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Abstract— The main goal of this research is to find a solution of 

Vehicle Routing Problem using genetic algorithms. The Vehicle 

Routing Problem (VRP) is a complex combinatorial optimization 

problem that belongs to the NP-complete class. Due to the nature 

of the problem it is not possible to use exact methods for large 

instances of the VRP. Genetic algorithms provide a search 

technique used in computing to find true or approximate solution 

to optimization and search problems. However we used some 

heuristic in addition during crossover or mutation for tuning the 
system to obtain better result. 
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I.  INTRODUCTION  

The VRP can be described as follows: given a fleet of 
vehicles with uniform capacity, a common depot, and several 
customer demands, finds the set of routes with overall 
minimum route cost which service all the demands [1]. All the 
itineraries start and end at the depot and they must be designed 
in such a way that each customer is served only once and just 
by one vehicle. Genetic algorithms have been inspired by the 
natural selection mechanism introduced by Darwin [2]. They 
apply certain operators to a population os solutions of the 
problem at hand, in such a way that the new population is 
improved compared with the previous one according to a pre-
specified criterion function. This procedure is applied for a pre-
selected number of iterations and the output of the algorithm is 
the best solution found in the last population or, in some cases, 
the best solution found during the evolution of the algorithm. In 
general, the solutions of the problem at hand are coded and the 
operators are applied to the coded versions of the solutions. 
The way the solutions are coded plays an important role in the 
performance of a genetic algorithm. Inappropriate coding may 
lead to poor performance. The operators used by genetic 
algorithms simulate the way natural selection is carried out. 
The most well-known operators used are the reproduction, 
crossover, and mutation operators applied in that order to the 
current population. The reproduction operator ensure that, in 
probability, the better a solution in the current population is, the 
more (less) replicates it has in the next population. The 
crossover operator, which is applied to the temporary 

population produced after the application of the reproduction 
operator, selects pairs of solutions randomly, splits them at a 
random position, and exchanges their second parts. Finally, the 
mutation operator, which is applied after the application of the 
reproduction and crossover operators, selects randomly an 
element of a solution and alters it with some probability. Hence 
genetic algorithms provide a search technique used in 
computing to find true or approximate solutions to optimization 
and search problems.  

II. SOLUTION DETAILS 

At the beginning an initial generation has to be defined. 
This can be done using a random initialization or can use some 
kind of seeding which allows the algorithm to work in a search 
space where solutions are more likely. From now until a valid 
solution is found or the maximal level of allowed generations is 
reached, the following steps are performed. 

Selection: first we select a proportion of the existing 
population to breed a new generation. The selection is done on 
a fitness-based approach where fitter individuals are more 
likely to breed then others. 

Reproduction: during the reproduction phase the next 
generation is created using the two basic methods, crossover 
and mutation. For every new child a pair of parents is selected 
from which the child inherits its properties. In the crossover 
process genotype is taken from both parents and combined to 
create a new child.  

With a certain probability the child is further exposed to 
some mutation, which consists of modifying certain genes. 
This helps to further explore the solution space and ensure, or 
preserve, genetic diversity. The occurrence of mutation is 
generally associated with low probability. A proper balance 
between genetic quality and diversity is therefore required 
within the population in order to support efficient search. 

Implementation: We have used C++ programming 
language to implement out system. The main advantages of 
C++ include a clean object oriented approach. The following 
figure describes the flowchart of the system. 
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Figure1:  Flow Chart  of solution of VRP using Genetic Algorithm. 
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A.  Chromosome representation 
The individuals of a population in the GA can be seen as an 

ordered list of artificial chromosomes where every 
chromosome represents a route a truck is going to take. Each 
chromosome contains K integers, where K is the number of 
genes a chromosome holds. A gene itself is and integer as well 
and represents the number of customer. Example of a solution 
of 4 trucks with 10 customers. 

route1: [2 4 9 10] 

route2: [4 6] 

route3:[ ] 

route4:[3 1 6 7 8] 

Route1 is served by truck1 that visits the ordered list from 
left, starting with customer2, to the right ending at the customer 
10 before it goes back do the depot. Trucks that aren’t needed 
in the solution have and empty list. 

B.  Chromosome implementation 
Each set of chromosomes represent one individual, which is 

one possible solution to the VRP(if all constraints are satisfied 
then it can be considered as valid solution). Each chromosome 
represents a Route and is implemented by a Route object. The 
Route Object stores all the genes (references to customer 
objects) in an array. The index of the array specifies the 
position of the customer in the route. All the routes of a 
solution are stored in an array in the VRP Object, where the 
index defines the route number. On the top level the 
VRPManager stores all the VRP objects which define the 
population. The implementation choice to use an array is 
optimal for the VRPManager (to hold the VRP objects) and the 
VRP objects (to hold the routes) as we have a non-changing 
population and set of routes. For the storage of the genes 
(customers) a simply linked list world be more suitable then an 
array as the insertion and removal process could be faster then 
its currently implemented. 

C.  Crossovers 
In genetic algorithms, crossover is a genetic operator used 

to vary the programming of a chromosome or chromosomes 
from one generation to the next. It is an analogy to 
reproduction and biological crossover, upon which genetic 
algorithms are based. Both implemented crossovers don’t do 
mutual exchange of genetic material between two parents. 
They take information from one individual and insert it in the 
other to create a new child. The probability which crossover 
method should be used can be configured. 

D. Mutation 
In genetic algorithms, mutation is a genetic operator used to 

maintain genetic diversity from one generation of a population 
of chromosomes to the next. It is analogous to biological 
mutation. The probability which mutations will take place and 
if mutation takes place at all can be configured. 

E. Reparation 
In the reparation process the child first gets checked if it 

contains some genetic information too much or is missing 
some. In other words, the process checks which customers are 
missing on the routes and which ones would be served several 

times. Customers that are served more then once are removed 
from the chromosomes that one customer is only present one 
time. The location from where the duplicated genes are 
removed is chosen randomly. Customers that are missing need 
to be re-inserted. Here the heuristic comes into place. the 
customers are not just inserted in a random location but in a 
location where they are applicable. This location is found by 
trying to insert a customer to an existing route in a specific 
position and checking how much the penalty increase for this 
route. This process is now applied to all routes, until the route 
and the position in  the route is found where the customer adds 
the least possible penalty. This step is very time consuming, 
therefore this method is just used depending on a defined 
probability. Else the customer is just inserted in a random route 
at a random position. 

F. Penalties 
To rate the fitness of a chromosome a special penalty 

system was integrated. This principle helps to distinguish good 
routes from bad routes. Different aspects are considered when 
applying the penalty calculation like the distance of the route or 
the delay if a customer is served to late. These different penalty 
operators can be individually adjusted. 

G. Child or Parent(s) 
After the penalties have been calculated for a new child, the 

system decides if the child is accepted or not. This process 
compares the penalties of its parents with the ones from the 
child. If the child does better, it will be accepted for the next 
generation. However if the child has a bigger penalty then there 
will be another selection process, which favors the parents 
depending on their penalties. In this process also the child has a 
chance to survive, as it is important for the genetic diversity. If 
the child wouldn’t have a chance to survive in case it has a 
bigger penalty then its parents, the system would be strictly 
monotone decrease the overall penalty level of its hole 
population. This however could make the system stuck in local 
minimum penalty level from which it couldn’t escape any 
more. Therefore its important to give even a bad child a chance 
to survive. 

H. Fitness 
To choose which children from the newly created 

population will be favored to breed, the fitness of every 
individual has to be computed. This is done by summing up all 
the penalties of its chromosomes and using them in the 
following formula where the max_penalty is the biggest total 
penalty of one individual found in this generation. 

Fitness=100*
Penalty

penaltyPenalty

max

max 
 

Therefore the fitness is not an absolute measure like the 
penalty(which can be compared over different generations) but 
a local measurement for this generation. The Fitness can take 
values between 0 (which is assigned to the individual with the 
maximal penalty) up to theoretically 100(which is practice is 
not reached). 

I. Selection process depending on the Fitness 
The calculated fitness helps now to select members for the 

next generation. This is done using the Roulett Wheel Selection 
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method where individuals with a higher fitness are more likely 
to be selected then others. 

III. RESULTS  

First we checked our engine with different datafiles. For all 
datafiles tested, we found sooner or later a valid solution. Some 
solutions were quite good( compared to published values on 
the internet) while others were not really satisfying. Here is an 
example of a solution which is valid, however we can already 
visually tell that its not optimal as there are some bigger 
detours which most likely are unnecessary. 

 

 

 

 

 

 

 

 

 

 

 

Figure2: Route with 50 trucks. 

We used a couple of files [7] to measure how long it takes 
till the system finds the first valid solution. The following 
dump lists the filename of the testdata, the traveling distance of 
all trucks, the time all the trucks together spend on the road and 
the time it took to find the first valid solution. 

file: R101.txt ODist 962 OTime 1140 time: 4.68799996376038 

file: R102.txt ODist 770 OTime 1085 time: 5.59299993515015 

file: R103.txt ODist 768 OTime 942 time: 5.625 

file: R104.txt ODist 717 OTime 1021 time: 5.6100001335144 

file: R105.txt ODist 799 OTime 1009 time: 6.0939998626709 

file: R106.txt ODist 731 OTime 1048 time: 5.60900020599365 

file: R107.txt ODist 727 OTime 1076 time: 5.64099979400635 

IV. SYSTEM TUNING 

We used some heuristic to place missing customers back to 
the different routes after they disappeared during crossover or 
mutation. We tried different probabilities on how often the 
heuristic should be used and measured the different penalties 
we found as an end solution. We have to set a maximal 
generation limit which was higher for test runs with lower 
heuristic probability then with higher probability that every test 

run took more or less the same time. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure3a: Heuristic probabilities 

 

 

 

 

 

 

 

 

 

 

 

Figure3a: Heuristic probabilities 
 

It can be seen, that with a higher heuristic probability, 
better results are archived. However if the probability of using 
heuristics get close to 1, the penalty increases. Therefore we 
used a finer granulation to see what is going on. It looks like if 
when the probability gets close to 1, the genetic diversity is not 
anymore sufficient and we get struck in a local minimum. It is 
observed that the penalty range (indicated by the error bars) 
almost collapses where the deviance is much higher else. 

Population size: The other important parameter is the 
generation size. The next figure shows different generations 
sizes combined with different heuristic probabilities. P30 refers 
to a population of 30 individuals where p10 represents 10 
individuals. R0.3 means that the insertion heuristic was used in 
30% of the time. 
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Figure4: population size ½ 

The first thing that sticks to the eye is, that  a higher 
heuristic probability results in a lower initial penalty and also 
in a lower end penalty, howeer the difference is not that big any 
more. The second thing to note is, that the two graphs with a 
population size of 10 result in the worst end result. Both the 
population with 20 and 30 individuals are doing quite well. The 
next graph continues this picture and plots the generations 100 
up to 200. 

 

 

 

 

 

 

 

 

 

 

 

Figure5: population size 2/2 

Here now something interesting happens. One would 
assume that the population size of 30 results in the best end 
result, however in both cases of the different heuristic 
probabilities the generation size of 20 finds the best solution. 
We ran this tests a couple of time and always got the same 
results. 

V.  BEST POSSIBLE SOLUTION  
We checked for different datafiles if we can get close to the 

best known solutions and managed to archive the same best 

result for the file RC208.txt as it is published on the internet. 
The solutions just uses 1 truck which drives the minimal 
distance of 328.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6: Shortest Path. 

VI. CONCLUSION 
Genetic algorithms provide a very interesting approach to 

solve problems where an exact method can not be applied. We 
were a bid disappointed that it took many generations to find a 
solution, which was not even really good. Therefore we 
decided to implement some custom insertion heuristic which 
helps the system to faster approach a good solution. The choice 
of the crossover method was pretty intuitive and we can’t 
assess if they are good or not. We implemented one that inserts 
new elements as a subroute using our heuristic method and 
another one, which does a simple sequence based crossover. 
We found out that if we put a too high heuristic level, we get 
on one hand quite fast good results, however in most cases we 
are unable to get to the best results. Therefore we tuned the 
system to have a balance between finding fast a solution and 
limiting the search space. 
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