
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

126 | P a g e
www.ijacsa.thesai.org

Solving the Vehicle Routing Problem using Genetic Algorithm

Abdul Kadar Muhammad Masum
1

Dept. of Business Administration

International Islamic University Chittagong

Md. Faisal Faruque
3

Dept. of Computer Science & Engineering

University of Information Technology & Sciences

Mohammad Shahjalal
2

Dept. of Electrical & Electronic Engineering

International Islamic University Chittagong

Md. Iqbal Hasan Sarker
4

Dept. of Computer Science & Engineering

Chittagong University of Engineering & Technology

Abstract— The main goal of this research is to find a solution of

Vehicle Routing Problem using genetic algorithms. The Vehicle

Routing Problem (VRP) is a complex combinatorial optimization

problem that belongs to the NP-complete class. Due to the nature

of the problem it is not possible to use exact methods for large

instances of the VRP. Genetic algorithms provide a search

technique used in computing to find true or approximate solution

to optimization and search problems. However we used some

heuristic in addition during crossover or mutation for tuning the
system to obtain better result.

Keywords: Vehicle Routing Problem (VRP); Genetic Algorithm;

NP-complete; Heuristic.

I. INTRODUCTION

The VRP can be described as follows: given a fleet of
vehicles with uniform capacity, a common depot, and several
customer demands, finds the set of routes with overall
minimum route cost which service all the demands [1]. All the
itineraries start and end at the depot and they must be designed
in such a way that each customer is served only once and just
by one vehicle. Genetic algorithms have been inspired by the
natural selection mechanism introduced by Darwin [2]. They
apply certain operators to a population os solutions of the
problem at hand, in such a way that the new population is
improved compared with the previous one according to a pre-
specified criterion function. This procedure is applied for a pre-
selected number of iterations and the output of the algorithm is
the best solution found in the last population or, in some cases,
the best solution found during the evolution of the algorithm. In
general, the solutions of the problem at hand are coded and the
operators are applied to the coded versions of the solutions.
The way the solutions are coded plays an important role in the
performance of a genetic algorithm. Inappropriate coding may
lead to poor performance. The operators used by genetic
algorithms simulate the way natural selection is carried out.
The most well-known operators used are the reproduction,
crossover, and mutation operators applied in that order to the
current population. The reproduction operator ensure that, in
probability, the better a solution in the current population is, the
more (less) replicates it has in the next population. The
crossover operator, which is applied to the temporary

population produced after the application of the reproduction
operator, selects pairs of solutions randomly, splits them at a
random position, and exchanges their second parts. Finally, the
mutation operator, which is applied after the application of the
reproduction and crossover operators, selects randomly an
element of a solution and alters it with some probability. Hence
genetic algorithms provide a search technique used in
computing to find true or approximate solutions to optimization
and search problems.

II. SOLUTION DETAILS

At the beginning an initial generation has to be defined.
This can be done using a random initialization or can use some
kind of seeding which allows the algorithm to work in a search
space where solutions are more likely. From now until a valid
solution is found or the maximal level of allowed generations is
reached, the following steps are performed.

Selection: first we select a proportion of the existing
population to breed a new generation. The selection is done on
a fitness-based approach where fitter individuals are more
likely to breed then others.

Reproduction: during the reproduction phase the next
generation is created using the two basic methods, crossover
and mutation. For every new child a pair of parents is selected
from which the child inherits its properties. In the crossover
process genotype is taken from both parents and combined to
create a new child.

With a certain probability the child is further exposed to
some mutation, which consists of modifying certain genes.
This helps to further explore the solution space and ensure, or
preserve, genetic diversity. The occurrence of mutation is
generally associated with low probability. A proper balance
between genetic quality and diversity is therefore required
within the population in order to support efficient search.

Implementation: We have used C++ programming
language to implement out system. The main advantages of
C++ include a clean object oriented approach. The following
figure describes the flowchart of the system.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

127 | P a g e
www.ijacsa.thesai.org

Import data

Calculate Penalty

Calculate Fitness

Generation

Limitation

Reached?

Output Result

Choose Parents

Cross-over

Method
RSBX SRBX

Mutation?

Select
Mutation

M1 M2

C
ro

ss
-O

v
er

M

u
ta

ti
o
n

Choose

Reparation

Method

Heuristical Insert

Customer

Random insert

customers

Remove Customers

Calculate Penalty

Decide on

Penalty

Keep parent1

or parent2

Keep child

Calculate

fitness

R
ep

ai
r

S
el

ec
ti

o
n

Yes

No

Yes

No

Figure1: Flow Chart of solution of VRP using Genetic Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

128 | P a g e
www.ijacsa.thesai.org

A. Chromosome representation
The individuals of a population in the GA can be seen as an

ordered list of artificial chromosomes where every
chromosome represents a route a truck is going to take. Each
chromosome contains K integers, where K is the number of
genes a chromosome holds. A gene itself is and integer as well
and represents the number of customer. Example of a solution
of 4 trucks with 10 customers.

route1: [2 4 9 10]

route2: [4 6]

route3:[]

route4:[3 1 6 7 8]

Route1 is served by truck1 that visits the ordered list from
left, starting with customer2, to the right ending at the customer
10 before it goes back do the depot. Trucks that aren’t needed
in the solution have and empty list.

B. Chromosome implementation
Each set of chromosomes represent one individual, which is

one possible solution to the VRP(if all constraints are satisfied
then it can be considered as valid solution). Each chromosome
represents a Route and is implemented by a Route object. The
Route Object stores all the genes (references to customer
objects) in an array. The index of the array specifies the
position of the customer in the route. All the routes of a
solution are stored in an array in the VRP Object, where the
index defines the route number. On the top level the
VRPManager stores all the VRP objects which define the
population. The implementation choice to use an array is
optimal for the VRPManager (to hold the VRP objects) and the
VRP objects (to hold the routes) as we have a non-changing
population and set of routes. For the storage of the genes
(customers) a simply linked list world be more suitable then an
array as the insertion and removal process could be faster then
its currently implemented.

C. Crossovers
In genetic algorithms, crossover is a genetic operator used

to vary the programming of a chromosome or chromosomes
from one generation to the next. It is an analogy to
reproduction and biological crossover, upon which genetic
algorithms are based. Both implemented crossovers don’t do
mutual exchange of genetic material between two parents.
They take information from one individual and insert it in the
other to create a new child. The probability which crossover
method should be used can be configured.

D. Mutation
In genetic algorithms, mutation is a genetic operator used to

maintain genetic diversity from one generation of a population
of chromosomes to the next. It is analogous to biological
mutation. The probability which mutations will take place and
if mutation takes place at all can be configured.

E. Reparation
In the reparation process the child first gets checked if it

contains some genetic information too much or is missing
some. In other words, the process checks which customers are
missing on the routes and which ones would be served several

times. Customers that are served more then once are removed
from the chromosomes that one customer is only present one
time. The location from where the duplicated genes are
removed is chosen randomly. Customers that are missing need
to be re-inserted. Here the heuristic comes into place. the
customers are not just inserted in a random location but in a
location where they are applicable. This location is found by
trying to insert a customer to an existing route in a specific
position and checking how much the penalty increase for this
route. This process is now applied to all routes, until the route
and the position in the route is found where the customer adds
the least possible penalty. This step is very time consuming,
therefore this method is just used depending on a defined
probability. Else the customer is just inserted in a random route
at a random position.

F. Penalties
To rate the fitness of a chromosome a special penalty

system was integrated. This principle helps to distinguish good
routes from bad routes. Different aspects are considered when
applying the penalty calculation like the distance of the route or
the delay if a customer is served to late. These different penalty
operators can be individually adjusted.

G. Child or Parent(s)
After the penalties have been calculated for a new child, the

system decides if the child is accepted or not. This process
compares the penalties of its parents with the ones from the
child. If the child does better, it will be accepted for the next
generation. However if the child has a bigger penalty then there
will be another selection process, which favors the parents
depending on their penalties. In this process also the child has a
chance to survive, as it is important for the genetic diversity. If
the child wouldn’t have a chance to survive in case it has a
bigger penalty then its parents, the system would be strictly
monotone decrease the overall penalty level of its hole
population. This however could make the system stuck in local
minimum penalty level from which it couldn’t escape any
more. Therefore its important to give even a bad child a chance
to survive.

H. Fitness
To choose which children from the newly created

population will be favored to breed, the fitness of every
individual has to be computed. This is done by summing up all
the penalties of its chromosomes and using them in the
following formula where the max_penalty is the biggest total
penalty of one individual found in this generation.

Fitness=100*
Penalty

penaltyPenalty

max

max

Therefore the fitness is not an absolute measure like the
penalty(which can be compared over different generations) but
a local measurement for this generation. The Fitness can take
values between 0 (which is assigned to the individual with the
maximal penalty) up to theoretically 100(which is practice is
not reached).

I. Selection process depending on the Fitness
The calculated fitness helps now to select members for the

next generation. This is done using the Roulett Wheel Selection

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

129 | P a g e
www.ijacsa.thesai.org

method where individuals with a higher fitness are more likely
to be selected then others.

III. RESULTS

First we checked our engine with different datafiles. For all
datafiles tested, we found sooner or later a valid solution. Some
solutions were quite good(compared to published values on
the internet) while others were not really satisfying. Here is an
example of a solution which is valid, however we can already
visually tell that its not optimal as there are some bigger
detours which most likely are unnecessary.

Figure2: Route with 50 trucks.

We used a couple of files [7] to measure how long it takes
till the system finds the first valid solution. The following
dump lists the filename of the testdata, the traveling distance of
all trucks, the time all the trucks together spend on the road and
the time it took to find the first valid solution.

file: R101.txt ODist 962 OTime 1140 time: 4.68799996376038

file: R102.txt ODist 770 OTime 1085 time: 5.59299993515015

file: R103.txt ODist 768 OTime 942 time: 5.625

file: R104.txt ODist 717 OTime 1021 time: 5.6100001335144

file: R105.txt ODist 799 OTime 1009 time: 6.0939998626709

file: R106.txt ODist 731 OTime 1048 time: 5.60900020599365

file: R107.txt ODist 727 OTime 1076 time: 5.64099979400635

IV. SYSTEM TUNING

We used some heuristic to place missing customers back to
the different routes after they disappeared during crossover or
mutation. We tried different probabilities on how often the
heuristic should be used and measured the different penalties
we found as an end solution. We have to set a maximal
generation limit which was higher for test runs with lower
heuristic probability then with higher probability that every test

run took more or less the same time.

Figure3a: Heuristic probabilities

Figure3a: Heuristic probabilities

It can be seen, that with a higher heuristic probability,
better results are archived. However if the probability of using
heuristics get close to 1, the penalty increases. Therefore we
used a finer granulation to see what is going on. It looks like if
when the probability gets close to 1, the genetic diversity is not
anymore sufficient and we get struck in a local minimum. It is
observed that the penalty range (indicated by the error bars)
almost collapses where the deviance is much higher else.

Population size: The other important parameter is the
generation size. The next figure shows different generations
sizes combined with different heuristic probabilities. P30 refers
to a population of 30 individuals where p10 represents 10
individuals. R0.3 means that the insertion heuristic was used in
30% of the time.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

130 | P a g e
www.ijacsa.thesai.org

Figure4: population size ½

The first thing that sticks to the eye is, that a higher
heuristic probability results in a lower initial penalty and also
in a lower end penalty, howeer the difference is not that big any
more. The second thing to note is, that the two graphs with a
population size of 10 result in the worst end result. Both the
population with 20 and 30 individuals are doing quite well. The
next graph continues this picture and plots the generations 100
up to 200.

Figure5: population size 2/2

Here now something interesting happens. One would
assume that the population size of 30 results in the best end
result, however in both cases of the different heuristic
probabilities the generation size of 20 finds the best solution.
We ran this tests a couple of time and always got the same
results.

V. BEST POSSIBLE SOLUTION
We checked for different datafiles if we can get close to the

best known solutions and managed to archive the same best

result for the file RC208.txt as it is published on the internet.
The solutions just uses 1 truck which drives the minimal
distance of 328.2.

Figure6: Shortest Path.

VI. CONCLUSION
Genetic algorithms provide a very interesting approach to

solve problems where an exact method can not be applied. We
were a bid disappointed that it took many generations to find a
solution, which was not even really good. Therefore we
decided to implement some custom insertion heuristic which
helps the system to faster approach a good solution. The choice
of the crossover method was pretty intuitive and we can’t
assess if they are good or not. We implemented one that inserts
new elements as a subroute using our heuristic method and
another one, which does a simple sequence based crossover.
We found out that if we put a too high heuristic level, we get
on one hand quite fast good results, however in most cases we
are unable to get to the best results. Therefore we tuned the
system to have a balance between finding fast a solution and
limiting the search space.

REFERENCES
[1] M. Fisher. Vehicle routing. Handbooks of Operations Research and

Management Science, Chapter 1, 8:1-31,1995

[2] Sergios Theodoridis, Konstantinos Kourtoumbas. Pattern Recognition
Second Edition page 582

[3] M.Gendreau, G. Laprte, and J-Y. Potvin. Metaheuristics for the vehicle

routing problem. Management Science, 40:1276-1290,1994.

[4] G. Laporte, M. Gendreuau, J-Y. Potvin, and F. Semet. Classical and

modern heuristics for the vehicle routing problem. International
Transactions in Operational Research, 7:285-300,2000

[5] G. Laporte and F. Semet. Classical heuristics for the vehicle routing

problem. Technical Report G-98-54, GERAD, 1999.

[6] The VRP Web. The vrp web, 2004. URL http://neo.lcc.uma.es/radi-
aeb/WebVRP/index.html?/results/BestResults.h%tm.

[7] Vehicle Routing Data Sets. Vehicle routing data sets, 2003. URL

http://branchandcut.org/VRP/data/

[8] Fogel. D.: An evolutionary approach to the graveling salesman problem.
Biological Cybernetics 60.

http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html?/results/BestResults.h%25tm
http://neo.lcc.uma.es/radi-aeb/WebVRP/index.html?/results/BestResults.h%25tm
http://branchandcut.org/VRP/data/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

131 | P a g e
www.ijacsa.thesai.org

[9] Rochat, Y., Taillard, E.: Probabilistic diversification and intensification

in local search for vehicle routing. J. of Heuristics 1 (1995) 147-167

[10] Croes, G.: A method for solving traveling salesman problems.

Operations Research 6. 791-812

[11] Berger, J., Barkaoui, M.: A hybrid genetic algorithm for the capacitated
vehicle routing problem. In Cantu-Paz, E., ed.: GECCO03, LNCS 2723,

Illinois, Chicago, USA, Springer-Verlag. 646-656

[12] Dantzing, G., Ramster, R.: The truck dispatching problem. Management
Science 6(1959) 80-91

AUTHORS PROFILE

 Abdul Kadar Muhammad Masum is a graduate of

B.Sc and MSc in Computer Science and Engineering

from International Islamic University Chittagong, and

United International University, Dhaka, Bangladesh,

respectively. He has been serving as a faculty member

in IIUC since 2005. Now he is an Assistant Professor of

Department of Business Administration, International

Islamic University Chittagong, Bangladesh. Moreover, he has mentionable

research works on Data Mining, E-commerce and E-governance and has a

great interest in MIS field. He has also experience in research paper

presentation in many International and National Conferences.

Mohammad Shahjalal has received his B. Sc. degree in

Electrical and Electronic Engineering from Chittagong

University of Engineering and Technology in 2009. Now

he is serving as a lecturer in the department of Electrical

and Electronic Engineering of International Islamic

University Chittagong since February 28, 2010. His

research interests focus on Artificial Intelligence, image

processing, wireless communication, wireless networking, digital signal

processing.

Md. Iqbal Hasan Sarker has received his B.Sc degree in Computer Science

& Engineering from Chittagong University of Engineering & Technology

(CUET) in 2009. Now he is serving as a Lecturer in Chittagong University of

Engineering & Technology (CUET) in the department of Computer Science &

Engineering since September 19, 2010. His research interests focus on

Artificial Intelligence, Digital Image Processing and

Natural Language Processing, Wireless Communication.

Md. Faisal Faruque has received his B.Sc degree in

Computer Science & Engineering from International

Islamic University Chittagong (IIUC) in 2007. Now he is

serving as a Lecturer in University of Information

Technology & Sciences (UITS) in the department of

Computer Science & Engineering since February 18,

2008. His research interests focus on Artificial Intelligence, Digital Image

Processing and Natural Language Processing.

