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Abstract-In this paper a hierarchical coding technique for variable 
bit rate service is developed using embedded zero block coding 
approach. The suggested approach enhances the variable rate 
coding by zero tree based block-coding architecture with Context 
Modeling for low complexity and high performance. The proposed 
algorithm utilizes the significance state-table forming the context 
modeling to control the coding passes with low memory 
requirement and low implementation complexity with the nearly 
same performance as compared to the existing coding techniques. 
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I. INTRODUCTION 

With rapid development of heterogeneous services in image 
application the future digital medical images and video coding 
applications finds various limitations with available resource. 
The traditional multi-bit stream approach to the heterogeneity 
issue is very constrained and inefficient under multi bit rate 
applications. The multi bit stream coding techniques allow 
partial decoding at a various resolution and quality levels. 
Several scalable coding algorithms have been proposed in the 
international standards over the past decade, but these former 
methods can only accommodate relatively limited decoding 
properties. The rapid growth of digital imaging technology in 
conjunction with the ever-expanding array of access 
technologies has led to a new set of requirements for image 
compression algorithms. Not only are high quality 
reconstructed medical images required at medium-low bitrates, 
but also as the bit rate decreases, the quality of the 
reconstructed MRI image should degrade gracefully. The 
traditional multi-bit stream solution to the issue of widely 
varying user resources is both inefficient and rapidly becoming 
impractical. The bit level scalable codes developed for this 
system allow optimum reconstruction of a medical image from 
an arbitrary truncation point within a single bit stream. For 
progressive transmission, image browsing, medical image 
analysis, multimedia applications, and compatible trans coding, 
in a digital hierarchy of multiple bit rates, the problem of 
obtaining the best MRI image quality and accomplishing it in 
an embedded fashion i.e. all the encoded bits making 
compatible to the target bit rate is a bottleneck task for today‟s 
engineer. As medical images are of huge data set and encoding 
it for a lower bit rate results in loss of data, which intern results 
in very low image quality under compression. Coming to the 
transmission over a noisy channel this problem becomes more 
effective due to narrow bandwidth effect. Various algorithms 
were proposed for encoding and compressing the MRI image 
data before transmission. These algorithms show high-end 

results under high bandwidth systems but show poor result 
under low data rate systems. The problem of transmission of 
MRI images over a low bit rate bandwidth can be overcome if 
the medical image data bits are such encoded and compressed 
that the data bit rate is made compatible to the provided low bit 
rate. Embedded zero tree wavelet algorithm is a proposed 
image compression algorithm which encode the bit in the bit 
stream in the order of importance which embed the bit stream 
in hierarchical fashion. 

II. SYSTEM DESIGN 

This work was motivated by success of two popular 
embedded coding techniques: zero-tree/-block coding [1, 2, 3, 
4] and context modeling of the sub band/wavelet coefficients 
[5, 6, 7]. Zero-tree/-block coding takes advantage of the nature 
of energy clustering of sub band/wavelet coefficients in 
frequency and in space. These classes of coders apply a 
hierarchical set partitioning process to split off significant 
coefficients (with respect to the threshold in the current bit 
plane coding pass), while maintaining areas of insignificant 
coefficients. In this way, a large region of zero pixels can be 
coded into one symbol. It provides an efficient method to 
compactly represent a group of leading zeros of sub 
band/wavelet coefficients. The distinguished compression 
performances were demonstrated in [2, 3, 4]. Moreover, instead 
of all pixels, only a small number of elements in lists [2] needs 
to be processed in individual bit plane coding passes. Thus, 
processing speed for this class of coders is very fast. High 
compression efficiency achieved with context modeling was 
presented in [5, 6, 7]. In this class of coders, individual pixel of 
the DWT bit planes are coded using context based arithmetic 
coding. With help of the context models, strong correlation of 
sub band/wavelet coefficients within and across sub bands can 
be effectively utilized. Although simple context modeling was 
also employed in [2, 3, 4], the limited context information in 
those algorithm were insufficient to accurately predict the 
status of the current node. With carefully designed context 
models, some algorithms [6, 7] have been able to outperform 
the best zero-tree/block coders in PSNR performances. 
Nevertheless, unlike zero-tree/-block coders, these algorithms 
needed to scan all sub band/wavelet coefficients at least once to 
finish coding of a full bit plane, with an implied higher 
computation cost. To combine advantages of these two coding 
techniques, ie, low computation complexity and effective 
exploitation of correlation of sub band coefficients, we propose 
an embedded medical image coding algorithm using Zero 
Blocks of sub band/ wavelet coefficients and context modeling, 
or EZBC for ease of reference. This zero block coding 
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algorithm is also based on the set partitioning technique. We 
adopted the adaptive quad tree splitting method introduced in 
[3] to separate the significant coefficients and code every block 
of zero pixels into one symbol. In this scheme, quad tree 
representations of DWT coefficients are first established for 
individual sub bands. The bottom level of the quad tree consists 
of the sub band/wavelet coefficients. The single node at the top 
tree level, or the root node, just corresponds to the maximum 
amplitude of the all DWT coefficients. To start with, the root is 
the only insignificant node to process. Each quad tree node 
splits into four insignificant descendent nodes of the next lower 
level once it tests as significant against the threshold of the 
current bit plane coding pass. The same splitting process is 
recursively applied to the individual descendent nodes until the 
bottom level of the quad tree is reached. 

In this way, we can quickly zoom in to high-energy areas 
and regions of all zero pixels can be compactly represented. In 
EZBC, the context models were carefully designed for coding 
quad tree nodes at different tree levels and sub bands. 
Therefore, it retains the properties of compactness and low 
complexity of the zero block coders, and adds context 
information in an effective way, while the context information 
is also made effective use. Unlike the zero tree structure, each 
zero block only represents pixels from one sub band. Hence, 
EZBC is inherently applicable to resolution scalable 
applications. With the aid of inter band context, dependence of 
sub band/wavelet coefficients across scales can still be 
effectively utilized without having zero trees spanning several 
sub bands. 

III. MEDICAL IMAGE CODING SYSTEM 

Image compression addresses the problem of reducing the 
amount of data required to represent a digital medical image. 
Compression is achieved by the removal of one or more of 
three basic data redundancies: (1) coding redundancy, which is 
present when less than optimal (i.e., the smallest length) code 
words are used; (2) inter pixel redundancy, which results from 
correlations between the pixels of an medical image; and/or (3) 
psycho visual redundancy, which is due to data that is ignored 
by the human visual system (i.e., visually nonessential 
information).In this chapter We examine each of these 
redundancies, describe a few of the many techniques that can 
be used to exploit them, and examine two important 
compression standards – JPEG and JPEG 2000. These 
standards unify the concepts by combining techniques that 
collectively attack all three data redundancies.  Medical Image 
compression systems are composed of two distinct structural 

blocks: an encoder and a decoder. Image ( , )f x y  is fed into 

the encoder, which creates a set of symbols from the input data 

and uses them to represent the medical image. If we let 
1n  and 

2n  denote the number of information carrying units (usually 

bits) in the original and encoded medical images, respectively, 
the compression that is achieved can be quantified numerically 
via the compression ratio 
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To view and/or use a compressed (i.e., encoded) medical 
image, it must be fed into a decoder (see Fig.2.1), where a 

reconstructed output medical image, f̂ (x,y), is generated. In 

general, f̂ (x,y) may or may not be an exact representation of 

 y,xf . If it is, the system is called error free, information 

preserving, or lossless; if not, some level of distortion is present 
in the reconstructed medical image. In the latter case, which is 

called lossy compression, we can define the error   y,xe  

between  y,xf  and f̂ (x,y), for any value of x  and y  as  

                            y,xfy,xf̂y,xe   (2) 

so that the total error between the two medical  images is  
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and the rms (root-means-square) error rmse between 

 y,xf  and f̂ (x,y) is the square root  of the squared error 

averaged over the M N  array, or 
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In the first stage of the encoding process, the mapper 

transforms the MRI input image into a (usually nonvisual) 
format designed to reduce inter pixel redundancies. The second 
stage, or quantizer block, reduces the accuracy of the mapper‟s 
output in accordance with a predefined fidelity Criterion-
attempting to eliminate only psycho visually redundant data. 
This operation is irreversible and must be omitted when error-
free compression is desired. In the third and final stage of the 
process, a symbol coder creates a code (that reduces coding 
redundancy) for the quantizer output and maps the output in 
accordance with the code. 

IV. BIT PLANE CODING 

Wavelet coefficient bit plane coding in EZBC follows a 
similar procedure to those adopted in other quad tree-based set 
partitioning coders. However, special care is given to list 
management and bit stream organization, which significantly 
influence efficiency of context modeling and code stream 
embedding, and scalable functionality of the resulting code 
stream. The EZW encoder is based on two important 
observations: 

1) Natural MRI images in general have a low pass 

spectrum. When a medical image is wavelet transformed the 

energy in the sub bands decreases as the scale decreases (low 

scale means high resolution), so the wavelet coefficients will, 

on average, be smaller in the higher sub bands than in the 

lower sub bands. This shows that progressive encoding is a 

very natural choice for compressing wavelet transformed 

medical images, since the higher sub bands only add detail. 

2) Large wavelet coefficients are more important than 

small wavelet coefficients. 
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These two observations are exploited by encoding the 
wavelet coefficients in decreasing order, in several passes. For 
every pass a threshold is chosen against which all the wavelet 
coefficients are measured. If a wavelet coefficient is larger than 
the threshold it is encoded and removed from the image, if it is 
smaller it is left for the next pass. When all the wavelet 
coefficients have been visited the threshold is lowered and the 
MRI image is scanned again to add more detail to the already 
encoded MRI image. This process is repeated until all the 
wavelet coefficients have been encoded completely or another 
criterion has been satisfied (maximum bit rate for instance).  

The trick is now to use the dependency between the wavelet 
coefficients across different scales to efficiently encode large 
parts of the MRI images which are below the current threshold. 
It is here where the zero tree enters. So, let me now add some 
detail to the foregoing. (As most explanations, this explanation is a 
progressive one.)  

The EZW encoder exploits the zero tree based on the 
observation that wavelet coefficients decrease with scale. It 
assumes that there will be a very high probability that all the 
coefficients in a quad tree will be smaller than a certain 
threshold if the root is smaller than this threshold. If this is the 
case then the whole tree can be coded with a single zero tree 
symbol. Now if the MRI image is scanned in a predefined 
order, going from high scale to low, implicitly many positions 
are coded through the use of zero tree symbols. Of course the 
zero tree rule will be violated often, but as it turns out in 
practice, the probability is still very high in general. The price 
to pay is the addition of the zero tree symbol to our code 
alphabet.  

Quad tree Structure The bit plane coding process begins 
with establishment of the quad tree representations for the 
individual sub bands. The value of a quad tree (a) Quadtree 

buildup (b) Quadtree splitting node  ( , )kQ l i j  at position (i, 

j), quad tree level l  and subband k is defined by 

 0 ( , ) ( , )k kQ i j c i j , and 

 ( , ) max{ [ 1](2 ,2 ), [ 1](2 ,2 1),k k kQ l i j Q l i j Q l i j              

  [ 1](2 1,2 ), [ 1](2 1,2 1)}k kQ l i j Q l i j     , 

Where ( , )kc i j  is the subband coefficient at position (i, j), 

subband k. That is, each bottom quadtree node is assigned to 
the magnitude of the subband coefficient at the same position. 
The quadtree node at the next higher level is then set to the 
maximum of the four corresponding nodes at the current level, 
as illustrated in Fig. 1 (a). By recursively grouping each 2 × 2 
vector this way, the complete quad tree is built up for the 
individual subbands. The top quad tree node 

[ 1](0,0)k kQ D   is just equal to the maximal magnitude of 

all subband coefficients { ( , )}kc i j i,j from subband k, where Dk 

is the quadtree depth for subband k. 

 
 

Fig. 1 Illustration of quad tree build up and decomposition. 

Similar to the conventional bitplane coders, we 
progressively encode subband coefficients from the MSB 
toward the LSB. The individual bitplane coding pass n encodes 
bit n of all coefficients. The subband coefficients are thus 
effectively quantized by a family of embedded quantizers with 

a (dead-zone) quantization threshold  n= 2n for bitplane level 
n. We define that a quadtree node Q tests significant with 
respect to a quantization threshold  if Q≥ . A quadtree Q is 
defined to be a significant node during the current bitplane pass 
n if 

- 
1nQ   , or 

- 
1[ , )n nQ     and Q  

has been tested, and an insignificant node otherwise. It 

should be noted that 
1[ , )n nQ     is still considered as an 

insignificant node in the bitplane pass n until it has been 
coded/tested. A significant pixel (coefficient) is located by the 
testing and splitting operation recursively performed on the 
significant nodes up to the pixel (bottom) level of a quadtree, as 
shown in Fig. 1 (b). Given the coded quadtree splitting 
decisions, the decoder can duplicate the quadtree 
decomposition steps and the related significance information. 

A parent-child relationship is defined in the quadtree 
structure. As opposed to the classic zerotree structure, this 
relationship is between nodes across the quadtree levels (rather 
than across resolution scales), as illustrated in Fig. 3.5. Each 

parent [ ]( , )kQ l i j  has four children from the same 2×2 block 

at the next lower quadtree level,. These four child nodes are 
considered as siblings of each other. All the descendants of 

[ ]( , )kQ l i j can be recursively traced from one quadtree level 

to the next lower in a similar way up to the pixel level. 

Every quadtree node Q plays a dual role: It is an element 
with the value defined by (3.1) subjected to significance test. 
The established quadtree representation provides an additional 
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pyramidal description of the transformed medical image. The 
strong statistical dependencies among quadtree nodes, can be 
exploited to improve the performance of conditional entropy 
coding. Once a node Q tested insignificant, it indicates that all 
its descendants are insignificant, too. Hence, it also serves as a 
zero set defined in the conventional set partitioning coder and 
contains all its descendent coefficients as members. Each 

insignificant quadtree node Q [ l ] (i, j) thus effectively groups 
2l x 2l insignificant coefficients together. The hierarchical set 
partitioning with respect to a given test threshold is 
accomplished via recursive quadtree splitting. 

Similar to other hierarchical coders, we utilize the ordered 
lists for tracking the significance status of the individual 
subband coefficient. LSPk (list of significant pixels) contains a 
full list of significant pixels in subband k. All the insignificant 
coefficients are compactly gathered in the quadtree nodes 
which are maintained in arrays of the LINs (list of insignificant 

nodes). LINk[ l ], l = 0,…,
kD -1, contains a list of insignificant 

nodes from quadtree level l, subband k. A node (i, j) in LINk[ l ] 
thus indicates that 2L x 2L subband coefficients 

{{
kc ( 2 , 2 )l li j  , ( 2 , 2 1)l l

kc i j   ,…,

( 2 , 2 2 1)l l l

kc i j    },{ ( 2 1, 2 )l l

kc i j   ,…,

( 2 1, 2 2 1)l l l

kc i j     },…, ( 2 2 1, 2 )l l l

kc i j    ,…,                       

 ( 2 2 1, 2 2 1)l l l l

kc i j      }}     (5) 

are all insignificant. Unlike other earlier set partitioning coders 
such as EZW, SPIHT and SPECK, the lists here are maintained 
separately for the individual subbands and quadtree levels. This 
strategy can effectively improve performance of context 
modeling and codestream embedding. Moreover, it is essential 
for efficient accommodation of resolution-scalable 
codestreams. 

Bitplane Processing and Coding Initially, LINk[Dk-1] 
contains the single node from the top quadtree level and the 
other LINk lists and LSPk are just empty for each subband k. It 
indicates that all the subband coefficients are insignificant 
before the first bitplane coding pass starts. The coding process 
begins with the MSB plane with the bit index given by 

           max 2
( , , )

log (max{ ( , )})k
k i j

n c i j 
  

    (6) 

     where     returns the largest integral value not greater than 

the input. 
Because the quantization threshold is halved from bitplane 

to bitplane, more and more coefficients becomes significant as 
the bitplane coding process proceeds.  

Two tasks are performed in each bitplane pass n: 

1) 1. Reveal the new significant coefficients, {c||c| [
12 ,2n n )} with respect to the current threshold 2n

n  ; 

2) 2. Refine the old significant coefficients, {c||c|≥
12n

}, 

collected from the previous bitplane passes. 

Since all the insignificant coefficients with respect to the 

previous test threshold 
n  =

12n
 were already compactly 

grouped by the quadtree nodes maintained in the LINs, the new 
significant coefficients can be fast located by significance test 
of the individual nodes from the LINs. If a node is tested 
insignificant, it remains in the same LIN. Otherwise, it splits 
into four children and each child is further tested. Once a child 
is tested insignificant, it is added to the LIN at the next lower 
level. Otherwise, it further splits into four grandchildren and 
each is tested in a similar way. This testing and splitting 
procedure is recursively performed on the significant 
descendants up to the pixel level. As soon as a pixel tested 
significant, it is appended to the LSP and its sign is encoded 
immediately. The refinement of old significant coefficients (so-
called refinement pass) is simply accomplished by coding bit n 
of each coefficient in the LSPs gathered from the previous 
bitplane passes (not including the new significant coefficients 
from the current pass). The Boolean results of significance tests 
(true or false), the sign bits, and the refinement bits are all the 
required information for decoding of bitplane data. They are all 
encoded by context-dependent binary arithmetic coding, to be 
presented shortly. The bitplane coding process will stop once 
the desired coding bitrate or image quality is reached. 

The quadtree build-up stage is not needed at the decoder as 
the significance information is already contained in the 
codestream. The bitplane decoder basically follows the same 
procedure as the bitplane encoder. Given the coded sequences 
of quadtree splitting decisions, the decoder can duplicate the 
quadtree decomposition steps taken by the encoder. The 
execution path within a subband for bitplane encoding is 
required to be strictly followed for bitplane decoding. 
However, since the quadtrees are independently established for 
the individual subbands, the bitplane decoding order among 
subbands is allow to be manipulated in various ways for some 
scalable coding applications. 

In addition to the subband coefficients, the proposed 
algorithm also needs to deal with the quadtree nodes from the 
individual quadtree levels. At first look, it appears that the data 
size for processing and coding in each bitplane pass has been 
significantly expanded. Nevertheless, none of these quadtree 
nodes will be visited until their parents is already tested 
significant, except for the top quadtree nodes which do not 
have any parents. On the contrary, our experimental results 
show that the number of coded binary symbols in EZBC is in 
fact even smaller than that of pixels in the input medical image 
(at a typical lossy coding bitrate). That is, the average number 
of binary coding operation per pixel is less than one although 
the individual subband coefficient is encoded through multiple 
quantization and coding stages. It partially explains the high 
speed performance of this block-based set partitioning coding 
scheme. 

Still, we need to visit every coefficient once for 
establishment of the quadtree representations of the 
decomposed medical image at the very beginning of the 
bitplane coding process. Nevertheless, our coding algorithm in 
fact is only concerned with the MSB index of a quadtree node 
(rather than the actual value) for significance test. This 
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quadtree buildup step can thus be efficiently implemented by 
the simple bitwise OR operation.  

In order to have efficiently embedded codestreams, it is 
essential that the code data in the compressed file are ordered 
according to their relative efficiencies for distortion reduction. 
This basic concept is commonly called embedding principle. In 
the proposed algorithm, a fixed path for encoding of wavelet 
coefficient bitplane data is chosen as follows: The coding 
process advances in a bitplane-wise fashion from the most 
significant bit toward the least. In a given bitplane, the arrays of 
LINs are processed in an increasing order of quadtree level, as 
suggested by Islam and Pearlman in SPECK. That is, all the 
pixels in LIN[0] are processed first and all the nodes in LIN[1] 
are then processed next, followed by the processing‟s of 
LIN[2], LIN[3], and so on. In this way, the busy areas in the 
transformed medical image are updated earlier via a few 
quadtree splitting and coding steps, resulting in a good rate-
distortion performance. The refinement of the previous 
significant coefficients from LSP is executed at last. In a 
significance test pass of a given quadtree level or a coefficient 
refinement pass, the subbands are visited from coarse to high 
resolution  

 

 
 

Fig. 2 Illustration of the hierarchical layout of a EZBC codestream. 

 
     A hierarchical layout of a EZBC codestream is depicted 

in Fig. 2, where pn denotes the bitplane pass n,
,n l

kp  the sub-

bitplane pass for processing the insignificant nodes in LINk[l] 

(routine CodeLIN(k, l)), and max,n D

kp  the sub-bitplane pass for 

the refinement of the significant coefficients in LSPk (routine 
CodeLSP(k)).  Similar to the bitplane de-interleaving scheme 
widely adopted in the sequential bitplane coders ,  EZBC 
effectively partitions each bitplane into multiple sub-bitplane 

passes 
,{ }n l

kp n,l,k for providing an embedded codestream of 

fine granularity. However, unlike the multi-pass approach 
proposed in, EZBC does not need to scan the individual pixels 
more than once in each bitplane pass because all the involved 
pixels for the individual sub-pass were already organized in 
separate lists. Although our pre-defined data embedding order 
is not optimized for the best R-D performance (as compared to 
the algorithms), our empirical data show the resulting relative 
performance loss is mostly insignificant. The effectiveness of 
the proposed data embedding strategy is further evidenced by 
the smooth R-D curves shown in our actual coding simulation 
results  

It is worth mentioning that each bitplane pass could have 
been divided into even more sub-bitplane passes in our data 

embedding scheme to further improve the R-D performance of 
the resulting codestream. It is simply accomplished by 
partitioning of the existing lists into smaller sub-lists and then 
processing each sub-lists via separate sub-bitplane coding 
passes. The resulting computational and storage costs are still 
the same because the total number of the nodes to be stored and 
processed in all the maintained lists is unchanged. For example, 
our empirical data show that the refinement of the significant 
coefficients from the previous bitplane coding pass reduces 
distortion more efficiently than the refinement of the significant 
coefficients from the other earlier bitplane coding passes (if 
exist). The PSNR performance can thus be slightly improved 
by partitioning the existing refinement pass into multiple sub-
passes, each for the refinement of the significant coefficients 
from particular bitplane level(s). Nevertheless, it is observed 
that the granularity of the resulting codestream by the current 
algorithm is already fine enough in practical medical image 
coding applications. 

A. Context-dependent entropy coding 

As opposed to the conventional sequential bitplane coder, 
the proposed algorithm EZBC is required to process the 
bitplanes associated with the individual quadtree levels in each 
bitplane coding pass. A dual hierarchical pyramidal 
description, as previously shown in Fig. 3.1, is thus given by 
this quadtree representation of the decomposed medical 
images. Strong intraband correlation is clearly exhibited among 
quadtree nodes. The self-similarity is demonstrated across both 
quadtree and resolution levels. Such diverse statistical 
dependencies are exploited by context-dependent arithmetic 
coding in EZBC. Unlike most former set-partition coders, the 
lists in EZBC are separately maintained for the individual 
subbands and quadtree levels. Therefore, the independent 
probability models are allowed to be built up for significance 
coding of the nodes from different subbands and quadtree 
levels. As such, the unique statistical characteristics of the 
source samples associated with different subband orientations, 
sub-sampling factors and amplitude distributions will not be 
mixed up in the accumulated probability models. 

Four classes of binary symbols are encoded in EZBC: 

1) Significance test of a given quadtree node from LIN (in 

routine CodeLIN), 

2) Significance test of a child (in routine Code 

Descendants) 

3) Sign bit of a newly significant coefficient, and 

4) Refinement bit of a given coefficient from LSP. 

These symbols are all encoded by context-based arithmetic 
coding with the distinct modeling strategies, to be respectively 
described in the following. 

B. Significance coding 

This subsection begins with a brief discussion that relates 
the proposed entropy coding algorithm to the APSG (alphabet 
partitioning and sample grouping) scheme. The utilization of 
inter- and intra-band correlation and dependence between 
subband levels in a subband-based quadtree representation is 
then respectively described, followed by a description of our 
context quantization/selection scheme. 
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Significance coding in the  proposed algorithm is 
conditioned on the significance map defined by 

              





otherwise,0

tsignificanis)j,i(nodeif,1
j,i   (7) 

Nevertheless, in contrast to the conventional sequential 
pixel-wise bitplane coding approach, significance coding of a 
quadtree node in EZBC jointly encodes a group of coefficients 
from a block region. The significance status of a contextual 
quadtree node compactly indicates local activity level in the 
corresponding block area. Hence, we can think of EZBC as a 
conditional block entropy coder that applies the APSG scheme 
on both source samples and modeling contexts. As such, block 
entropy coding and conditional entropy coding can be 
combined to exploit the strong subband dependency without 
suffering the complexity difficulties commonly associated with 
high-order source extension and context modeling. Although 
from a point of view of the conventional universal source 
coding, it was argued that there is no additional compression 
gain by blocking samples in conditional entropy coding. 
However, our block coding method here does not involve 
complex codebook design or any other computation-intensive 
procedures. On the contrary, the speed performance of the 
resulting coding system is substantially improved by compact 
grouping of subband coefficients. Besides, arithmetic coding of 
large areas of zero coefficients individually in conventional 
sequential bitplane coding is associated with a highly skew 
probability distribution, which is known to be penalized by a 
high learning cost. 

C. Contextual Region 

In Fig. 3 (a), we show the neighboring nodes included in 
the modeling contexts in our coder EZBC for significance 
coding. The eight spatial adjacent nodes from the same 
quadtree level are utilized to exploit intraband correlation. Such 
a contextual structure has been widely employed in many 
conventional bitplane coders, for significance coding of 
subband coefficients. The application of this model to 
significance coding of quadtree nodes is justified by the strong 
spatial dependency exhibited in the example MSB map in Fig. 
3 (b). 

To exploit the subband correlation across scales, we adopt 
the corresponding node from the next lower quadtree level 
(rather than from the current level) in the parent subband, 
indicated by „F‟ in Fig. 3 (a). This choice is based on the fact 
that at a given quadtree level the related dimension in an input 
medical image for a quadtree node is doubled in the parent 
subband, as a result of sub-sampling operation in the subband 
transformation stage. The inter-band information is thus 
provided at the same spatial resolution by the parent subband, 
as demonstrated in Fig. 3(b). 

D. Inter-/Intra- Band Modeling 

 
The importance of the inter-band neighboring pixels lies in 

its ability to provide non-causal contextual information for 
conditional entropy coding. Such information is particularly 
valuable for efficient compression of the leading bitplanes 
since most spatial neighboring coefficients are still 

insignificant. However, the complexity of the algorithm may be 
increased by a use of the inter-band neighbors for some 
imaging applications. It has been argued that the intra-band 
context model is capable of effective exploitation of   

 
 

Fig. 3 Modeling contexts for conditional entropy coding of significance test. 

(a) Left: Neighbors included in the modeling contexts. (b) Right: Example 

MSB map of quadtree nodes from the decomposed MRI image. 

 
Subband dependency combined with some efficient zero 

coding schemes. EBCOT, for instance, exhibits excellent 
compression performance combining quadtree decomposition, 
run-length coding with conventional context-based bitplane 
coding. Similar phenomenon was also observed during the 
development of EZBC. Our experimental results show that no 
PSNR improvement is made for significance coding of the 
individual pixels from LIN by inclusion of interband neighbors 
in the modeling context. The improvement for significance 
coding of a child pixel is also very limited. It is expected 
because the current pixel for significance test often already has 
some neighboring pixels tested significant when the quadtree 
decomposition operation proceeds to the bottom level. As a 
result, we only employ intraband modeling for conditional 
entropy coding of significance test at the pixel level. 

On the other hand, it was also observed in our experimental 
results that the spatial dependency among quadtree nodes is 
decreasing as we move toward the higher quadtree levels. 
Recall that the value of a quadtree node is defined to be the 
maximal amplitude of all subband coefficients from its 
corresponding block region and the block size grows 
exponentially with the quadtree level. As is well known, the 
pixels with peak values are typically related to “singularity” in 
the input MRI image. Because of the energy clustering nature 
of subband coefficients, these medical image features are 
typically easily noticeable in the spatial contexts at the lower 
quadtree levels. Nevertheless, such clustering‟s of high energy 
are restricted to the local region around the “peak pixels”. As 
the block size grows (or the quadtree level increases), this 
energy clustering phenomenon in the current block will become 
less likely reflected in the neighboring nodes if the peak pixel is 
not close to the block boundaries. Nevertheless, such an 
“anomaly” in space remains seen from the same corresponding 
area in the parent subband. Since the significance of a parent 
node is coded earlier during every bitplane pass, we can say 
that the parent node provides a look-ahead function into the 
region covered by the current node. In fact, our simulations 
indicate that the interband-only context model (containing a 
single neighboring node from the parent band) outperforms the 
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intraband-only context model (containing eight spatial 
neighboring nodes) at the 3rd level of the quadtree and higher. 

The use of inter-band modeling is only optional in EZBC. 
An example application desirable for intraband modeling is 
highly scalable image coding presented. 

E. Dependency between Quadtree Levels 

The correlation between the adjacent quadtree levels is 
exploited to provide the inter-subband contextual information 
at the same spatial resolution. Within a given subband, the 
dependency also exists between the adjacent quadtree levels, 
directly attributed to the two properties associated with the 
basic mechanism of quadtree build-up and splitting: 

1) When a parent remains insignificant, all its children are 

also insignificant; 

2) After a parent tested significant, at least one of its four 

children will test significant in the subsequent descendant test 
 

Property (i) is already utilized in a conventional zeroblock 
coder to compactly represent large numbers of insignificant 
pixels from block regions. Property (ii) implies that the chance 
of being testing significant is increasingly higher for the next 
child if none of its siblings have been tested significant yet. For 
example, without considering other contextual information, the 
probability that the first child tests significant is no less than 
0.25. Had none of the past three siblings been tested significant, 
the fourth child is significant for sure and no significance 
testing and coding is required. This statistical characteristic is 
exploited in our context modeling scheme detailed in the next 
section. 

F. Context Selection and Look-up tables 

Although adaptive arithmetic coding is a universal coding 
scheme which allows the source statistics to learn on the fly, 
the related learning costs often turn out quite expensive for 
many practical instances. The compression efficiency can be 
substantially improved if prior knowledge about the source is 
effectively exploited in the context model design. 

Unlike the conventional sequential bitplane coder which 
encodes subband samples one by one in each bitplane coding 
pass, EZBC processes coefficients in groups and hence has 
fewer samples to encode. Context dilution thus becomes an 
issue of great concern. Our context modeling scheme is based 
on the significance map which allows context quantization to 
be implicitly carried out. Instead of treating all the resulting 
context vectors (29 totally) as different conditional states, we 
carefully classify them into several model classes, similar to the 
context selection approach adopted in EBCOT and JPEG 2000. 
The look-up tables are then established accordingly to fast map 
a given context to the assigned model index. This strategy can 
further lower the model cost and enable the probability models 
to fast adapt themselves to varying local statistics. 

The context classification, based upon the configurations of 
the significance map, is characterized by: 

1) Orientations: identified by 

        H = σ(W)+ σ(E), such that  0H 2, 

        V = σ(N) + σ(S), such that  0V 2, 

        HV = H + V, such that 0HV 4, and 

        D = σ(NW) + σ(NE) + σ(SW) + σ(SE), such that        

        0D 4 
where the relative positions of nodes ‟W‟, ‟E‟, ‟N‟, ‟S‟, 

‟NW‟, ‟NE‟, ‟SW‟, 

‟SW‟ are shown in Fig. 3. 

2) Inter-band dependency: identified by 

       P = σ(F), such that, 0  p 1, 

where the position of node „F‟ is shown in Fig. 3 

3) Relative position ν: index of the current child node as 

shown in Fig. 3. where 
  v{00, 01, 10, 11}. 

4) Significance of the past coded siblings: 

         
 



  



otherwise,0

0iand0vif,1
v

1v
0i

sb   (8) 

 Where ν is the index of the current child node. 

The spatial correlation among quadtree nodes is exploited 
by the eight first order neighbors, as depicted in Fig.3. The 
structure features are summarized in horizontal, vertical and 
diagonal directions, respectively. It is well known that the MRI 
image attributes such as edges and corners are retained along 
the direction of lowpass filtering after subband transform. 
Hence, our context modeling scheme emphasizes the 
directional characteristics in accordance with the current 
subband orientation. For instance, the horizontal features are 
favored over the vertical and diagonal ones in the LH subband 
(horizontal lowpass filtering followed by vertical highpass 
filtering). 

Since the inter-band dependency is not as useful at lower 
quadtree levels, we restrict the modeling contexts to the 
intraband neighbors for significance coding at the pixel 
quadtree level. It was mentioned that the coding statistics for 
significance test of the individual child are position-dependent. 
Hence, significance coding of each child is additionally 
conditioned on its relative position, ν, and the significance 
status of its past coded siblings, σsb. 

The look-tables are respectively designed for the subbands 
of LH and HH orientations. Following the idea of EBCOT , the 
coefficient matrix from the HL subband is transposed first 
before the bitplane coding process starts. In this way, the same 
set of look-up tables can be shared by both the HL and HL 
subbands. The transposition of the LH subband is avoided in 
the JPEG 2000 standard by transposing the look-up tables for 
the LH subband instead.  

G. Refinement of significant coefficients 

The same contextual intraband region shown in Fig. 3 is 
utilized for conditional coding of the refinement of the 
significant coefficients from LSP. The contextual information 
is characterized by significance map σp(i, j), the significance 
status with respect to the quantization threshold at the previous 
bitplane level.   

H. Context-dependent de-quantization 

This section presents a new de-quantization algorithm that 
features a context-dependent strategy for reconstruction of 
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subband coefficients. A simple source statistical model is 
designed for each context with the model parameters estimated 
from the statistics accumulated at the decoder. 

It is known that the optimal representation levels of a scalar 
quantizer should satisfy the following centroid condition    

    

                      
 

 








1id

id

1id

id*
1

dxxfx

dxxxxf
r  (9) 

 Where ir


 is the optimal reconstruction value for a given 

quantization interval [
id ,

1id 
] and a probability density 

function (pdf) ( )Xf x . However, the reconstruction values for 

the decoded coefficients are typically set to the midpoints of 
the corresponding quantization intervals in practice either for 
simplicity of implementation or for lack of knowledge about 
the source statistics. Such a choice is optimal for the source 
with uniform probability distribution over the individual 
decision intervals. For bitplane coding in particular, it is 
implicitly assumed that the positive and negative coefficients 
within the dead zone are equally likely and the reconstructed 
values of all the insignificant pixels are set to zero as a result. 

The proposed de-quantization algorithm is based on the two 
experimental observations: 

1) Subband coefficients exhibit strong spatial correlation 

in both signs and        magnitudes 

2) The statistics of bitplane samples bear strong 

resemblances within and across bitplane levels in a given 

subband and gradually grow into less skew probability   

distribution from bitplane to bitplane. 
 

Observation (i) has been utilized for context-based 
arithmetic coding of the subband coefficients in EZBC. 
Similarly, the coded significant pixels can provide contextual 
information for reconstruction of their neighboring coefficients. 
Particularly, the signs of significant pixels are useful for 
predicting the signs of their neighboring insignificant 
coefficients which are distributed over the dead zone and are 
quantized to the zero symbols. Combined with observation (ii), 
we can estimate the source statistics on a given context using 
the related probability tables accumulated during the decoding 
process. 

I. Reconstruction of significant coefficients 

A simple statistical model is adopted for reconstruction of a 

significant subband coefficient 0 0[ , )i ic x x   , as depicted 

in Fig. 4(a), where 
0x  is the decoded value of ic . The 

quantizer step size,
i , for 

ic  is given by  








 otherwise,2

npasslasttheduringcodedbeenhascif,2

1a

i
i



  (10) 

 

      The estimated conditional probability  

 








 i
i00i

i
0ir0 cx,xc

2
xcp̂p̂ 


  (11)   

given a context ci is empirically determined by the related 
probability tables which were already accumulated during the 
decoding process. The definition of the contexts is the same as 
the one used for refinement coding of the significant 
coefficients. Uniform distribution is then assumed for each half 
of the quantization interval. The resulting reconstruction level, 
ri, is computed by 
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 









 i0x

2/i0x
i0x

0x
i

0

i

0 xdx
p̂12

xdx
p̂2 





 


















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where  xf̂ x represents the estimated conditional probability 

density function for the magnitude of a significant coefficient 
ci. We note that the reconstruction value ri approaches the 
midpoint of the quantization bin, the conventional 
reconstruction value, as the probability distribution becomes 

less skew  2/1p̂0   

J. Reconstruction of insignificant coefficients 

Our statistical model for reconstruction of insignificant 

subband coefficients    0r,
2

1
p̂,c spii    is depicted in 

Fig. 4 (b). The quantization threshold 
i  for ci  is equal to 2n or 

2n+1, depending upon whether ci has been visited during the last 
bitplane pass. The estimated conditional probabilities  

 








 i
iii

i
ir0 c,c

2
cp̂p̂ 


 and  

  iiiiirsp c,,c1p̂p̂    for 

 
 

Figure 4 : The assumed conditional probability density function (pdf) for the 

subband coefficients. 

(a) Left: The conditional pdf model for significant 

coefficients  0 0,i ic x x   . 

(b) Right:  The conditional pdf model for insignificant 

coefficients ( , )i i ic    . 

 

The right half of the coordinate plane corresponds to 
i = 1 

(the sign prediction is correct).  The given contexts Ci are 
empirically decided by the accumulated probability tables, 
where ζi denotes the correctness of sign prediction for ci.  
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The definitions of the contexts for estimation of 
0p̂  and 

ˆ
spp  are the same as the ones employed in significance coding 

of pixels and sign coding, respectively. Further, we assume the 

events  








 i
iii

i
i c,,c

2
c 


 

and  

  iiiii c,c1  
  

are statistically independent so that 
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2
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. 13)

 

V. RESULTS 

The results at different bpp are shown in Figure 5. 

It is shown as the bit rate decreases, the quality of the 
reconstructed MRI image should degrade. The results are 
tabulated for two samples as in figure 6 and 7. The PSNR 
values for different bpp are shown in table 1. 

 

 (a) Original MRI image sample1 

 

 
(c) Recovered image at 0.5 bpp 

 

 

 

 
(i) Original  MRI Image sample2 

 

 
(ii) Recovered MRI image at 0.9 bpp 

 

Figure 5. Recovered images withdifferent Bits per pixel values. 

 

 
                 (b) Recovered MRI image sample at 0.1 bpp 

 

 
 (d) Recovered MRI image sample at 0.9 bpp 

 

   
(iii) Recovered image at 0.1 bpp 
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     (iv) Recovered MRI image sample at 0.5 bpp 

 
 

Fig. 6 PSNR v/s bpp plot for the given  image 

 

 

Fig. 7  PSNR v/s bpp plot for the given  image 

 

TABLE 1 PSNR V/S BPP PLOT FOR THE GIVEN LEAF IMAGE 

 

VI. CONCLUSION 

This project implements an enhanced image coding system 
for medical image compression compared to the existing JPEG 

2000 system. It is observed that EZW is able to achieve its 
good performance with a relatively simple algorithm. EZW 
does not require complicated bit allocation procedures like 
subband coding does, it does not require training or codebook 
storage like vector quantization does, and it does not require 
prior knowledge of the image source like JPEG does (to 
optimize quantization tables). EZW also has the desirable 
property, resulting from its successive approximation 
quantization. 

One desirable consequence of an embedded bit stream is 
that it is very easy to generate coded outputs with the exact 
desired size. Truncation of the coded output stream does not 
produce visual artifacts since the truncation only eliminates the 
least significant refinement bits of coefficients rather than 
eliminating entire coefficients as is done in subband coding. 
From the obtained results it is concluded that embedded zero 
tree wavelet coding takes comparatively less(about 60%) time 
then the JPEG coding system. The coding also shows less 
percentage of error in medical image compare to the existing 
JPEG coding system. It is observed that image coded with 
embedded zerotree wavelet coding shows clearer image than 
other coding system. 
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