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Abstract— Ontology evaluation remains an important open 

problem in the area of its application. The ontology structure 

evaluation framework for benchmarking the internal graph 

structures was proposed. The framework was used in transport 

and biochemical ontology. The corresponding adjacency, 

incidence matrices and other structural properties due to the 

class hierarchical structure of the transport and biochemical 

ontology were computed using MATLAB. The results showed 

that the choice of suitable choice must depend on the purpose of 
ontology structure evaluation. 
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I.  INTRODUCTION 

Class relationships are represented by three special kinds of 
graphs; namely lattice, tree and acyclic, which supports partial 
ordering Sowa (2004).  An ontology describes class 
relationships using acyclic graphs and provides a convenient 
means of using appropriate tools to analyze and solve a given 
concepts. Ontology uses two graph components: nodes and 
edges to represents concepts (classes, objects, and entities), and 
the relations between these concepts respectively.   In practice, 
ontologies are acyclic graph models which describe the 
semantic relationships between the inherent concepts and 
relations, between concepts and concepts, and between 
relations and relations. The internal structure and the structural 
dimension reveal their computational complexity and memory 
utilization, and also aid fast concept-relation retrievals. 

A subset of the nodes and edges in a graph possesses 
certain characteristics or relate to each other in particular ways 
which are quite useful for describing the structural 
relationships existing among concepts, relations and between 
concepts and relations in ontology. A vast amount of 
ontologies for diverse domain of discourse have been designed 
and are available across many ontology libraries. Thus many 
applications in such areas as knowledge engineering, artificial 
intelligence, natural language processing, e-commerce, 
database design and integration, bioinformatics, semantic web, 
education have been developed using these ontologies. 
However, many of these ontologies are not well documented 
and evaluated, therefore hindering their effective re-use and 
inter-operability in many applications (Staab, 2009 and Lu and 
Haarslev, 2006).  

The lack of tools to analyze these ontologies has not helped 
the effective utilization of the inherent knowledge that is 
contained in these ontologies.  In this paper, an algebraic 
framework for benchmarking the internal graph structures of 
ontologies was proposed.    

II. LITERATURE REVIEWS 

There is a need to evaluate the ontology and also the results 
from the ontology. Many researchers have tried various ways 
of evaluation of ontologies. Maedche and Staab (2002) 
proposed the evaluation of ontology using lexical or 
vocabulary level. The process compared two strings based on 
the Levenshtein edit distance and it was normalized to produce 
scores in the range of 0 and 1. In 2005, Velardi et al used a 
body of natural language text to generate natural language 
glosses for multiple word terms. Part of their techniques 
employed is-a relation. Brewster et al (2004) suggested using a 
data-driven approach to evaluate the degree of structural fit 
between an ontology and a corpus of documents. The ideas was 
based on clustering algorithm using unsupervised way.  Spyns 
(2005) used relational model to evaluate ontology by extracting 
a set of lexons from natural language text.  Ding et al (2004) 
used cross-reference between semantic web documents to 
define a graph and then compute a score for each ontology. 
Porzel and Malaka (2004) described a scenario where the 
ontology with its relations was used primarily to determine 
how closely related the meaning of two concepts was by using 
the final output of speech recognition problem  as a case study. 

Patel et al (2005) showed how to determine if the ontology 
was referred to a particular topic and classified the ontology 
into a directory topics using standard machine learning 
algorithms. Brewster et al (2004) extracted a set of relevant 
domain specific terms from the corpus of documents using 
latent semantic analysis. Bruton-Jones et al (2004) proposed 
ten simple criteria of lawfulness, richness, interpretability, 
consistency, clarity, comprehensiveness, accuracy, relevant, 
authority and history to evaluate the ontology which were 
based on scores. Fox et al (1998) proposed another set of 
criteria which were geared more towards manual assessment 
and evaluation of ontologies. Luzano-Tello and Gomez-Perez 
(2004) defined an even more detailed sets of 117 criteria, 
organized in a three- level framework for evaluation of 
ontology. Willen Rober et al (2005) proposed two alternative 
techniques for the evaluation of ontology-matching systems. In 
this work structural dimensions of ontology by Gangen et al 
(2006) were used to evaluate the ontology and characteristic 
polynomial equation of eigenspace with their corresponding 
adjacency matrix. 

III. SPECTRAL ANALYSIS OF GRAPHS 

Graph spectrum is the set of its eigenvalues in addition with 
their multiplicities. There are two standards computational 
representations of graphs; namely as a collection of adjacency 
lists or as an adjacency matrix.  The adjacency-list 
representation provides compact way to represent sparse graphs 
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where (|E| < |V|2).  The adjacency-matrix of a graph G = (V, E) 
consists of a |V| x |V| matrix A = (aij) 

such that 
 Ejiif

otherwiseija  ),(1

0  

where the vertices are numbered 1, 2, 3, . . ., |V| in some 
arbitrary order. The adjacency-matrix A of an undirected graph 
is its own transpose  

i.e A = AT,  If  A = (aij) then AT = (aij
T) and aij

T = aji. 
In undirected graph, (u, v) = (v, u) means the same edge.  In 

some applications, it pays to store only the entries on and 
above the diagonal of the adjacency matrix, therefore cutting 
the memory needed to store the graph almost in half.  

The simplicity of an adjacency-matrix makes it preferable 
to compute the algebraic spectrum especially with small 
graphs.  For weighted graph, there is an additional advantage in 
the sense that the adjacency matrix uses only one bit per entry 
instead of one word of computer memory for each matrix entry.  
Adjacency-matrix makes it easier to search for sub-graphs of 
particular pattern or identities. 

The incidence matrix for an undirected graph G = (V, E) is 
a |V| x |E| matrix M 

such that 

   1

0

if edge e is incident on vertex v

ve otherwiseM 
 

A set of columns of M is linearly independent if and only if 
the corresponding set of edges is acyclic. 

The incidence matrix for a digraph G = (V, E) is a |V| x |E| 
is a matrix M such that 

 


1
1

0

f edge e leaves vertex v
if edge e enters vertex v

ve otherwiseM



 

If a set of edges in G is linearly independent, then the 
corresponding set of edges does not contain a directed cycle. 

Whereas the adjacency-matrix encapsulate vertex-to-vertex 
relationships, the incidence matrix encapsulate vertex-to-edge 
relationships and its Eigen values reveals the relationship 
between two classes of objects.  The advantage of the incidence 
matrix is that it enables data to be rapidly indexed either for 
vertices or for edges.   

IV. AN ILLUSTRATION OF SPECTRAL ANALYSIS OF 

ONTOLOGICAL STRUCTURE 

Ontologies are directed acyclic graphs and since an inverse 
of a relation can be obtained from that relation, it follows that 
information flows in both direction. Consider the transport 
ontology in figure 1, we computed the adjacency and incidence 
matrices as depicted tables 1 – 4. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 1: Transport ontology with V = {Place, City, Station, Bus Station, Train Station, Accommodation, Hotel, House, Shelter}and E = {a, b, c, d, e, f, g, h} 

TABLE 1: Incidence matrix of DAG ontological Structure in Figure 1 

 a B C d E f g h 

Place 1 1 0 0 1 0 0 0 

City -1 0 0 0 0 0 0 0 

Station 0 -1 1 1 0 0 0 0 

Bus Station 0 0 -1 0 0 0 0 0 

Train Station 0 0 0 -1 0 0 0 0 

Accommodation 0 0 0 0 -1 1 1 1 
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Hotel 0 0 0 0 0 -1 0 0 

House 0 0 0 0 0 0 -1 0 

Shelter 0 0 0 0 0 0 0 -1 

TABLE 2: Incidence matrix of undirected ontological structure of Figure 1 

(Inverse relation) 

 

 A b c d E f g H 

Place 1 1 0 0 1 0 0 0 

City 1 0 0 0 0 0 0 0 

Station 0 1 1 1 0 0 0 0 

Bus Station 0 0 1 0 0 0 0 0 

Train Station 0 0 0 1 0 0 0 0 

Accommodation 0 0 0 0 1 1 1 1 

Hotel 0 0 0 0 0 1 0 0 

House 0 0 0 0 0 0 1 0 

Shelter 0 0 0 0 0 0 0 1 

 
TABLE 3: Adjacency matrix of DAG ontological Structure 

  

 Place City Station Bus Station Train Station Accomm- 

odation 

Hotel House Shelter 

Place 0 0 0 0 0 0 0 0 0 

City 1 0 0 0 0 0 0 0 0 

Station 1 0 0 0 0 0 0 0 0 

Bus Station 0 0 1 0 0 0 0 0 0 

Train Station 0 0 1 0 0 0 0 0 0 

Accommodation 1 0 0 0 0 0 0 0 0 

Hotel 0 0 0 0 0 1 0 0 0 

House 0 0 0 0 0 1 0 0 0 

Shelter 0 0 0 0 0 1 0 0 0 

 

TABLE 4: Adjacency-matrix of the undirected ontological structure 

 

 Place City Station Bus Station Train Station Accomm- 

odation 

Hotel House Shelter 

Place 0 1 1 0 0 1 0 0 0 

City 1 0 0 0 0 0 0 0 0 

Station 1 0 0 1 1 0 0 0 0 

Bus Station 0 0 1 0 0 0 0 0 0 

Train Station 0 0 1 0 0 0 0 0 0 

Accommodation 1 0 0 0 0 0 1 1 1 

Hotel 0 0 0 0 0 1 0 0 1 

House 0 0 0 0 0 1 1 0 0 

Shelter 0 0 0 0 0 1 0 0 0 

 

V. COMPUTING EIGEN VALUES AND EIGEN VECTORS 

In this work, we used the characteristic polynomial 
equation to compute the eigenspace of the example ontology 
given in figure 1 and the corresponding adjacency matrix in 
Table 4. 

If A is an nn matrix, then its corresponding eigenvlues 

)( are the roots of the characteristics polynomial 

)det( IA  and the eigenvectors would be 

nvvvv .,..,,, 321  respectively. An eigenvalue    mapped 

to an eigenvector and the set of all eigenvectors which satisfy  

vAv  are referred to as the eigenspace of A. v must be a 

non-zero and the characteristics polynomial must be set to zero. 

 i.e  0)det(  IA   
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0.2350      0.0671    0.3536     0.1672-   0.2301    0.2444-   

0.4046      0.2809    0.2793     0.3261-   0.1729    0.3884-   

0.1141-     0.1580    0.1063     0.2668-   0.1239    0.3461-   

0.1582-    0.0496    0.5056-  0.2806-   0.4985-   0.5878-   

0.2708      0.3229    0.3619-    0.3537    0.2053    0.1149-   
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0.4190-   0.4694-   0.0162-    0.2891    0.5532    0.4345-   

The number of eigenvalues for a nn matrix is n,  though 

some of the eigenvalues might be equal to one another. 

Consider the ontology figure 1 and the adjacency matrix in 
table 4, the eigenvalues are  

 

     

 

 

 

Transont  (9 x 9) = 

 

     
 

 

 

 

 

 

 

 

The eigenvalues   )det( IA   

 

 

 

 

 

 

 

 

We use MATLAB to compute the )det( IA  since n is large. 

Therefore,   )det( IA    λ9 - 8λ7 - 2λ6 + 15λ5 + 8λ4 - 2λ3 - 4λ2  - 2λ 

The eigenvalues are  2.4046, 1.6785, -2.1667, 0.7390, -1.4299   

            -0.6731, -0.2762 + 0.4952i, -0.2762 - 0.4952i and 0.0000. 

   
 

 

 

 

 

 

The eigenvectors (V)  = 

 

 

 

 
 

 

 

 

 

 

D =   

 

    

 
flag =  0 
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where V represents the set of eigenvectors and D the set of 
of eigenvalues. The flag = 0 implies that the eigenvalues 
converged. 

VI. STRUCTURAL DIMENSION METRICS OF GRAPHS 

The structural dimension of ontologies focuses on analysis 
of digraph structures and formal semantics. Gangemi, 
Catenacci, Ciaramita and Lehmann (2006) proposed the 
following formula which were used in the proposed 
ONTOSTEVAL for measuring the structural dimensions of 
ontologies among others.  We compute the structural 
dimension of the sample ontology in figure 1.   

A. Measures for depth 

This measure is related to the cardinality of paths in a 
digraph where the arcs are only is-a relations. Three types of 
depth measures namely; absolute depth, average depth and 
maximal depth were used in the proposed ONTOSTEVAL. 

1) Absolute Depth 
     

 

              

where PjN   is the cardinality of each path j from the set 

of paths P in a graph G. 

From figure 1,  

P ={a, bc, bd, ef, eg, eh} = 6 paths 
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 ,  

 therefore  Dabs   =  11. 

 

2) Average Depth 

 

 

 

 

where PjN   is the cardinality of each path j from the set 

of paths P in a graph G, and Gpn   is the cardinality of P. 

 Dave  =    83.111
6

1
  

3) Maximal Depth 

  

 

 

 

where PjN   and PiN   are the cardinalities of any path i 

or j from the set of paths P in a graph G. 

    Dm  =  2. 

B. Measures for breadth 

This measure is related to the cardinality of generations in a 
graph where the edges are only the is-a relations. Three types 
of depth measures namely; absolute depth, average depth and 
maximal depth were used in the proposed ONTOSTEVAL. 

1) Absolute Breadth 
      

 

 

 

where 
LGjN   is the cardinality of each generation j from 

the set of generations GL in the digraph G. 

There are three levels (GL) in the example ontology in 
figure 1 namely 

Level 1 = { 1 } contain 1 vertex 

Level 2 = { 2, 3, 4 } contain 3 vertexes 

Level 3 = {5, 6, 7, 8, 9}contain 5 vertexes 

Therefore,  Babs =  9 

2) Average Breadth 

 
 

 

 

where LGjN   is the cardinality of each generation j 

from the set of generations GL in a digraph G, and GG L
n   is 

the cardinality of GL. 

 Bave  =    39
3

1
  

3) Maximal breadth 

 

 

 

 

 

where LGjN   and 
LGiN   are the cardinalities of 

any generation i or j from the set of generations  GL  in a graph 
G. 

 Bm = 5 (the highest number of vertexes) 

C. Measures for density 

Gangemi (2005) defined density as the presence of clusters 
of classes with many non-taxonomical relations holding among 
them.  We defined density based  Coleman & Moré (1983) on  
as follows 
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where |E| is total number of edges and |V| is the total 
number of vertexes. The maximum number of edges is ½ |V| 
(|V|−1), so the maximal density is 1 (for complete graphs) and 
the minimal density is 0.  

| E | = { a, b, c, d, e, f, g, h } = 8 

| V | = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } = 9 

 

   
 

VII. ONTOLOGY STRUCTURE EVALUATION  

(ONTOSTEVAL) FRAMEWORK 

The proposed Ontology Structure Evaluation 
(ONTOSTEVAL) Framework for benchmarking the internal 
graph structures of ontologies is described in this section. The 
ONTOSTEVAL architecture is presented in figure 2 and 
comprises of three sections, namely the input, processing and 
the output units.  The input unit accepts an ontology written in 
OWL such as the domain ontology while the processing unit 
parses the OWL file, analyses and computes its internal 
structures such as the spectral properties.   

   

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 2:  The ONTOSTEVAL Architecture 

 
The Java program is embedded into Jena Framework and 

uses the well-known depth-first and breadth-first algorithms to 
determine the adjacent vertexes and the edges incident on a 
vertex as illustrated in figure 3.   A Java program was written 
to compute the spectral analysis (adjacency and incidence 
matrices, eigenvalues and eigenvectors) and the structural 
dimension (depth, breadth and density) for ontologies written 
in OWL. The Java program was embedded in Jena Semantic 
Web Framework in other to enable the Java program read, 
parse and analyze any ontology file, and computes the inherent 
spectral and structural dimension metrics.  In this section we 

present the spectral and structural analyses of some ontologies 
which were used with the proposed Ontology Structural 
Evaluation Framework (ONTOSTEVAL). 

Biochemical Ontology 
Biochemical ontology aim to capture and represent 

biochemical entities and the relations that exist between them 
in an accurate and precise manner. Figures 3 described the 
class hierarchical structure of the biochemical ontology while 
figure 4 shows its graph in the protégé implementation.

 

 
Figure 3. Asserted Class Hierarchy of Biochemical Ontology 
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Figure 4. Biochemical OWL graph 

The spectral and structural dimension properties which were subsequently computed using MATLAB are as follows: 

 

 

Adjacency matrix of  

the Biochemical ontology  = 

 

     

 

 

 

 

 

The characteristics polynomial,  )(det IA   λ13 - 12λ11 +  26λ9 -14λ7  

Eigenvalues = -3.0643, -1.3288, -0.9189,  -0.0000, -0.0000, -0.0000, 0.0000, 0.0000,  

   0.0000, 0.0000, 0.9189, 1.3288, 3.0643. 

 

 

 

 
The Eigenvectors (V) =  
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flag =     0 ; incidate that the eigenvalues converged.  

 

 

 

 

 

The incidence matrix of  

the Biochemical ontology =  

  

      

      

 
 

 

 

 
 

 

 

Structural Dimension 

 

 

 

 

 

The Transport Ontology 

Transport ontologies aim to capture and represent different 
entities and the relations that exist between them in an accurate  

 

 

and precise manner. Figures 5 described the class hierarchical 
structure of the transport ontology while figure 6 shows its 
corresponding graph in the protégé implementation.   

 
  Figure 5. Asserted Class Hierarchy of Transport Ontology 
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Figure 6. Transport OWL graph 

 

 

Adjacency matrix (Transport)  =  

 

 
 

 

 

The characteristics polynomial  )(det IA   λ7 - 6λ5 +  7λ3  

The Eigenvalues =  -2.1010, -1.2593, 0, 0, 0.0000, 1.2593, 2.1010 
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VIII. CONCLUSION 

The work used the simplicity of an adjacency matrix of  a 
graph to compute the algebraic spectrum and structural 
dimensions of ontology. It presented an application of the state 
of the art on ontology evaluation. The applications showed that 
the choice of suitable method must depend on the theme of 
ontology evaluation.  
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