the constraint mentionned in 

equation (12). The main actions used in this step consists of: 

1) If  i,j,k (t) <=min i,j,k then the i,j,k (t)   is equal to min i,j,k. 

2) If  i,j,k (t) >=max i,j,k then the i,j,k (t)  is equal to max i,j,k. 

3) If mini,j,k <= i,j,k (t) <=maxi,j,k then the i,j,k (t)  is saved 

like it’s. 

These changes provide a disagree of the probabilities 
constraint defined in equation (13) :  

, , 1i j k

k

                                                        (13) 

So, it’s necessary to make a normalization step to verify 
the equation (13). This step is described by the use of the 
equation (14).  

( )
, ,( 1)

, , ( )
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'
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i j kt

i j k t
i j k

k





 


                                         (14) 

These new calculating parameters are used like an input in 
the next step of the threshold algorithm. This principle is 
repeated until convergence. The stopping points are the same 
as the EM algorithm.  

The third step is used to force the solution to be between 
the bounds calculating by the bound step of the RBE 
algorithm. In the worst case, the solution is moving toward the 
directions of reducing the violations of the constraint 
mentionned in equation (12).  

Now, we are ready to present the threshold EM algorithm 
for parameter learning in bayesian network with missing data 
as summarized  in table 1. 
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Repeat until it converges 

Step1: Expectation step to compute the conditional 

expectation of the log-likelihood function. 

Step2: Maximization step to find the parameter
( )t  that 

maximize the log-likelihood. 
Step3: Regularization step to get the parameter into the 

interval calculating by the bound step of the RBE algorithm: 

For each variable i, parent configuration j, value k 

If  
i,j,k (t) <=min i,j,k then 

i,j,k (t)  = min i,j,k. 

If  
i,j,k (t) >=max i,j,k then 

i,j,k (t)  =max i,j,k. 

If mini,j,k <= i,j,k (t) <=maxi,j,k then the
i,j,k (t)  is saved like 

it’s. 

Strep4: Normalization step based on equation (14) 
( )t =

( 1)t 
 

Go to step1 

Return 
( )t  

Algorithm 1. The threshold EM algorithm 

 
We describe in table 2 an example of using the threshold 

algorithm in one iteration : 

TABLE I.  AN EXAMPLE 

 

Min 0,0566 0.07 

Max 0.5 0.5 

i,j,k (t) 0.6206  0.3794  

Regularization 0.5  0.3794  

Normalization 0.5686  0.4314  

 
We see that the new parameter calculating in one step 

reduces the violations of the constraint mentioned  in equation 
(12).    

 
Figure 1. The threshold EM algorithm 

IV. EXPERIMENTS 

During this section, we compare our algorithm to the EM 
algorithm. We apply this work in brain tumor diagnosis. We 
use the Bayesian Network Toolbooxs (BNT) by Murphy to 
test our algorithm. The bayesian network as shown in Fig1 is 
created in these experiments. Then, 72 instances are collected 
from a real diagnosis and we mention that not all the variables 
are instanced. 

The dataset use to learn the bayesian network parameters is 
composed by 72 instances of each node tacked from a real 
cases collected by a specialist in brain tumor diagnosis. All 
these nodes are discrete and takes between two and 8 values. 
The percentage of the missing data in this dataset is equal to 
37.16%. The majority of missing data is in the intermediate 
nodes of the bayesian network. The causes of the missing data 
are the quality of IRM images or the doctor forgot to mention 
all the details in this report.    

  

 
Figure 2. The Bayesian Network structure 

 
The different meanings of names used in the figure are 

detailed in Table II and III. 

TABLE II.  TABLE TYPE STYLES 

Node name signification 

AG Age 

CK Cystic component 

CL Calcification 

CP Composition 

DM Medical record 

DT Decision Tumor 

ECC Flooding Corpus Callosum 

EDA State Auxiliary Data 

EDE State data encephalic 

EDL Liquide state data 

EDT Tumor state data 

EM Radiologic state 

Ems Mass effect 

EPC State taking contrast 

EPS Signal taking state 

 
We show in Figure 3 the comparison between EM 

algorithm and the threshold EM algorithm (TH_EM) 
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concerning the log-likelihood function which is defined as 
follows : 

, , , ,

1 1 1

LL(D| ) = log L(D| )= log
i iq rn

i j k i j k

i j k

N  
  


  (15)

 

 where : 

n is the node number. 

qi is node i parents configuration number. 

ri the number state of node i  

Ni,j,k i    is the number of cases where the node i is in state k and 

its parents are in configuration j. 
θi,j,k  is the parameter value where node i is in state k and ists 

parents are in configuration  j. 

TABLE III.  TABLE TYPE STYLES 

Node name signification 

ES State clinic 

HM Hemorrhage 

IPC Importance of taking Contrast 

LT Tumor location 

LTT Tumor limit 

MA Diseases auxiliary 

NT Tumor number 

PI first Infection 

Poe Edema presence 

PST1 Making the Signal in  T1 

PST2 Making the signal in T2 

SG seat 

SX Sex 

TPC Type of taking Contrast 

TT Tumor size 

 
Equation 15 allows to give the performance parameters 

calculated in the Bayesian network. The Log-Likelihood gives 
the parameters that best describe the training set. This value is 
updated at each iteration in the EM algorithm. 

We show in this graphic that these functions are already 
the same. The log-likelihood of the TH_EM algorithm is lower 
than the log-likelihood of the EM algorithm.  

 
 

Figure 3. Comparison of the log-likelihood between TH_EM and EM 

algorithms 

This test is applied when we fix the same starting points in 
the two algorithms. We see that the convergence of our 
algorithm is quickly than EM algorithm. This result is shown 
in 70% of cases when we change the starting points of the two 
algorithms (figure 4). In addition, we see that the probability 
distribution in each node is modified. Each probability is 
between the two bounds calculating with the first step of the 
RBE algorithm or error rate become smaller. One advantage of 
our algorithm consists of the absence of zero probability in 
each probability distribution.   

The convex combination of the two bounds calculated in 
the first step of the RBE algorithm external information to get 
the parameters of any bayesian networks. This task becomes 
difficult when you have a complex structure. Our proposed 
method deletes the use of this information to get the 
conditional probability tables of our bayesian network.    

V. CONCLUSION 

In real application, training data in Bayesian network are 
always incomplete or some nodes are hidden. Many learning 
parameter algorithms are suggested foreground EM, Gibbs 
sampling and RBE algorithms. In order to limit the search 
space and escape from local maxima produced by executing 
EM algorithm, this paper presents a learning parameter 
algorithm that is a fusion of EM and RBE algorithms. This 
algorithm incorporates the range of a parameter into the EM 
algorithm. The threshold EM algorithm is applied in brain 
tumor diagnosis and show some advantages and disadvantages 
over the EM algorithm 
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Figure 4. Log-likelihood with different starting points

 


