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Abstract— In this report, we will be interested at Dynamic 

Bayesian Network (DBNs) as a model that tries to 

incorporate temporal dimension with uncertainty. We 

start with basics of DBN where we especially focus in 

Inference and Learning concepts and algorithms. Then we 

will present different levels and methods of creating DBNs 

as well as approaches of incorporating temporal dimension 

in static Bayesian network. 
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I.  INTRODUCTION 

The majority of events encountered in everyday life are not 
well described based on their occurrence at a particular point 
in time but rather they are described by a set of observations 
that can produce a comprehensive final event. Thus, time is an 
important dimension to take into account in reasoning and in 
the field of artificial intelligence in general. To add the time 
dimension in Bayesian networks, different approaches have 
been proposed. The common names used to describe this new 
dimension are "temporal" and "dynamic ". 

II.  BASICS 

A. Definition 

Bayesian networks represent a set of variables in the form 
of nodes on a directed acyclic graph. It maps the conditional 
independencies of these variables. They bring us four 
advantages as a data modeling tool [16,17,18] 

A dynamic Bayesian network can be defined as a repetition 
of conventional networks in which we add a causal one time 
step to another. Each Network contains a number of random 
variables representing observations and hidden states of the 
process. 

We consider a dynamic Bayesian network composed of a 
sequence of T hidden state variables (a hidden state of a DBN 
is represented by a set of hidden state variables) and a 
sequence of T observable variables  where T is time limit of 
the studied process.  

In order that the specification of this network is complete, 
we need to define the following parameters: 

- The transition probability between states      
      

- The conditional probability of hidden states knowing 

observation           

- The probability of the initial state        

The first two parameters must be determined for each time 
           . These parameters can be invariant or not over 
time. 

B.  Inference 

The general problem of inference for DBNs is to calculate 

     
          where    

  is the      hidden variable at time    
and        represents all observations between times    and    .  

There are several interesting cases of inference, they are 

illustrated below. The arrow indicates    : that we try to 

estimate. Shaded regions correspond to observations between 

   and     

 

Filtering: this is to estimate the belief state at time    knowing 

all the observations until this moment:  

 

   
                 

 
 

 

Decoding (Viterbi): decoding problem is to determine the 

most likely sequence of hidden states knowing the 

observations up to time    : 

          

       
     

                

                                                 

                                                                                                                       
                        

Prediction: This is to estimate a future observation or state 

knowing the observations up to the current time t0 
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Smoothing (offline):  is to estimate a past state knowing the 

observations up to the current time T 

 

 

 

            
 

      

There are several algorithms for inference in Dynamic 
Bayesian Networks. We can classify these algorithms 
according to their accuracy, in two broad classes: 

A. Exact Inference: 

1) Forward-Backword Algorithm: 
The algorithm proceeds in two steps: 

a) Forward step: forward propagation of probabilities 

b) Backword step: backward propagation of 

probabilities  

FORWARD ALGORITHM: 

We consider a dynamic Bayesian network B. We wish to 

calculate the probability       ) of occurrence of the 

sequence of observation     . This probability is: 

         ∑ [(∏                    

   

   

)          ]
          

     

           

   

 

Applying directly this formula, the computation time is 

O(TNT). For this, we consider the forward variable defined 

by: 

 

                        (2) 
 

which expresses the probability of observing the sequence      

while lying in state   . This variable can be computed 

inductively: 

Initialisation :  

              

Induction : 

                       (∑             
      )  (3) 

Thus, we can calculate                   , this naturally 
leads us to: 

        
      

∑         

                    

 BACKWARD ALGORITHM: 

It is also possible to perform the calculation in reverse, using 

the backward algorithm.  

For this, we define the backward variable as follows: 

                                  (5) 

This variable expresses the conditional probability of 
observation from time t +1 until the last observation time T, 
given the values of the hidden states at time t. 
Its calculation follows the following procedure: 

Initialisation :  

          

Induction : 

           ∑                             
       (6) 

Thus, we can calculate the expected probability: 

         ∑  
 
      ( 

 
   )   

           (7) 

The complexity of this algorithm is, as the forward 
algorithm in O(TN2). 

From these two factors (forward and backword) 
propagation probabilities, we can explore other terms that are 
useful for inference and learning of Dynamic Bayesian 
networks: 

 Smoothing: this is to calculate            
where t < 

T. From equations (4) and (6), we can determine the 

following equation: 

 

              
            

∑               

         (8) 

   is called smoothing operator. We can also derive higher 
order smoothing equations. For example, a smoothing of the 
first order is defined as follows: 

                                

  
                                  

∑               

        

These terms may be used to easily calculate the 
probabilities of hidden states from the neighboring nodes. 

 Prediction: this is to calculate              et 

            . We can easily determine: 

 

             
∑             

      

∑         

             

 

Similarly, one can determine:  

 

             
∑               

∑         

                     

 
 Decoding : is to determine the sequence of hidden 

states  ̂   

  

such as :  

 

 ̂           
    

                         (12) 

t
0 
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This task can be solved using the dynamic programming 
algorithm of Viterbi. We can start with the following equation: 

  
               

    
                              (13) 

Considering the topology of the DBN, we can deduce: 

                            
  

[                
      

            ]  

                
  

[                ]                       

We can now easily deduce that: 

   
      

                     
    

               (15) 

To find   ̂   , we must introduce the argument    that 

maximizes            as follows: 

 

                   
  

[                  ]     (16) 

And we have: 

 ̂         ̂              (17) 

Note that if we want to use the Viterbi algorithm to decode 
the sequence of hidden states, we must have a complete 
observation        . If the number of observations is not 
sufficient, a less optimal solution known as the truncated 
Viterbi algorithm can be used. 

2) Junction Tree Algorithm:  
The Junction Tree Algorithm [1] is an algorithm similar to 

the Baum-Welch algorithm used in HMM. It involves 
transforming the original network into a new structure called 
junction tree and apply a type inference algorithm used for 
static Bayesian networks. This tree is obtained by following 
these steps: 

 

 Moralization: connecting parents and eliminating 

directions. 

 Triangularization: selectively adding arcs to the 

graph morale (not to have cycles of order 4 or more). 

 Junction Tree : is obtained from the triangulated 

graph by connecting the cliques such that all cliques 

on the path between two cliques X and Y contain  X 

∩ Y 

B. Approximate inference: 

When the dimension of Bayesian networks increases, the 
computing time is increasingly important. When the 
conditional probability tables are derived from data (learning), 
these tables are not accurate. In this case it is not worth 
wasting time by making exact inference on probabilities not 
precise, hence the use of approximate inference methods. 
Among the approximate inference methods that often work 
well in practice, we give: 

1) Variational methods 

The simplest example is the approximation by the average 
(mean-field approximation) [2], which exploits the law of 
large numbers to approximate large sums of random variables 
by their average. The approximation by the average product of 
a lower probability. There are other, more stringent, resulting 
in a lower and upper. 

2) Monte Carlo 
The easiest Monte Carlo Method [3] is the Importance 

Sampling (IS) that produces a large number of samples x from 
     the unconditional distribution of hidden variables) then 
we give weight to samples based on their likelihood        
(where y is the observation). This forms the basis of 
Particulate Filter which is simply the Importance Sampling 
adapted to a dynamic Bayesian network. 

3) Loopy Belief propagation  
We apply the algorithm of Pearl [4] to the original graph 

even if it contains loops. In theory, one runs the risk of double 
counting certain words but it was shown that in some cases 
(for example, a single loop), events are counted twice and thus 
cancel out fairly between them to give the correct answer . 

4) Leaning: 
Learning is to estimate the probability tables and 

conditional distributions CPTs CPDS. This task is based on 
the EM algorithm (Expectation Maximization) algorithm or 
the GEM (General Expectation Maximization) for DBNs. 

Let M be a Dynamic Bayesian network with parameter  , 

learning aims to determine  ̂ 

 

such the posterior probability of 
the observations is maximal, then either: 

 ̂           
 

[       ]        (18) 

EM Algorithm: This algorithm includes: 

 an evaluation step of expectation (E), which 

calculates the expectation of the likelihood taking 

into account the recent observed variables, 

 a maximization step (M), where an estimated 

maximum likelihood parameters by maximizing the 

likelihood found in step E. 

C. Pruning 

This task is based on the possibility of change in time, of 
RBD’s structure. This is usually omitted for its complexity. 
Pruning the network consists in perform  one of the following 
operations: 

a) Delete one or more states of a given node 

b) Remove a connection between two nodes 

c) Remove one or more network nodes 

This can be exact (lossless) or approximate 

 

III. DIFFERENT LEVELS OF CREATING DBN 

To describe a dynamic Bayesian network, we must specify 
its topology (the graph structure) as well as all the tables of 
conditional probability distribution. You can learn them both 
(the graph and distributions) from experimental data. 
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However, it is more difficult to learn a structure to learn its 
parameters. 

It is possible that some nodes are hidden during the 
experiments (values that we can’t observe), or missing data. In 
this case, learning becomes more complicated settings. From 
these considerations, there are 4 possible cases of learning [5]: 

TABLE I.  METHODS OF DETERMINATION OF DBN STRUCTURE AND 

PARAMETERS 

Structure  Observability Method 

Known Full Simple statistics : MLE  

Known Partial EM or Gradient Ascent 
Algorithm 

Unknown Full  Search through model 

space 

Unknown Partial Structural EM 

A.  Known structure /Full observability 

The DBN’s structure is known, it remains to estimate the 
parameters of the network using the method of maximum 
likelihood estimation. We look for parameters   describing the 
model assumptions that maximize the likelihood of 
observations Y: 

                      (19) 

In general, it instead uses the log likelihood (log-likelihood) 

                               (20) 

B.  Known structure /Partial observability 

When certain variables are not observable, the likelihood 
surface becomes multimodal and we must use iterative 
methods such as EM or gradient increasing to find local 
maxima of the function ML / MAP. The principle of the EM 
algorithm is to associate a problem with an incomplete data 
problem for which complete data for a simple solution exists 
for the maximum likelihood estimate. This procedure needs to 
use an inference algorithm to compute the parameters for each 
node. These algorithms are explained in section II.3 

C. Unknown structure / Full observability 

There are several techniques for learning DBN structure 
from observed data. These techniques help to create the 
network structure by adding or deleting edges between any 
two nodes or reversing the direction of an existing arc. These 
changes must be made in order to maintain and acyclic 
directed graph. 

To accomplish the task of structural learning, we need [6]: 

- an algorithm to find the different possible structures 

- a metric for comparing the possible structures to each 

other 
The structure learning algorithms can be classified into two 

broad categories. 

 The first class of algorithms using heuristic search 

methods to construct the graph and evaluates it using 

scores (scoring methods). This procedure is repeated 

until the improvement between two consecutive 

models is not significant. 
 The second class of algorithms to create the network 

structure by analyzing the independence relations 

between nodes. These independence relations are 

measured using several types of tests of conditional 

independence (eg mutual information between two 

nodes can be considered as a criterion for conditional 
independence) 

According to Cheng et al. [7], when comparing the two 
types of algorithms, we can conclude that the first class of 
algorithms are faster than the second if the network is densely 
connected, but can’t find the best solution for most models 
corresponding to real processes of the heuristic nature of these 
algorithms. The second class of algorithms can produce, under 
some assumptions, an optimal or near optimal solution 
especially when the data are not numerous. 

D.  Unknown Structure /Partial Observability 

The EM algorithm is developed to make learning network 
settings, so it must be adjusted to perform structural learning 
from incomplete data. The structural EM (SEM) is one of the 
most popular techniques that are developed for this purpose. 
SEM has the same E-step EM algorithm for completing the 
data using observations and the current structure of the 
network. The M-step involves two parts: In the first, it 
recalculates as already explained, the maximum likelihood to 
determine the parameters. In the second part, it uses these 
parameters to evaluate any other candidate structure similar to 
the current structure. 

IV.  DIFFERENT APPROACHES FOR INCORPORATING TIME IN 

BAYESIAN NETWORK 

Dynamic Bayesian Networks (DBN) are an extension of 
Bayesian networks that represent the temporal or spatial 
evolution of random variables. There are several models for 
incorporating time into network representation. These models 
can be classified into three broad categories: 

 Models that use static BNs and formal grammars to 

represent the temporal dimension (temporal 

probabilistic networks (TPNs) 

 Models that use a mixture of several probabilistic 

frameworks 

 Models that use temporal nodes in the static BNs to 
represent temporal dependencies 

The first two models are developed for specific objectives 
and have a very limited use. We will therefore focus on the 
third model. 

A. Probabilistic Temporal Networks (PTN) 

1)  Definition 
A probabilistic temporal network (PTN) is defined as a 

model, representing the time information while fully 
embracing probabilistic semantics. In a PTN, the nodes of the 
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graph are the temporal aggregates and the arcs are causal and / 
or temporal relations 

This type of network uses grammatical rules to express 
temporal dependencies in the structure of Bayesian networks: 
The conservation of the structure of static Bayesian networks 
allow reuse of powerful techniques for inference of BNs this 
specific type of networks. Grammar introduce temporal 
relations between events 

2) Temporal Reasoning 

In PTN, temporal reasoning is based on interval algebra [8] 
which was introduced by James F. Allen in 1983. This is a 
calculation that defines the possible relationships between time 
intervals and provides a table of composition that can be used 
as a basis for reasoning on descriptions of temporal events. 

The 13 following basic relations capture possible relationships 

between two intervals are illustrated in the following table: 

TABLE II.  ALLEN’S INTERVAL ALGEBRA 

Relation  Illustration Interprétation 

X < Y 

Y > X 
 

X Precede Y  

X m Y 

Y mi X 
 

X meets Y  

 

X o Y 

Y oi X 
 

Overlaps  X by Y  

 

X s Y 

Y si X 
 

X starts Y   

 

X d Y 

Y di X 
 

X during Y  

 

X f Y 

Y fi X 

 

X finishes Y  

 

X = Y 

 

X is equal to Y   

 

B. DBN as a mixture of several probabilistic structures 

Dynamic Bayesian networks generalize hidden Markov 
models (HMM) and linear dynamical systems (LDS) by 
representing the hidden states (and seen) as state variables, 
with complex interdependencies. The HMMs are used to 
represent discrete states and the LDS are used to represent 
states (variables) continuous. The combination of these two 
structures to create a mixed-state DBN. This type of model 

was introduced and applied to the recognition of human 
gestures [9] 

C.  Pure Probabilistic DBN 

In this section we consider a DBN as a graph whose nodes 
represent states and arcs represent conditional dependencies 
(causal) between states of a band as well as temporal 
dependencies between the states belonging to two consecutive 
time slices 

1) Extension of BNs toward DBNs 
A static Bayesian network can be extended in many ways 

to represent temporal process. These extensions can be 
classified into five categories: 

1-    Adding the history of a node to explicitly express 

the temporal aspect in the Bayesian network. 

2-    Select from a library of pre-developed Bayesian 

network, the RB appropriate to the current state. 

3-    Changing dynamics of the network structure. 

4-    Repeat the traditional network for each time step by 
introducing Bayesian networks to represent events. 

5-    Repeat the classical Bayesian network by adding 

arcs representing the time dependencies of a time 

slice to another. 

 
The networks of the first category may be regarded as 

mere static BNs which is added an additional node to represent 
past information in time. The second class of Bayesian 
networks is the object of an idea that has been used in early 
work on DBNs by Singhal et al. They use a bunch of BNs 
(COBRA) developed locally and every time the system selects 
the Bayesian network corresponding to its beliefs about the 
current state of real objects studied, hence the dynamic 
(temporal) aspect of this class 

We will describe in more detail, the three other types of 
extension of BNs to the DBN: 

2) Dynamic change in the structure of DBNs 
Changes in the structure of a DBN can be: 

- Changing network settings (values of the table of 

conditional probabilities CPT) of a time slice to another 

- Adding or deleting new nodes and / or arcs to the 

structure of BN. 

The structural changes of a DBN (addition or deletion of 
edges or nodes) is a complex problem and can not be 
generalized easily. In the following, we are interested in 
changing parameters (CPT) system. 

In [10] Zweig and Russell presented a model that uses 
decomposition techniques to represent dynamic situations real. 
These dynamic processes can be decomposed into several 
sequences. Such decomposition can be used in speech 
recognition or recognition of manuscripts. They found it more 
suitable to represent dynamic processes (temporal) creating a 
RB (a subnet) at each stage in the evolution of the process to 
model the whole process by a single BN. Each sub-network 
must be learned from observations at the appropriate time. 

3) DBNs for events representation 

http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
http://en.wikipedia.org/wiki/File:Allen_calculus_overlap.png
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In such networks, we use information obtained from states 
belonging to two consecutive time slots in order to deduce the 
events that took place between the two points of time. 
Structure of these networks is presented in the following 
diagram: 

 

 

 

 

 

 
 

 

 

 

 

Figure 1. General structure of a dynamic belief network 

In such networks, there are three types of nodes W, O and 
E which represent respectively: 

- The random variables (corresponding to states of the real 

process) 

- Observations 

- Events 

Dynamic Bayesian networks are a repetition of the 
traditional network in which we add a causal link (representing 
the time dependencies) of a time step to another. The network 
topology is the same for the different time slots. Arcs and 
probabilities that form these models have the same 
interpretations as for a statistical system based on a classic 
SNL. Thus, a DBN is completely defined by giving the couple 
       ,  with: 

-    is a BN which defines the a priori probability       
(initial state) 

-     is the temporal Bayesian Network with two time 

slices (2TBN: two-slice Temporal Bayes Net) which 

defines            using a directed acyclic graph DAG 

as follows: 

           ∏    
      

   

 

   

 

Where   
 

 
represent le ith node at time t and     

   is the 

parent of    
   in the graph. 

V. FROM HMMS TO DBNS 

The main difference between the HMM and dynamic 
Bayesian networks is that in an RBD the hidden states are 
represented as distributed by a set of random variables 
   

    
      

  . Thus, in an HMM, the state space consists of 
a single random variable   .  

Figure 2 shows a HMM represented in its graphical form 
with a dynamic Bayesian network. The gray nodes represent 
observed nodes and nodes in white are the hidden nodes. 

 

 

 

 

 

 

 

Figure 2.  HMM represented as an instance of RBD unrolled over three time 

steps 

In Figure 2, following the notations used in the literature 
on the HMM, the node    represents the initial state  

 
with 

            . The transition matrix is represented by 
tables of transition probabilities between nodes     

et      
with  

                      

  Finally, the observation matrix is found in probability 

tables between nodes tX
 
and tY

 
with  

                    

Thus, the specification of an HMM as a dynamic Bayesian 
network is simply given by the probability tables for      , 
           et         . Assuming that the model is invariant 
over time (transition matrix and observation are fixed over 
time) then the givening of       ,          et          

are 
sufficient. 

The major advantage of dynamic Bayesian networks over 
HMM is that it is very easy to create alternatives to HMM 
simply giving another structure more or less complex DBN. 
The formalism and algorithms remain the same [11]. If you 
change the tables of probability distributions (discrete tables) 
by continuous distributions (eg Gaussian), then it also 
becomes possible to represent models based on Kalman filters 
[12]. It is also possible to combine these different models 
simply by hanging them DBN and thus provide more complex 
models. 

VI.  REPRESENTATION OF HMMS AS DBNS 

There are several variants of HMM, which were proposed 
in response to specific classes of problems and to overcome 
limitations in traditional HMMs. 

In this section, we will present the variations of the most 
widely used HMM (shown in Figure 3). The coupled HMM 
(Figure 3 (a)) is probably the most natural structure, which can 
process, simultaneously and with good efficiency, multiple 
data streams from the same observations. For this, we will 
briefly introduce other representations and will be presented in 
more detail the coupled HMMs in the next section. 

Figure 4 (b) is a specific coupling of HMM described in 
[13] as an event coupled HMM. The motivation for this 
representation is to model a class of loosely coupled time 
series where only the occurrence of events are coupled in time. 

W(t) W(t-1) W(t+1) 

E(t, t+1) 

W(t-1) 

O(t+1) O(t) 

O(t-1, t) 

O(t-1) 

E(t-1, t) 

Y2 

X2 

Y3 

X3 

Y1 

X1 
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The representation of events coupled with HMMs is obviously 
limited by its narrow structure and this structure is for a very 
specific class of applications. 

Input / Output HMM (Figure 4 (c)) [15] represents a 
promising alternative to the use of a hidden Markov model. 
This variant allows to map an input sequence and output 
sequence. The main difference with traditional HMMs is 
indeed the first is the distribution     

   of the output 

sequence    
                  when the second shows the 

distribution conditional     
      

   of the output sequence 

given an input sequence    
                 . This allows 

for spot monitoring or recognition of sequences online. The 
inputs and outputs can be discrete or continuous, scalar or 
vector. 

 

 

 

 

 

 

 

(a)                                  (b) 
 

 

 

 

 

 

(c)     (d) 
Figure 3: different variants of HMM: The empty circles represent the hidden 

states and the gray circles represent the observations (slightly gray circles in 

Figure (d) represent the input nodes). (a) coupled HMMs, (b) event coupled 

HMM, (c) factorial HMM, (d) input-output HMM. 

The factorial HMM (Figure 3 (d)) [14] is a model used to 
represent systems in which the hidden states are made from a 
set of decoupled dynamical systems and with only one 
observation available. 

VII. COUPLED HMM 

A. Definition 

In a coupled HMM, each hidden variable (state) is 
connected to his own observation. It is also connected to its 
two nearest neighbors in the time slice with the exception of 
the following variables belonging to chains border, each with a 
single nearest neighbor (see Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Coupling of two HMMs 

B.  Parameters of coupled HMMs 

Let a CHMM model formed with L coupled HMMs. This 
model is fully described giving the following parameters: 

 initial probabilities: 

   {  
   }                           

     is the number of states (hidden nodes) of the chain   

 

 Transition probabilities:  

   {   
      }                                       

 ∑    
      

      

    

 

 Probability of observation 

   {  
      }                                      

  ∑    
         

    

 

C. Extension of the forward-backword algorithm for 

CHMM: 

In the same way as for traditional HMMs, we use the 
Forward-backword algorithm to calculate          in the case 
of L coupled HMMs. There, in this case each observation    is 
a vector        

     
        

 ). Since L HMMs are coupled, the 
variables forward and backword should be defined jointly for 
all HMMs. In other words, we define the forward variable    

as follows: 

 

                     (                  
      

         
   ) 

And the backword variable    as follows: 

  

𝑋 
  𝑋 

  𝑋𝑇
  

𝑌 
  𝑌 

  

𝑋 
  𝑋 

  𝑋𝑇
  

𝑋 
  𝑋 

  𝑋𝑇
  

𝑌𝑇
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                     (                 
      

         
   ) 

 
Therefore, we can calculate inductively the two variables 

as follows: 

 
                    

 

{
 
 

 
                     ∏   

   
      

      
              

 

                                       

∑ (                    ∏     
      

   

 

∑       

         

  
)

             

         

 

 
                    

 {

                                                                                 

∑ (                    ∏     

        
   

 

∑       

         

  
)

          

          

And the likelihood function          can be calculated as 
follows: 

 

          ∑                   

              

  

D.  EM algorithm for learning parameters of CHMM 

As in the case of traditional HMMs, the two basic steps of 
the EM algorithm as described in [3] are: 

 Estimation step: 

Given the observations O, the parameters to estimate   and 
the objective function          , we construct an auxiliary 
function: 

 (   ̂)    [             ̂] 

 
that represents the expectation  of the objective function of 

all sequences of possible states, given the observations O and 
the current parameters estimated 

 Maximization step: 

In the exact EM algorithm, the role of this step is to 

estimate the new parameters  ̂    as follows: 

 ̂           
 

 (   ̂)   

VIII. MOTIVATION OF USING CHMM 

According to its definition, a coupled HMM can be viewed 
as a collection of HMMs, one for each data stream, where the

 discrete nodes at time t for each HMM are conditioned by the 
discrete nodes at time t -1 of all HMMs linked. 

The characteristics of handwritten characters can perform a 
joint analysis of the image of a character according to the two 
preferred directions: vertical ("column") and horizontal 
("lines"). So we will use the coupled HMM (CHMM) to 
couple two HMMs: one can handle comments on the columns 
and the second will be used to handle comments on the lines 
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