
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

99 | P a g e
www.ijacsa.thesai.org

Workshare Process of Thread Programming and MPI

Model on Multicore Architecture

R. Refianti
1
, A.B. Mutiara

2
, D.T Hasta

3

Faculty of Computer Science and Information Technology, Gunadarma University,

 Jl. Margonda Raya No.100, Depok 16424, Indonesia

Abstract—Comparison between OpenMP for thread

programming model and MPI for message passing programming

model will be conducted on multicore shared memory machine

architectures in order to find which has a better performance in

terms of speed and throughput. Application used to assess the

scalability of the evaluated parallel programming solutions is

matrix multiplication with customizable matrix dimension. Many

research done on a large scale parallel computing which using

high scale benchmark such as NSA Parallel Benchmark (NPB)

for their testing standardization [2]. This research will be

conducted on a small scale parallel computing that emphasize

more on the performance evaluation between MPI and OpenMP

parallel programming model using self created benchmark. It

also describes how workshare processes done on different parallel

programming model. It gives comparative result between

message passing and shared memory programming model in

runtime and amount of throughput. Testing methodology also
simple and has high usability on the available resources.

Keywords-MPI; OpenMP; SMP; Multicore; Multithreading.

I. INTRODUCTION

The growth of multicore processors has increased the need
for parallel programs on the largest to the smallest of systems
(clusters to laptops).There are many ways to express
parallelism in a program. In HPC (High Performance
Computing), the MPI (Message Passing Interface) has been the
main tool for parallel message passing programming model of
most programmers [1,3].

A multi-core processor looks the same as a multi-socket
single-core server to the operating system. (i.e. before multi-
core, dual socket servers provided two processors like today’s
dual core processors) Programming in this environment is
essentially a mater of using POSIX threads. Thread
programming can be difficult and error prone. OpenMP was
developed to give programmers a higher level of abstraction
and make thread programming easier. Accordance to multicore
trend growth, parallel programming using OpenMP gains
popularity between HPC developers. Together with the growth
of thread programming model on shared memory machines,
MPI which has been intended for parallel distributed systems
since MPI-1, also has improved to support shared memory
systems. The principal MPI-1 model has no shared memory
concept, and MPI-2 has only a limited distributed shared
memory concept. Nonetheless, MPI programs are regularly run
on shared memory computers. MPI performance for shared
memory systems will be tested on cluster of shared memory

machines. OpenMP will be used as a reference on the same
multicore systems with MPI clusters (both MPI and OpenMP
will have an equal amount of core workes)[2].

Application used as a testing is N×N rectangular matrix
multiplication with adjustable matrix dimension N ranging
from 10 to 2000. For OpenMP, a single multicore machine
with two worker cores will be used to calculate the matrix. For
the MPI, two multicore machines with three worker cores will
be used (one as a master process who decompose the matrix to
sub - matrix and distribute it to two other worker process and
compose the final result matrix from the sub - matrix
multiplication done by its two worker process).

Parameter results which can be obtained from this test are
amount of floating point operation per second (FLOPS) which
in this case is matrix multiplication, Program Running Time,
and Speedup. For MPI, two machines are used for testing
having quite similar performance (Memory and CPU
performance). MPI testing is done via LAN cable medium
transmission to achieve best run time performance and
minimizing time communication between processes.

There is already related research topic in this area. One of
them did the testing by using certain parallel benchmark such
as NAS Parallel benchmark (NPB) to standardize the
evaluation on large clusters and ten to hundreds of CPU cores
[2], which can produce large speedup and throughput.

This research is simpler compared than the previous
research which uses tens or hundreds machine resources and
complicated benchmark. This research focused on how does
different parallel programming model can affect the program
performance. Testing in this research done by using a self
created benchmark which counts the program running time and
matrix multiplication operation per second.

This research describes how workshare processes done on
different parallel programming model. This research gives
comparative result between message passing and shared
memory programming model in runtime and amount of
throughput. Testing methodology also simple and has high
usability on the available resources.

Problem covered in this research are:

 How does different parallel programming model
influence parallel performance on different memory
architecture?

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

100 | P a g e
www.ijacsa.thesai.org

 How does workshare construct differ between shared
and distributed shared memory systems?

Objectives of this research are:

 Evaluating parallel performance between thread and
message passing programming model.

 Evaluating parallel algorithm workshare between
threads and message passing programming model.

Testing experiment conducted on a single multicore shared
memory machine which consist of two cores for thread
programming model (OpenMP). And two identical multicore
shared memory machines with two cores on each machine for
message passing programming model without expressing
thread safety level. Matrix Multiplication Program used for
testing also has a limited dimension which is 2000, because of
the machine power limitation. Testing parameters generated are
amount of floating point operation per second (FLOPS) which
in this case is matrix multiplication, Program Running Time,
and Speedup.

II. FUNDAMENTAL THEORY

Parallel computing is a form of computation in which many
calculations are carried out simultaneously, operating on the
principle that large problems can often be divided into smaller
ones, which are then solved concurrently ("in parallel").
Parallel computing is done by a certain amount of parallel
computers. Each of parallel computer may has different CPU
core and memory architecture

Parallel computers can be roughly classified according to
the level at which the hardware supports parallelism. Currently
there are three types which are shared memory (which usually
has multiple core processor), distributed memory (clusters,
MPPs, and grids), and Distributed shared memory (cluster of
Shared memory systems).

A. Shared Memory Systems

In computer hardware, shared memory refers to a
(typically) large block of random access memory that can be
accessed by several different central processing units (CPUs) in
a multiple-processor computer system. A shared-memory
parallel computer whose individual processors share memory
(and I/O) in such a way that each of them can access any
memory location with the same speed; that is, they have a
uniform memory access (UMA) time. Each of individual
processor in shared memory system has a small and fast private
cache memory. Cache memory used to supply each core
processor with data and instruction at high rates. This is
because fetching data done from processor to main memory
directly is slower than fetching it from cache memory.

The issue with shared memory systems is that many CPUs
need fast access to memory and will likely cache memory [4],
which has two complications:

 CPU-to-memory connection becomes a bottleneck.
Shared memory computers cannot scale very well.
Most of them have ten or fewer processors.

 Cache coherence: Whenever one cache is updated with
information that may be used by other processors, the

change needs to be reflected to the other processors;
otherwise the different processors will be working with
incoherent data. Such coherence protocols can, when
they work well, provide extremely high-performance
access to shared information between multiple
processors. On the other hand they can sometimes
become overloaded and become a bottleneck to
performance.

However, to avoid memory inconsistency as already
mentioned above, there is a cache memory which can be shared
to all processor. Shared cache memory can be used for each
core processor to write and read data. Figure.1 gives
information about cache memory.

Figure 1. Block diagram of a generic, cache-based dual core processor

B. Distributed Memory

In computer science, distributed memory refers to a
multiple-processor computer system in which each processor
has its own private memory. In other words each processor will
resides on different computer machine. Computational tasks
can only operate on local data, and if remote data is required,
the computational task must communicate with one or more
remote processors [5]. In a distributed memory system there is
typically a processor, a memory, and some form of
interconnection that allows programs on each processor to
interact with each other. The interconnection can be organized
with point to point links or separate hardware can provide a
switching network. The network topology is a key factor in
determining how the multi-processor machine scales. The links
between nodes can be implemented using some standard
network protocol (for example Ethernet), etc. Figure.2 shows
distributed memory systems architecture.

In contrast, a shared memory multi processor offers a single
memory space used by all processors. Processors do not have
to be aware where data resides, except that there may be
performance penalties, and that race conditions are to be
avoided.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

101 | P a g e
www.ijacsa.thesai.org

Figure 2. An illustration of a distributed memory system of three computers

C. Distributed Shared Memory

Distributed Shared Memory (DSM), also known as a
distributed global address space (DGAS), is a term in computer
science that refers to a wide class of software and hardware
implementations, in which each node of a cluster has access to
shared memory in addition to each node’s non-shared private
memory. The shared memory component is usually a cache
coherent SMP machine. Processors on a given SMP can
address that machine’s memory as global. The distributed
memory component is the networking of multiple SMPs. The
SMPs know only about their own memory - not the memory on
another SMP. Therefore, network communications are required
to move data from one SMP to another. Figure.3 describes
about distributed shared memory.

Figure 3. An illustration of a distributed shared memory system

D. Parallel Programming Models

All of those parallel hardware classifications need
programming language which has a capability to share or
divided the work among processors. Concurrent programming
languages, libraries, APIs, and parallel programming models
have been created for programming parallel computers. These
can generally be divided into classes based on the assumptions
they make about the underlying memory architecture which are
shared memory, distributed memory, or shared distributed
memory [6]. A parallel programming model is a set of software
technologies to express parallel algorithms and match
applications with the underlying parallel systems. It encloses
the areas of applications, programming languages, compilers,
libraries, communications systems, and parallel I/O.

Parallel models are implemented in several ways: as
libraries invoked from traditional sequential languages, as

language extensions, or complete new execution models. They
are also roughly categorized for two kinds of systems: shared-
memory system and distributed-memory system, though the
lines between them are largely blurred nowadays.

Shared memory programming languages communicate by
manipulating shared memory variables through threads.
Threads used as subtasks which carry instruction process to one
/ more core processor. However, one thread only can carry one
instructions process at a certain time. In other words, multiple
threads can carry multiple instruction process Distributed
memory uses message passing. POSIX Threads and OpenMP
are two of most widely used shared memory APIs, whereas
Message Passing Interface (MPI) is the most widely used
message-passing system API. Shared memory systems use
threads whereas distributed memory systems use message
passing task and communication carried out by message
passing over network transmission. A programming model is
usually judged by its expressibility and simplicity, which are by
all means conflicting factors. The ultimate goal is to improve
productivity of programming.

1) OpenMP
OpenMP (Open Multi-Processing) is an application

programming interface (API) that supports multi-platform
shared memory multiprocessing programming in C, C++ and
FORTRAN on much architecture, including UNIX and
Microsoft Windows platforms. It consists of a set of compiler
directives, library routines, and environment variables that
influence run-time behavior [7]. OpenMP is an implementation
of multithreading, a method of parallelization whereby the
master "thread" (a series of instructions executed
consecutively) "forks" a specified number of slave "threads"
and a task is divided among them. The threads then run
concurrently, with the runtime environment allocating threads
to different processors. Hence, OpenMP is one of thread based
parallel programming which will be used in this research.
Figure.4 gives a better understanding about multithreading.

Figure 4. The fork-join programming model supported by OpenMP

OpenMP uses pragma directives to express parallelism in
the code block. Parts of the program that are not enclosed by a
parallel construct will be executed serially. When a thread
encounters this construct, a team of threads is created to
execute the associated parallel region, which is the code
dynamically contained within the parallel construct. But
although this construct ensures that computations are
performed in parallel, it does not distribute the work of the
region among the threads in a team. In fact, if the programmer

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

102 | P a g e
www.ijacsa.thesai.org

does not use the appropriate syntax to specify this action, the
work will be replicated. At the end of a parallel region, there is
an implied barrier that forces all threads to wait until the work
inside the region has been completed. Only the initial thread
continues execution after the end of the parallel region [8].

The thread that encounters the parallel construct becomes
the master of the new team. Each thread in the team is assigned
a unique thread number (also referred to as the "thread id") to
identify it. They range from zero (for master thread) up to one
less than the number of threads within the team, and they can
be accessed by the programmer.

2) MPI
Message Passing Interface (MPI) is an API specification

that allows computers to communicate with one another. It is
used in computer clusters and supercomputers. MPI is a
language-independent communications protocol used to
program parallel computers. Both point-to-point and collective
communication are supported. MPI is a message-passing
application programmer interface, together with protocol and
semantic specifications for how its features must behave in any
implementation. MPI’s goals are high performance, scalability,
and portability [9]. MPI is not sanctioned by any major
standards body; nevertheless, it has become a de facto standard
for communication among process that model a parallel
program running on a distributed memory system. Actual
distributed memory supercomputers such as computer clusters
often run such programs. The principal MPI-1 model has no
shared memory concept, and MPI-2 has only a limited
distributed shared memory concept. Nonetheless, MPI
programs are regularly run on shared memory computers.

The MPI interface is meant to provide essential virtual
topology, synchronization, and communication functionality
between a set of processes (that have been mapped to
nodes/servers/computer instances) in a language-independent
way, with language-specific syntax (bindings), plus a few
language-specific features. MPI programs always work with
processes, but programmers commonly refer to the processes as
processors. Typically, for maximum performance, each CPU
(or core in a multi-core machine) will be assigned just a single
process. This assignment happens at runtime through the agent
that starts the MPI program (i.e. MPI daemon), normally called
mpirun or mpiexec. Computer machine that initiates MPI ring
daemon will have process manager in its core CPU. Process
manager identified with ID 0 and all of his worker have ID
greater than 0.

The initial implementation of the MPI 1.x standard was
MPICH, from Argonne National Laboratory (ANL) and
Mississippi State University. ANL has continued developing
MPICH for over a decade, and now offers MPICH 2,
implementing the MPI-2.1 standard.

III. WORKSHARE METHODOLOGY

A. Matrix Multiplication Workshare Algorithm

Matrix multiplication structure is as defined in Figure.5

Figure 5. Matrix Multiplication Structure

Multiplying two NN matrices in sequential algorithm

takes obviously for each element N multiplications and 1N

additions. Since there are 2N elements in the matrix this

yields a total of 1)(2*2 NN floating-point operations, or

about 32N for large N , that is ,)(3NO [10].

Parallel algorithm workshare does not change matrices
multiplication arithmetic operations. It only change the
execution sequence for multiple processors. However, the
complexity / operation count will change because of the
workshare between core processors.

B. MPI Workshare Algorithm

MPI shares heir work among processing units by using

message passing across network. Process identification

between core CPU (both on the same computer and different

computer) is similar with OpenMP (i.e. ID = 0 master process,

ID >0 worker process).

Parallel programming model using message passing is

similar with UNIX socket programming in which process
manager can send a chunked task to all of his worker process

and receive computation result from all of his worker [11].

Matrix Multiplication between two rectangular matrixes

can be shared between processes using a certain rule. One of

the rules is to make the master process as the process manager

which divided and distribute matrix elements according to the

number of CPU core workers. Thus, if there is 4 process used,

1 will be used as process manager and the other 3 will be used

as worker process. Process ID 0 will become process manager

and process ID 1 to 2 as workers. There are several MPI model

to distribute matrix among the worker processes and one of
them is row based distribution.

In row based distribution, For example there are two N × N

matrixes, Aij and Bij, which will be multiplied. All of matrix Bij

elements (rows and columns) will be sent to all worker

processes which are done by master process. For matrix Aij,

before it is sent, it will be first divided according to its amount

of row. For example if matrix Aij has 4 rows and there are 3

workers available, each process will has 4/3 which is 1 row

with another 1 residual row value generated from the

arithmetic division. The residual row value will be added to

the worker process which has ID lower or equal than amount

of residual row value in a for repetition order (start from
worker ID 1 to 2). Thus, 1 residual row value will be added to

worker process ID 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

103 | P a g e
www.ijacsa.thesai.org

Figure 6. Matrix A Row Based Division

Figure 7. Matrix B Distribution

Figure. 6 gives row based distribution analogy. Worker
process ID 1 work on 2 rows because there is a residual value
from the arithmetic division operation. Another reason why
worker ID 1 which receives extra row is because worker ID 1 is
the first worker process found on the iteration.

Offset variable value will be added for each row sent to
worker process. Note that offset variable has a crucial role for
keeping track of matrix A row index so that each worker
process knows which row index needs to be worked on. While
Figure.7 shows how all of rows and columns of matrix b sent to
all worker process.

Matrix jiC , with NN dimensions will be used to hold

the matrix result elements. The computation of a single i row

element jC1, (for Nj 1,2,..=) requires an entire matrix

element of ijB and a subset row element of qjA (where iq

), respectively. Because each worker process has those required
element, For number P process used, each 1P worker

process can compute row element of jextraPiC ,1))/(((for

Nj 1,2,..=) (where extra is an residual variable value and

may has different value for different 1P). Matrix
computation for each of worker process is shown in Figure. 8.

After the sub process multiplication is done in each process,
they will send back their matrix result and offset variable value
to the master process. For each value received from worker
process, master process will generate the final matrix result
according to the number offset variable.

The most important thing in this matrix operation division
is that there is no dependent data between each sub process
matrix multiplication. Thus, there is not any data
synchronization needed between sub processes, which can
reduce program complexity.

MPI Matrix Multiplications algorithms workshare is
divided into two parts, one is for master process and the other is
for work process.

Figure 8. Matrix Multiplication For Each Worker Process

Master process algorithm steps are:

1. Value of matrixes is initialized using random function.

2. Wall time calculation process started using

MPI_Wtime() function.

3. Row for each worker process is calculated including

additional residual value.

4. Matrix A sub rows sent to all of worker process

according to the row and offset variable. Offset

variable will be iterated for each sent process.

5. All of Matrix B elements sent to all of worker process.

6. Master process wait to receive all of sub matrix results

which will be sent from all worker processes.

7. Wall time calculation process stopped. Time interval

between end and start time is calculated.
8. Total matrix operation is calculated using formula

1)(2*2 NN in floating point type variable

9. Matrix operation per second in FLOPS is calculated by

dividing the total matrix operations by the matrix

runtime interval. For simplicity, FLOPS is converted

into MFLOPS (i.e. Mega Floating Point Operation per

Second) by dividing it again with (10
6
).

Worker process algorithm steps are:

1. Each worker process receive a subset rows of Matrix

A, according to the offset variable sent from master

process.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

104 | P a g e
www.ijacsa.thesai.org

2. Each worker process receive all elements (rows *

columns) of Matrix B which is sent from master

process.

3. Matrix multiplication process is done for each worker

process.

4. Each worker process send their sub rows of matrix C

back to the master process.

In DSM machine architectures, communication cost is
classified into two different types. First is communication cost
between process which located on different machines, and
second is communication cost between processes which located
on same machines.

For communication cost between worker and master
process which located on different machines over the network
for matrix distributions, can be roughly calculated as:

 Cost distributing sub matrix A and matrix B to all

worker process: ctPNNP *1)))/(()((*1)(22 ,

which is equal to ctPN *2 (where ct represents the

time it takes to communicate one datum between
processors over the network)

 Cost for receiving matrix result from all worker

process: cc tNtPNP **1))/((*1)(22 .

 Total Communication cost:

cc tNPtNPN *1)(*)(222 .

For communication cost between worker and master
process which located on the same machines, its distribution
process steps can be assumed to be same with the
communication over the network with exception that time takes

to communicate one datum between processors is not ct but ft

, where ft is represents the time it takes to communicate one

datum between processors over the shared memory which is

faster than ct . Thus communication over the shared memory

can be calculated as ff NPtNPN *1)(*)(222 .

For distributed shared memory, the communication cost in
shared memory side can be ignored because its fast and its
assumed not influence the performance runtime.

Matrix multiplication complexity in this parallel program is
divided into amount of worker process which is 1P from the
total amount of P process used. Thus, total matrix
multiplication complexity in MPI for each worker process can

be defined as 1))/((3 PNO .

C. OpenMP Workshare Algorithm

Because OpenMP is an implementation of multithreading
which uses multiple thread as it instruction carrier, OpenMP
share their work among the amount of threads used in a parallel
region. Thread classified into two types: master thread and
worker thread [11].

By default, each thread executes the parallelized section of
code independently. "Work-sharing constructs" can be used to
divide a task among the threads so that each thread executes its
allocated part of the code. Both Task parallelism and Data
parallelism can be achieved using OpenMP in this way.

To determine how worksharing is done in OpenMP,
OpenMP offer worksharing construct feature. Using
worksharing construct, programmer can easily distribute work
to each thread in parallel region in a well ordered manner.
Currently OpenMP support four worksharing construct.

 omp for: used to split up loop iterations among the
threads, also called loop constructs.

 sections: assigning consecutive but independent code
blocks to different threads

 single: specifying a code block that is executed by only
one thread, a barrier is implied in the end

 Master: similar to single, but the code block will be
executed by the master thread only and no barrier
implied in the end.

Since OpenMP is a shared memory programming model,
most variables in OpenMP code are visible to all threads by
default. But sometimes private variables are necessary to avoid
race conditions and there is a need to pass values between the
sequential part and the parallel region (the code block executed
in parallel), so data environment management is introduced as
data sharing attribute clauses by appending them to the
OpenMP directive. The different types of clauses are:

 shared: the data within a parallel region is shared,
which means visible and accessible by all threads
simultaneously. By default, all variables in the work
sharing region are shared except the loop iteration
counter.

 private: the data within a parallel region is private to
each thread, which means each thread will have a local
copy and use it as a temporary variable. A private
variable is not initialized and the value is not
maintained for use outside the parallel region. By
default, the loop iteration counters in the OpenMP loop
constructs are private.

 default: allows the programmer to state that the default
data scoping within a parallel region will be either
shared, or none for C/C++, or shared, firstprivate,
private, or none for Fortran. The none option forces the
programmer to declare each variable in the parallel
region using the data sharing attribute clauses.

 firstprivate:like private except initialized to original
value.

 lastprivate: like private except original value is updated
after construct.

 reduction: a safe way of joining work from all threads
after construct.

Matrix multiplication workshare between threads in
OpenMP, is done for each matrix row similar to MPI. The

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

105 | P a g e
www.ijacsa.thesai.org

difference is that MPI distribute its matrix element by sending
it to all worker process, while OpenMP only need to declare the
scope of matrix element variable as shared or private.Take an
example, matrix multiplication between two N×N matrixes Aij
and Bij which result will be contained in matrix Cij. Each
Matrix has 4 rows (i=4) and number threads used is 2 (t=2).

Rows distribution process done using workshare construct
"pragma omp for" which is placed on the outer most of for loop
repetitions. Thus, each thread (t) will responsible for
calculating each matrix Ci row for all j column elements.

The amount of rows distributed to number of threads is
determined by schedule clause. There are 3 types schedule
clause (static, dynamic, and guided). Static schedule distribute
iterations equally among all of threads (if there is a residual
iterations, threads which has done its job first will be assigned
to work on that iterations). Dynamic and guided allows
iterations to be assigned to threads according their chunk size
defined by programmer. In this program, iteration distribution
among threads will be done using static schedule. To
understand better how does matrix multiplication done in
OpenMP look at Figure.9.

Figure 9. OpenMP Matrix Multiplication Algorithm Scheme

Figure.9 scheme gives us matrix multiplication process for
two different time executions (t1 and t2). Because there are 4
rows in matrixes and only 2 thread used in programs, there will
be 2 residual rows which will be assigned again to those two
threads in different time. In t1, 2 threads (ID 0 and 1) will
calculate first and second rows. After those two thread finished
(assumed that time execution for each thread is same), in t2
time, those 2 threads will calculate again for third and fourth
rows.

Determining how many threads should be used in a parallel
region is quite tricky. For the same operation performed by all
threads (e.g. matrix multiplication) the most optimal number
threads used is the same amount as the total number of cores
available. But if in a parallel region consist a various operation
(e.g. print, open file, read file, etc) using more than amount of
CPU core might be a good idea. In this case, amount of thread
can be determined by first, calculating operation cost for each
different operation. Thus, number of threads used in matrix
multiplication program must equal to the number of CPU cores.

The difference between MPI and OpenMP in process
management is that MPI needs its master process to do only a
specific job, which is distributing matrix elements, receiving
the result calculation, and generating matrix result apart from
calculating sub matrix like its workers. The reason behind this
is to reduce parallel overhead when calculating a large of

matrix dimension over network transmission. Hence, master
process can focus only on managing and distributing data.

Unlike MPI in OpenMP, process management and
synchronization is done in the same memory (i.e shared
memory) and not only master thread but all of thread also
responsible of thread synchronization. Hence, master thread
can also participate in the matrix multiplication process.

OpenMP matrix multiplication algorithm steps are:

1. Initializing matrixes value using random function

2. Wall time calculation process started using

omp_get_wtime() function.

3. Matrix multiplication process for each thread is

conducted using pragma omp parallel directives and

pragma omp for workshare construct.

4. Wall time calculation process stopped. Time interval

between end and start runtime calculation process is

calculated.

5. Total matrix operation is calculated using formula

1)(2*2 NN in floating point type variable

6. Matrix operation per second is calculated in FLOPS

and then converted in MFLOPS which same with MPI.

Unlike MPI, which communication is done using message
passing, communication cost in OpenMP is conducted between
threads which is assumed to be fast and insignificant to the
performance. Thus its time calculation can be ignored in this
algorithm.

Matrix multiplication complexity in OpenMP parallel is
divided into amount of threads which is t including master
threads. Thus, total matrix multiplication complexity in

OpenMPI for each thread can be defined as)/(3 tNO (where

number of threads is equal to number of CPU cores).

IV. RESULT AND DISCUSSION

A. Performance Test

Matrix multiplication algorithm tested ranging from
dimension 100 up to 2000 on a three different scenario:
sequential algorithm, MPI algorithm, and OpenMP algorithm.
For OpenMP and sequential program, test was done on a single
Intel core duo 1.7 Ghz T5300 laptop with 1GB RAM running
on linux SUSE. For MPI program test was done on a two Intel
core duo laptops one with frequency 1.7 GHz T5300 laptop
with 1GB RAM running on Windows Xp SP3 and another one
with frequency 1.83 GHz T5500 with 1GB RAM running on
Windows-XP SP3.

Number of threads used in OpenMP is two (one master
thread, and the other one is worker thread). Unlike OpenMP,
number of process used is three (two worker process and one is
master process). The reason is already discussed in the previous
section. However, the number of worker process / threads
which performed the matrix multiplication process is equal for
both programming models (i.e. two workers).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

106 | P a g e
www.ijacsa.thesai.org

Because there are three processes used in MPI which will
be distributed on two multicore / SMP machines (i.e each
machines will have two cores), one of the two machines will
have its both of core CPUs occupied (i.e master process and
worker process). Computer which initiates the MPI ring
daemon has a master process in one of its core. Thus, computer
machine with master process in it will also have a worker
process, and the other machine will only has one worker
process.

Statistical analysis conducted on one independent variable
(i.e. Matrix Dimension) towards three dependent variable(e.g.
runtime program, throughput program, and speedup). Using
this statistical analysis, matrix dimension (i.e. as an
independent variable) influence towards all of three dependent
variable can be seen clearly.

B. Statistical Analysis Result

1) Parallel Runtime Towards Matrix Dimension
Table I. gives run time program obtained using wall time

function for three different program (e.g. sequential, OpenMP,
MPI). Wall time is the actual time taken by a computer to
complete a task (i.e matrix multiplication). It is the sum of three
terms: CPU time, I/O time, and the communication channel
delay (e.g. if data are scattered on multiple machines (MPI)).

In OpenMP, wall time is calculated using omp_get_wtime()
which starts from when the initial thread enter the parallel
region until it exits the parallel region. Thus, process times
calculated are thread creation, synchronization and
multiplication tasks.

In MPI, wall time is calculated using MPI_Wtime() which
starts from when the master process distribute the work among
the worker processes until it receives matrix results sent from
all worker processes. Process time calculated in MPI are
communication between master - worker process and matrix
multiplication for all worker process.

For N=100, runtime MPI is much slower up to 10 times
compared to sequential and OpenMP. However For N= 100 to
2000 MPI runtime is gradually become faster compared to
those two. MPI has the fastest runtime performance for N >500.

TABLE I. RUNNING TIME COMPARISON WITH VARIOUS MATRIX

DIMENSION

Matrix Dimension (N) Sequential (s) OpenMP (s) MPI (s)

100 0.03 0.02 0.33

500 2.09 1.11 1.52

1000 22.52 14.36 8.19

2000 240.97 163.60 60.19

2) Parallel Throughput Towards Matrix Dimension
Table II. gives throughput result for three different program

e.g. sequential, OpenMP, MPI). Throughput in MFLOPS is
calculated by dividing number of matrix operations by wall

time and10
6

.

Both sequential and OpenMP has a throughput increase
from N= 100 to 500, however, it starts to decrease from N= 500
to 2000. Nevertheless, MPI is different from the other two, It
has a continuously increased throughput start from N= 100 to

2000. Eventhough, the throughput increase from N= 1000 to
2000 is not as significant as before.

TABLE II. THROUGHPUT COMPARISON WITH VARIOUS MATRIX

DIMENSION

Matrix

Dimension

Sequential OpenMP MPI

(N) (MFLOPS) (MFLOPS) (MFLOPS)

100 59.08 86.82 6.07

500 119.54 224.35 164.85

1000 88.77 139.17 244.17

2000 8.91 13.17 265.77

3) Parallel Speedup Towards Matrix Dimension
Table III. gives speedup performance for two program(e.g.

OpenMP, MPI) towards sequential program. Speedup
performance in this research can be obtained by dividing
wall−clock time of serial execution with wall−clock time of
parallel execution OpenMP has a steady speedup for N= 100 to
2000 which has the average value at 1.5 s, while MPI gives a
linear speed up growth for N= 500 to 2000 ranging from 1.38 s
to 4 s. MPI gives no speedup for N= 100 because the matrix
calculation is to small compared to the MPI running time and
communication time.

TABLE III. SPEED COMPARISON WITH VARIOUS MATRIX DIMENSION

Matrix Dimension (N) OpenMP (s) MPI (s)

100 1.47 0.1

500 1.88 1.38

1000 1.57 2.75

2000 1.47 4

V. CONCLUDING REMARKS

A. Conclusion

OpenMP workshare between threads in matrix
multiplication algorithm, done by using OpenMP FOR
workshare construct. OpenMP FOR workshare in matrix
multiplication algorithm is placed in the most outer loop of
matrix multiplication operation. Using this placement, each
OpenMP thread is assigned to work on each matrix C row for
all columns.

MPI workshare in matrix multiplication algorithm done by
using send and receive command. Matrix A row will be divided
and sent together with all matrix B elements according to the
number of worker process both on the different machines and
the same machines. Each worker process will work on one row
of matrix A multiplied by all row matrix B elements. If there
are residual row, it will be added one each from the smallest
worker process ID to the biggest worker ID.

The performance between OpenMP and MPI programming
model is vary for matrix dimension N from 1 to 2000, although
many standardizations made for both of parallel programming
models (e.g. number of matrix workers, matrix algorithm steps,
and machine specifications). Matrix multiplication complexity
is divided for the same number of worker (i.e threads if its

OpenMP with the complexity of 1))/((3 PNO and process if

its MPI with the complexity of)/(3 tNO). Machine

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

107 | P a g e
www.ijacsa.thesai.org

specifications used in MPI also comparable with OpenMP
which are: Intel Core Duo 1.7 GHz (for OpenMP) and Intel
Core Duo 1.7 GHz together with Intel Core Duo 1.83 GHz both
with 1 GB of RAM (for MPI).

Performance decline is common in every program testing
performance especially when the data testing becomes large.
This is due to the resources limitation (CPUs, memory, etc).
However for different programming models which use the
same resources and algorithm program, there are more reasons
than just resources limitations.

For sequential because the worker process only one, its
obvious that its overall performance is lower than the other
two. For the MPI and OpenMPI, differences can be caused by
how fast the workshare is done between worker processes /
thread. MPI use message passing in sharing its work across
processes which has network communication time over the
network medium. In the other hand, OpenMP use thread in
sharing its work inside shared memory machine which has no
network communication time. Hence, OpenMP workshare
should be faster than MPI. This can be seen at Table I, II, and
III. OpenMP gains fast speedup and large throughput for N=
100 to 500 while MPI gains slower but steady speedup and
throughput. However, when as N grows larger (i.e N= 500 to
2000) OpenMP performance is gradually become slower while
MPI can still keep up with the growth of N.

Besides, the speed of the workshare, performance
differences between OpenMP and MPI for large N computation
can be caused by core CPUs access to memory. In parallel
computing, memory is scalable with number of processors.
Thus, increase in the number of processors and the size of
memory will also increases the performance scalability.

MPI distribute its work by copying it on each worker
process whether its located on the same memory or different
memory machine. Thus, each processor which located on
different machine can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency (i.e MPI provides strong memory
locality).

For this research, MPI is tested on distributed shared
memory architectures using two SMP (Symmetric
Multiprocessor) machines. MPI share two worker process
between two different machines, thus MPI distribute the copy
data located in different machines. Two worker processes can
access its data on its own memory which will reduced the
overhead half compared on single memory.

OpenMP in the other hand, use a single memory which is
shared between core CPU in computer machine (UMA).
Hence, the primary disadvantage is the lack of scalability
between memory and CPUs. Adding more CPUs can
geometrically increases traffic on the shared memory-CPU
path, which leads to difficulty maintaining cache coherent
systems between processors.

Therefore, the larger memory used in OpenMP, the more
congested traffic on the shared memory-CPU path which result

in bottleneck. Increase in traffic associated with cache/memory
management will produce more parallel overhead while
maintaining cache coherency. OpenMP matrix program
experienced this problem for N= 500 to 2000. The reason why
the performance in OpenMP is decreasing starting from N= 500
to 2000 is because traffic on the shared memory-CPU path is
gradually become more congested for memory equal to 1GB.
This can be seen at Table.III, where OpenMP does not give any
more speedup than 1.5 s.

B. Future Work

Message Passing and Thread has been combined in a DSM
(Distributed Shared Memory) parallel architecture to achieve a
better performance results in nowadays. In this research MPI
parallel expression used on shared memory architectures, has
not exploited the thread safety programming explicitly. Using
thread safety expression, MPI can explicitly control the threads
which running multiple cores across SMP machines. This
Message Passing - thread model also referred as Hybrid
parallel programming model. In the next research, Hybrid
parallel programming model will be used as evaluation material
on DSM (Distributed Shared Memory) architecture.

ACKNOWLEDGMENT

The authors would like to thank to Gunadarma Foundation.

REFERENCES

[1] Scalable High Performance Message Passing over InfiniBand for

OpenMP, 2007

[2] Performance Evaluation of MPI, UPC and OpenMP on Multicore
Architectures, 2009

[3] Answers, Message Passing Interface, 2010,

http://www.answers.com/topic/message-passing-interface, accessed on
August 2010

[4] Answers, Shared memory, 2010, http://www.answers.com/topic/shared-

memory, accessed on August 2010

[5] Answers, Distributed memory, 2010,
http://www.answers.com/topic/distributed-memory, accessed on August

2010

[6] Answers, Parallel programming model, 2010,
http://www.answers.com/topic/parallel-programming-model, access on

August 2010

[7] R. V. D. P. Barbara Chapman, Gabriele Jost, Using OpenMP. The MIT

Press, 2007

[8] B. Barney, OpenMP, 2010, https://computing.llnl.gov/tutorials/openMP/,
accessed on August 2010

[9] B. Barney, Message passing interface (mpi), 2010,

https://computing.llnl.gov/tutorials/mpi/, accessed on August 2010

[10] D. a. May, Matrix multiplication using mpi

[11] hpccommunity, Multi-core Strategies: MPI and OpenMP, 2010,
http://www.hpccommunity.org/f55/multi-core-strategies-mpi-openmp-

702/, access on August 2010

AUTHORS PROFILE

R. Refianti is a Ph.D-Student at Faculty of Computer Science and

Information Technology, Gunadarma University.

A. B. Mutiara is a Professor of Computer Science at Faculty of Computer
Science and Information Technology, Gunadarma University

D.T. Hasta, Graduate from Master Program in Information System,

Gunadarma Unviversity, 2010.

http://www.answers.com/

