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l. INTRODUCTION

Source term inversion in groundwater pollution is a class
of inverse problems[7,8], and is also important field of
inverse problem research. Scholars have done a large amount
of work and obtained many results. Reference [2] presented a
new gradient regularization algorithm to solve an inverse
problem of determining source terms in one-dimension
solute transport with final observations, and reference [3]
proposed a implicit method to solve a class of space-time
fractional order diffusion equations with variable coefficient.

However, when fractional derivative replaces second
derivative in diffusion equations, there is anomalous
diffusion phenomenon. In this paper, we give the numerical
difference scheme in source term identification with Dirichlet
boundary condition, and we prove the stability and
convergence of the difference scheme, also verify the
practicality and effectiveness of the algorithm through
numerical experiment.

In this paper, we use difference scheme to solve the
forward problem, and when solving the inverse problem, we
use the gradient regularization method based on Tikhonov
regularization strategy. Here, the additional information for
source term identification is set as the final observations, and
suppose that the source term function are only concerned
with the space variable and has nothing to do with the time
variable.

In fact, the solute transport model can be described by the
following equation[1]

% = u(x)azL):’t)—v(x)

+b(x,t), xe[0,L],t [0, T],

VY oyt
OX

(1)

by introducing fractional derivative and adding initial
boundary conditions[5], Egs. (1) will be modified as the
following problem

a s

6—3 =u(x) % —v(x) % —c(X)y(x,t)
+b(x,1), xeQ,t>0,

)
Dy(x,t) = g(x,1), xe,t>0,

@)
Ey(x,0) = f(x), X e,

(4)

where O <a <1,1< <2, D represents matrix operator

with boundary condition, E represents matrix operator with
initial condition, y(x,t) and b(X) represent undetermined
source term function and undetermined vector function
respectively.

Inverse problem of this problem is to determine unknown
vector function b(x) by Egs. (2)-(4) and the additional
condition below

y(%t) | =w(X).
)
Il.  NUMERICAL DIFFERENCE SCHEME

Considering the following space-time reaction diffusion
equations

oyt _ ATy ay(xt)
e 1) ox” V09 X
—c(X)y(x,t) +b(x,1),
(6)
y(x,0) = f(x),
(M
y(O,t) = g1(t)! y(L,t) = gz(t)-
(8)

Where u(x) >0,v(x) >0,¢c(x) >0 are continuous
functions on [O,L], g,(t)>0,0,(t)>0 are continuous
functions on [0,T], b(x,t) is continuous on [0, L] x
o“y(x,t) &’y(x,t)

ar

[0,T],x€(0,0), B e(d,2), are
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Caputo fractional derivative and Riemann-Liouville
fractional derivative respectively[5]

» 8y(x 77)

0” (X t) J(

©)

o'y(x,t) 1 I y(<, t)
o’ T(2-p)axt (x- )'”1

(10)

Suppose that Egs. (6)-(8) has a unique and smooth
enough solution.z=T /N is time step, Ax=h=L/m is
space step, t =kr(k=0,1,2,L ,n),
x =ih(i=0,,2,L, m). For the time fractional

derivative, we usually adopt following finite difference
approximation

0"y (X, ba)

8tll
1 Zk: y(Xi'tj+1)_y(Xiftj)J"(J'*'l)T dé it
F(l a) i=0 v o (tk+1_§)
l-a k X , X, ,t )
T Zy( i Tkl J) y( i kiJ)[(j-'—l)lia
F(Z a) o T
i"1+0(2),
(11)
ay(xi’tk+1) — y(Xi’tk+1)_ y(Xi—l’tk+1) +O(h).
OX h
(12)
2" y(x,1) . o
or PIRE by using Griinwald’s improved formula
X

[4], we have that

o’y(x,t 1 i _
% ==Y ay(x ~(i-Dht,,)+O(z +h),
X h <

(13)

where
a,=la =-4a =(-1'(),
(4)=BB-DL (B-i+D/(jY. i=123L .

Substituting Eqgs. (11)-(13) into Egs. (6)-(8), we obtain
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ok oy(X, X, t
: Zy(' RN T
I'2-a) i T

T )iay(x (=Dt -0t )

() Y te) 'hy(xi-l’tkﬂ) +b(x,t,_,)+O(z +h).

Let u, =u(x),v, =V(x),C, =c(xi),cci)/—_°r“l“(2—a) >0,
b _b(x,, t.),

r =

o =(j+)™-j™, j=012L ,m

k

“=0,t) 9,

=0,(t), yik represents numerical solution of Egs. (6)-(8),
then we have

k _ . i+1
2o =y ) =—p (v -y A Ay,
i=0 j=0
o8P
(14)

Since local truncation error is O(z+h), thus the

difference scheme is consistent[10]. Egs. (14) will be
repalced by

When k =0,

i+1

—ry . +(1+p, —ral+(9)/§? (p,+ra,)y, — rZa Vi ia
=Y ‘H%Sif?

(15)
when k >0,

i+1

Sy p e+ P - (b, +ra, )y - Y Ay,
j=3
: : .
= yik _Zo_j(yikﬂ—l . yik—J) — (2_21—a)yik +O'kyi0 —l—é%gibl B

Sy ) - (2 - ]

j=1

k-1
= d1yik _Zyik_jdju +kai0 +(§?6i61’
j=1

(16)
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where d, =0, , ~0,,i=12L ,m-Lk=12L ,n-1

I1l.  STABILITY AND CONVERGENCE OF THE DIFFERENCE
SCHEME

Lemma 2.1 For arbitrary real number a,b,c,d , we have

—lal+|b|-|c|-|d|<]-a+b-c—d]|.
Proof. From |b|H—-a+b—-c—d+a+c+d|

J-a+b-c—-d|+|a|+|c|+]|d],
we obtain —|a|+|b|—|c|-|d | -a+b-c—-d].
Lemma 2.2 (1) a; >0(j>2). (2) For any positive
N
integer N , we have Zaj <0.
j=0

Proof. (1) Note that a; = (- 1)’ ( )and 1<p<2, we
know that a; > 0(] = 2).

2) since (1+x)” :i(f)xj,xe[—l,l], let x=-1,

=0

then Zaj =0. From Lemma 2.2(1), we have that

j=0

Lemma2.3 (l)Zdj =1-0,; (2)d,>0,0, >0;.
j=1

Proof. (1)From d, =0, —0,,0,=(j+)" -,

we easily know that Zdj =l-o,.
j=1
(2) Let h(x)=(x+1)"“—x"“(x>1), then h'(x) =
L-—)[(x+D)*—x“]<0, so h(x) is decreasing
function, d, =0, —o; =h(j—1)—h(]j)>0. Therefore,
we have that d, > 0,0, >o;.

A. Stability of the difference scheme

Theorem 2.1 Implicit difference schemes defined by Egs.

(15)-(16) are unconditionally steady for initial value[10].

Proof. Suppose that %’, yik represent solutions of Egs.
(15)-(16) for initial value f,(x), f,(X) respectively, and b

. K 0 K . g
is accurate vale, then error & = Y, — Y, satisfies
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When k =0,

el + L+ p—ra +FB —(p +ra,)e’,

i+1

1 0
_rizajgi-ju =&,
j=3
when k >0,

—ret L+ p —ra, + 1P —(p, +ra,)s

i+1

k+1 0
—rZ:ajgI Lo=de +Zd1+1 gl +o.8.

k k k k !

Let E'=(g,5.L ,¢,,), we prove
|EX|.<|E®|l, with mathematical induction in the
following.

When k=1 let|& |= max |& |. Note that r, >0,

1<ism-1
p, >0, a,=1a =-/ <0, we have from Lemma 2.2 that

1+1

IE L& e 1+ (e 1 -1a. -1 14

j=0
<t |gl, | +@+p —ra + IR |

1+1

_( p| + r.|az) | ‘9|l_1 |_r| Zaj | gll—j+1 |
i=3

1+1

Note that p, +1a, >O,|’|Za >0,1+p —ra +c/90
j=3

and from Lemma 2.1, we further obtain that

|6} K —nal, + (0 p —ra, + OB — (b +13,)s),
1+1
1 0 0
Y ae 1= KIE ], -
j=3
Thus || E* ||, =] & <]l E° |,

Assume that we always have ||E" || <||E°]||, when

k<s, let|&™|= max | ™|, then when k=s+1, we
1<i<m-1
have
& e et [ +1+ p, —ra, + P |

1+1

-(p, a)lg“ll—rza &

-t + L+ p —ra +cg)/‘15’*l
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1+1

_( p| + raz)gs+1 r]Z:a‘j‘glsjjlﬂ |
j=3

s—1
=dé& +Z:dj+15f*J +O'sé‘|0 |
i=1
s-1 . 0
<d [[E° |, +>.d,  NIE |, +o, 1 E° I,

j=1
s—1
<(d,+>.d,,+o)IE°I,
j=1

=@-o,+a)IE°ILHIE ],

Consequently, the desired result follows.
B. Convergence of the difference scheme

Suppose that Yy(x,t) is exact solution of the
differential equation at (x,t). Let e =y(x,t)—y:,
e“=(e ,e5,L, ek ), then y<=vy(x,t)-e",
substituting it into Egs. (15)-(16), and note e’ =0, we have
that

When k =0,

—rel, + (4 p -3 + - (p, +1a)e,

1 1
_rizajei-m =R

j=3
when k >0,

k+1 k+1

| |+1 +(l+ p _ral+é%/+1_(p +ra )e
i+1

k+1
—rZaJeI L =del +Zd,+1.

where | R |< (7" +r‘”h),i is a positive constant and it
has nothing to do with h, z.

Theorem 2.2 There is a constant A > 0 such that

e |.< oA +77h),k =1,2,L ,n,
where A has nothing to do with h,z, and ||| =

max|e|

1<i<m-1
Proof. When K =1, let | € |= max | € |, then ||e" || =
1<i<m-1

| |, we have from Lemma 2.1 that

et < |, [+(L+ p, —ra + TR |
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1+1

—~(p, +ra,) e, | rZa N

S| _r|e|+1 + (1+ [Vl AN +c%_(p| + r|a2)e|1-1
1+1
_rlzajell—jﬂ =] Rl1 |
i3
<A +17h) = 6, A +27h).
Assume that ||€° ||, < .5 A(z" +77h) when K <,

let [ |= max | |, then when k =S +1, we have that
I<i<m-1

” s+1 s+1 |

I.=le
s—1 )

<d, [l |, +>.d,, e ||, + A +7°h)
j=1

<@+d,o, +d,0, +L +d.0,)A(z" +7°h),
as in Lemma 2.3, we have found that o," <o, (j <'s), s0
we futher obtain
s—1
e, <ot (Z d, +0)A(" +77h)
i=0
=0, A" +77h).
The desired result follows.

A
Since I|m—a=I|m -
K-> k Ko k O-k

e K[(L+1/ k)™ 1]

1
——  thus there is a constant ¥ >0 such that
l-«a

| EX <Kk p(c" +77h) = (kz)* y(z +h).

Consequently, we can obtain the following result when
kr<T.

Theorem 2.3 Suppose that Y(X,t ) denotes exact
solution at (X,t.), y; is numerical solution of implicit

. . 0 —a
difference scheme, then there exists a constant ;/0: T >0
such that

ly(x,t)—y*|< Hr+h), 1<i<mi<k<n,

IV. SOURCE TERM INVERSION

The inverse problem, which is composed of Egs. (2)-(5),
is to solve nonlinear operator equation

Ab(X)] =y (X).
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Suppose that y(b(x); x,t) denotes solution of Egs. (2)-
(4) for b(x), b,(x) denotes a function near b"(x), where
by (X) = D Ky, (x) = Ky ¥(x), and b’(X) denotes exact

i=1
solution of Egs. (2)-(4), b(x) e K, v, (x),y,(X),L , are a

group of primary functions on K, then a tiny disturbing
quantity of b, (x) is

50,00 = 3 5Ky, () = SKT¥ (x),

17)

where Y() =, (), 17, ().L Ly, (X)),
K" =(k,k,L, k)eR"

Assume that y(b, (X); X,t) denotes the solution of initial
boundary value problem for b (x), where b, (x)=0b,(x)
+0b, (), using Taylor formula, then we have[6]

y(b, (x) + ob, (X); X, 1)

= y(b, (); x,1) + V. y(b,(x); x,t) - 5K, +0(]| 5b, (%) ),
by using the Tikhonov regularization method, solving b(x)
is converted into 0K, and 0K can be determined by local
minimum of the following function[9]
—_ . 2
GLSK, I=lly(b, (x) + 30, (<) ) =y T I, o
+aS[oK,] =lly(b, (X); x,t) = y(x,T) +

VI y(b, (0 %,1)- 5K, I

L2 (69 x[0,T]) +aS[5K0]’
(18)

where X € 0Q < 8Q, o denotes regularization coefficient,
S[oK,] denotes steady functional of oK.

Assume that there are discrete points X (m=12,L ,
M)on 0Q, S[6K,]=5K;3K,,then

G[5K,]=0K, A" ASK, + 25K, A" (P —Q)

+(P-Q)" (P-Q) +adK, 5K,.
(19)
It is easy to prove that solving the local minimum values
of Egs. (19) is equivalent to slove (A" A+al)oK, = A’
(Q—P),sowe have
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SK, =(A"A+al) A" (Q-P),

(20)
where
y(0, (x); %, T) y; (%)
o | YEL0T) | oY) |
M M
y(0, (x); %, T) yr (%)
A=)y & =£y(bo(x);xi,T).

J

Substituting Egs. (20) into Egs. (17), we can obtain
ob,(x) and a new approximation of the exact solution,

b, (X) = b, () + Sb, (X).

Repeating the above, until satisfies the precision
requirement.

V. NUMERICAL EXPERIMENTS

In order to verify the effectiveness of the algorithm in the
source term identification, we do the following numerical
experiment[7]. For simplicity, we set part variables as
follows

c(x) =0.05,u(x) =292,v(x) =365, L =4000,T =11,
m=20,n=11,A =[0.01,0.01,0.01].
Where A isthe increment of K when computing matrix A
from Egs. (20). Moreover, we always take polynomial
function space as primary function space in the following

computation, and setting initial boundary condition as
follows

¥, (X) =0.057x +45.6,0 < x < 4000,
g,(t) =0.724t* +45.6,0 <t <11,

g,(t) =2.2t* +273.4,0<t <11.

Let b(x) =1—x in the Egs. (6)-(8), and substituting
initial boundary condition, we can obtain y(X,T) by

sloving forward problem. And as the additional data, we can
do inversion calculation by using the above algorithm. Let

initial iteration vector K, =[1,1,1], and iterative termination
condition ob(x) <le—4, then we obtain inversion results
under different regularization coefficient(see TABLE I), let
theta =1e — 3, we get inversion results under different initial
value(see TABLE II).

TABLE [ . THE INVERSION RESULTS UNDER DIFFERENT REGULARIZATION
COEFFICIENT

| 0 ‘ Iteration times ‘ Results ‘
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le-1 4 1.0000 -1.0000 0
le-2 3 1.0000 -1.0000 0
le-3 3 1.0000 -1.0000 0
le-4 3 1.0000 -1.0000 0

TABLE II. THE INVERSION RESULTS UNDER DIFFERENT INITIAL VALUE

Vol. 2, No. 8, 2011

To better simulate the errors generated by actual data,
and verify the effectiveness of the algorithm, we choose the
disturbance error V7 =V (1+&p), where & e[-11], and
p >0 iserror level.

According to the above algorithm, we do 8 times

K Iteration Results numerical experiments, and obtain the inversion results under
0 times different error level p (see TABLE III). Besides, the
-100 -100 -100 4 1.0000 -1.0000 O . . . .
10 -10 -10 3 10000 -10000 0 comparison of inversion results and exact solution can see
11 1 3 1.0000 -1.0000 0 Figure 1 when p =0.01.
10 10 10 3 1.0000 -1.0000 0
100 100 100 4 1.0000 -1.0000 0
.!‘.
g
0 E
N
1.
,
] <
: .
3 k3
k
4 i
El:l as 1 15 15 3 s 4 45 ]
Figure 1. The comparison of inversion results and exact solutions
TABLE III. THE INVERSION RESULTS UNDER DIFFERENT ERROR LEVEL
Times © =0.01 0 =0.05 p =01
1 0.9941 -0.9997 -0.0000 1.4988 -1.0243 0.0000 0.3838 -0.9700 -0.0000
2 1.1639 -1.0080 0.0000 0.3221 -0.9670 -0.0000 2.3115 -1.0639 0.0000
3 1.1098 -1.0053 0.0000 0.8026 -0.9903 -0.0000 -1.0527 -0.9000 -0.0000
4 0.9818 -0.9991 -0.0000 1.9119 -1.0444 0.0000 -0.5123 -0.9264 -0.0000
5 0.7984 -0.9902 -0.0000 1.8730 -1.0425 0.0000 -0.2448 -0.9394 -0.0000
6 1.1346 -1.0066 0.0000 0.8121 -0.9909 -0.0000 -0.2617 -0.9386 -0.0000
7 0.9768 -0.9989 -0.0000 1.8243 -1.0401 0.0000 1.4347 -1.0212 0.0000
8 1.0483 -1.0024 0.0000 0.0742 -0.9549 -0.0000 0.0459 -0.9535 -0.0000
mean value 0.9941 -1.0013 0.0000 1.1399 -1.0067 0.0000 0.2631 -0.9641 -0.0000

Through the above numerical experiment, we find that the
inversion results and exact solution are almost the same, and
this shows that the above algorithm is feasible and very
effective.
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