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I.  INTRODUCTION  

Source term inversion in groundwater pollution is a class 
of inverse problems[7,8], and is also important field of 
inverse problem research. Scholars have done a large amount 
of work and obtained many results. Reference [2] presented a 
new gradient regularization algorithm to solve an inverse 
problem of determining source terms in one-dimension 
solute transport with final observations, and reference [3] 
proposed a implicit method to solve a class of space-time 
fractional order diffusion equations with variable coefficient.  

However, when fractional derivative replaces second 
derivative in diffusion equations, there is anomalous 
diffusion phenomenon. In this paper, we give the numerical 
difference scheme in source term identification with Dirichlet 
boundary condition, and we prove the stability and 
convergence of the difference scheme, also verify the 
practicality and effectiveness of the algorithm through 
numerical experiment. 

In this paper, we use difference scheme to solve the 
forward problem, and when solving the inverse problem, we 
use the gradient regularization method based on Tikhonov 
regularization strategy. Here, the additional information for 
source term identification is set as the final observations, and 
suppose that the source term function are only concerned 
with the space variable and has nothing to do with the time 
variable. 

In fact, the solute transport model can be described by the 
following equation[1] 
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by introducing fractional derivative and adding initial 
boundary conditions[5], Eqs. (1) will be modified as the 
following problem 
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(4) 

where 0 1,1 2,     D  represents matrix operator 

with boundary condition, E  represents matrix operator with 

initial condition, ( , )y x t  and ( )b x represent undetermined 

source term function and undetermined vector function 
respectively. 

Inverse problem of this problem is to determine unknown 

vector function ( )b x by Eqs. (2)-(4) and the additional 

condition below 

( , ) | ( ).
x T
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(5) 

II. NUMERICAL DIFFERENCE SCHEME 

Considering the following space-time reaction diffusion 
equations 
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Where ( ) 0, ( ) 0, ( ) 0u x v x c x    are continuous 

functions on [0, ],L
1 2
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Caputo fractional derivative and Riemann-Liouville 
fractional derivative respectively[5] 
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Suppose that Eqs. (6)-(8) has a unique and smooth 

enough solution. /T n   is time step, /x h L m    is 

space step, ( 0,1,2, , ),
k

t k k n  L  

( 0,1,2, ,
i

x ih i  L  ).m For the time fractional 

derivative, we usually adopt following finite difference 
approximation 
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, by using Grünwald’s improved formula 

[4], we have that 
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Substituting Eqs. (11)-(13) into Eqs. (6)-(8), we obtain 
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y  represents numerical solution of Eqs. (6)-(8), 

then we have 
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Since local truncation error is ( ),O h   thus the 

difference scheme is consistent[10]. Eqs. (14)  will be 
repalced by 
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where 
1

,
j j j

d  


  1,2, , 1; 1,2, , 1.i m k n   L L  

III. STABILITY AND CONVERGENCE OF THE DIFFERENCE 

SCHEME 

Lemma 2.1 For arbitrary real number , , ,a b c d , we have 
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Proof.  From | | | |b a b c d a c d         

 | | | | | | | |,a b c d a c d         

we obtain | | | | | | | | | | .a b c d a b c d          

Lemma 2.2  (1) 0( 2).
j

a j   (2) For any positive 

integer N ，we have 
0

0.
N

j

j

a


  

Proof. (1) Note that  ( 1)
j

j j
a


  and 1 2,   we 

know that 0( 2).
j

a j    

(2) Since  
0

(1 ) , [ 1,1],
j

j

j

x x x
 





    let 1,x    

then 
0

0.
j

j

a




  From Lemma 2.2(1),  we have that 

0 1

0.
N

j j

j j N

a a


  

    

Lemma2.3 
1

(1) 1 ;
n

j n

j

d 


   
1

(2) 0, .
j j j

d  


   

Proof. (1)From 
1 1

1
, ( 1) ,

j j j j
d j j

 
  

 


      

we easily know that 
1

1 .
n

j n

j

d 


   

(2) Let 
1 1

( ) ( 1) ( 1),h x x x x
  

     then '( )h x   

(1 )[( 1) ] 0,x x
 


 

     so ( )h x is decreasing 

function, 
1

( 1) ( ) 0.
j j j

d h j h j 


      Therefore, 

we have that 
1

0, .
j j j

d  


   

A. Stability of the difference scheme 

Theorem 2.1 Implicit difference schemes defined by Eqs. 
(15)-(16) are unconditionally steady for initial value[10]. 
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Consequently, the desired result follows. 

B. Convergence of the difference scheme 

Suppose that ( , )
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The desired result follows. 
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Theorem 2.3 Suppose that ( , )
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y  is numerical solution of implicit 

difference scheme, then there exists a constant 0T
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IV. SOURCE TERM INVERSION 

The inverse problem, which is composed of Eqs. (2)-(5), 
is to solve nonlinear operator equation 
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Suppose that ( ( ); , )y b x x t  denotes solution of Eqs. (2)-

(4) for ( ),b x
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by using the Tikhonov regularization method, solving ( )b x  
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Substituting Eqs. (20) into Eqs. (17), we can obtain 

0
( )b x  and a new approximation of the exact solution, 

1 0 0
( ) ( ) ( ).b x b x b x   

Repeating the above, until satisfies the precision 
requirement. 

V. NUMERICAL EXPERIMENTS 

In order to verify the effectiveness of the algorithm in the 
source term identification, we do the following numerical 
experiment[7]. For simplicity, we set part variables as 
follows 

( ) 0.05, ( ) 292, ( ) 365, 4000, 11,c x u x v x L T    

20, 11, [0.01,0.01,0.01].m n     

Where   is the increment of K  when computing matrix A  
from Eqs. (20). Moreover, we always take polynomial 
function space as primary function space in the following 
computation, and setting initial boundary condition as 
follows 

( ) 0.057 45.6,0 4000,
T

y x x x      

2

1
( ) 0.724 45.6,0 11,g t t t     

2

2
( ) 2.2 273.4,0 11.g t t t   

 

Let ( ) 1b x x   in the Eqs. (6)-(8), and substituting 

initial boundary condition, we can obtain ( , )y X T  by 

sloving forward problem. And as the additional data, we can 
do inversion calculation by using the above algorithm. Let 

initial iteration vector 
0

[1,1,1],K  and iterative termination 

condition ( ) 1 4,b x e   then we obtain inversion results 

under different regularization coefficient(see TABLEⅠ), let 

1 3,theta e  we get inversion results under different initial 

value(see TABLE Ⅱ).  

TABLE Ⅰ. THE INVERSION RESULTS UNDER DIFFERENT  REGULARIZATION

  COEFFICIENT 

  
Iteration times Results 
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1e-1 

1e-2 

1e-3 

1e-4 

4 

3 

3 

3 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

TABLE Ⅱ. THE INVERSION RESULTS UNDER DIFFERENT INITIAL VALUE 

0K  
Iteration 

 times 
Results 

-100   -100   -100 

-10    -10    -10 

1      1      1 

10    10     10 

100   100    100 

4 

3 

3 

3 

4 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

1.0000   -1.0000   0 

To better simulate the errors generated by actual data, 
and verify the effectiveness of the algorithm, we choose the 

disturbance error (1 ),V V


   where [ 1,1],   and 

0   is error level. 

According to the above algorithm, we do 8 times 
numerical experiments, and obtain the inversion results under 

different error level  (see TABLE Ⅲ ). Besides, the 

comparison of inversion results and exact solution can see 
Figure 1 when  =0.01. 

 

Figure 1. The comparison of inversion results  and exact solutions 

 

TABLE Ⅲ. THE INVERSION RESULTS UNDER DIFFERENT ERROR LEVEL 

Times  =0.01  =0.05  =0.1 

1 

2 

3 

4 

5 

6 

7 

8 

0.9941  -0.9997  -0.0000 

1.1639  -1.0080  0.0000 

1.1098  -1.0053  0.0000 

0.9818  -0.9991  -0.0000 

0.7984  -0.9902  -0.0000 

1.1346  -1.0066  0.0000 

0.9768  -0.9989  -0.0000 

1.0483  -1.0024  0.0000 

1.4988  -1.0243  0.0000 

0.3221  -0.9670  -0.0000 

0.8026  -0.9903  -0.0000 

1.9119  -1.0444  0.0000 

1.8730  -1.0425  0.0000 

0.8121  -0.9909  -0.0000 

1.8243  -1.0401  0.0000 

0.0742  -0.9549  -0.0000 

0.3838  -0.9700  -0.0000 

2.3115  -1.0639  0.0000 

-1.0527  -0.9000  -0.0000 

-0.5123  -0.9264  -0.0000 

-0.2448  -0.9394  -0.0000 

-0.2617  -0.9386  -0.0000 

1.4347  -1.0212  0.0000 

0.0459  -0.9535  -0.0000 

mean value 0.9941  -1.0013  0.0000 1.1399  -1.0067  0.0000 0.2631  -0.9641  -0.0000 

Through the above numerical experiment, we find that the 
inversion results and exact solution are almost the same, and 
this shows that the above algorithm is feasible and very 
effective. 
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