
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 8, 2011

46 | P a g e
www.ijacsa.thesai.org

Implementation of Locally Weighted Projection

Regression Network for Concurrency Control In

Computer Aided Design

A.Muthukumaravel

Research Scholar,

Department of MCA,

Chennai – 600 117, India.

Dr.S.Purushothaman

Principal,

Sun College of Engineering

and Technology,

KK District – 629 902, India

Dr.A.Jothi

Dean,

School of Computing Sciences,

VELS University,

Chennai – 600 117, India.

Abstract—This paper presents implementation of locally

weighted projection regression (LWPR) network method for

concurrency control while developing dial of a fork using

Autodesk inventor 2008. The LWPR learns the objects and the

type of transactions to be done based on which node in the output

layer of the network exceeds a threshold value. Learning stops

once all the objects are exposed to LWPR. During testing

performance, metrics are analyzed. We have attempted to use

LWPR for storing lock information when multi users are

working on computer Aided Design (CAD). The memory

requirements of the proposed method are minimal in processing
locks during transaction.

Keywords-Concurrency Control; locally weighted projection

regression; Transaction Locks; Time Stamping.

I. INTRODUCTION

Concurrency control is one of the essential characteristics
of transaction management to ensure consistency of database.
Maintaining consistency in transactions of objects is
mandatory. During computer aided design (CAD), many
people will be accessing different parts of same objects
according to the type work allotted to them. As all the parts of
the same objects are stored in a single file, at any point of time,
there should not be corruption of data, inconsistency in storage
and total loss of data.

The concurrency control requires proper locking methods
for controlled transactions. The most common way in which
access to objects is controlled by ‗locks‘. In a database
operation, lock manager plays an important role. It checks
whether one or more transactions are reading or writing any
object ‗I‘ where ‗I‘ is an item. It is the object of that record, for
each item I. Gaining access to I is controlled by manager and
ensure that there is no , access (read or write) would cause a
conflict. The lock manager can store the current locks in a lock
table which consists of records with fields (<object>, <lock
type>, <transaction>) the meaning of record (‗I‘, ‗L‘, ‗T‘) is
that transaction ‗T‘ has a lock of type ‗L‘ on object ‗I ‗[1-4].

The process of managing simultaneous operations on the
database without having them interfere with one another is
called concurrency. [5-8] When two or more users are
accessing database simultaneously, concurrency prevents

interference. Interleaving of operations may produce an
incorrect result even though two transactions may be correct.
Some of the problems that result in concurrency [11-20] are
lost update, inconsistent analysis and uncommitted
dependency.

II. PROBLEM DEFINITION

There is inability to provide consistency in the database
when long transactions are involved. It will not be able to
identify if there is any violation of database consistency during
the time of commitment. It is not possible to know, if the
transaction is with undefined time limit. There is no
serializability when many users‘ work on shared objects.
During long transactions, optimistic transactions and two phase
locking will result in deadlock. Two phase locking forces to
lock resources for long time even after they have finished using
them. Other transactions that need to access the same resources
are blocked. The problem in optimistic mechanism with ‗Time
Stamping‘ is that it causes repeated rollback of transactions
when the rate of conflicts increases significantly. Artificial
neural network [9] with locally weighted projection regression
(LWPR) has been used to manage the locks allotted to objects
and locks are claimed appropriately to be allotted for other
objects during subsequent transactions.

Inbuilt library drawing for the dial of fork (Figure 1) is
available in AutoCAD product. The fork is used in the front
structure of a two wheeler. Due to customer requirements, the
designer edits the dial of fork in the central database by
modifying different features. Consistency of the data has to be
maintained during the process of modifications of different
features. A specific sequence of locking objects has to be done
whenever a particular user accesses a specific feature of the
dial of fork. Each feature is treated as an object. The features
are identified with numbers. In this work, O1 refers to an object
/ feature marked as 1. The major objects involved in creating
the dial of the fork are hollow cylinder, wedge and swiveling
plate. The various constraints that have to be imposed during
modifications of features by many users on this dial of fork are
as follows:

 During development of features, hollow cylinder

details should not be changed.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 8, 2011

47 | P a g e
www.ijacsa.thesai.org

 External rings are associated with hollow cylinder.

 The circular wedge has specific slope and associated

with hollow cylinder.

This dial of fork has following entities.

1) Features 1, 2, (set 1)

2) Features 10, 11,12,13,14 (set 2)

3) Features 5,6,7,8 (set 3)

4) Features 3, 4 (set 4)

Set 1, set 2, set 3, set 4 can be made into individual drawing
part files (part file 1, part file 2, part file 3 and part file 4) and
combined into one assembly file (containing the part files 1,2,
3 and 4 which will be intact). When the users are accessing
individual part files, then transactions in part file 1 need not
worry about the type of transactions in part files 2,3,4 and vice
versa among them. When the part files 1, 2, 3 and 4 are
combined into a single assembly file, then inconsistency in the
shape and dimension of the set 1, set 2, set 3 and set 4, during
matching should not occur. Provisions can be made in
controlling the dimensions and shapes with upper and lower
limits confirming to standards. At any time when a subsequent
user is trying to access locked features, he can modify the
features on his system and store as an additional modified copy
of the features with Time Stamping and version names (allotted
by the user / allotted by the system).

Figure 1. Dial of fork
1 Lower end, 2 Height of the end part, 3 External support, 4 Height of

the external support, 5 Support for the wedge, 6.Height of the support for

the wedge, 7 Wedge, 8.Thickness of the wedge, 9 Slope of the wedge,

10.Wedge lock, 11.Height of the wedge lock, 12 Concentric hole, 13.
Separator, 14.Guideway

III. LOCALLY WEIGHTED PROJECTION REGRESSION

Locally Weighted Projection Regression (LWPR) [10] is an
algorithm that achieves nonlinear function approximation in
high dimensional spaces even in the presence of redundant and
irrelevant input dimensions. At its core, it uses locally linear
models, spanned by a small number of univariate regressions in
selected directions in input space. The nonparametric local
learning system

i. learns information rapidly with second order learning
methods based on incremental training.

ii. uses statistically sound stochastic cross validation to
learn information.

iii. adjusts its weighting kernels based on local
information only.

iv. has a computational complexity that is linear in the
number of inputs, and

v. can deal with a large number of possibly redundant
and irrelevant – inputs.

The structure of the event loop is shown in Fig.2. The
algorithm is at one of the four action states at any given point
of time. The INITIALIZE phase is used to initialize the LWPR
and read in the script variables from the script file and fill in
default values for those variables not specified in the script file.

The TRAIN phase of the algorithm draws data from the
training data set file and trains the local model on it. After
every ‗evaluation‘, the program goes into the EVALUATE
phase where the learned model is tested against the novel (test)
data set.

When the number of iterations has exceeded the
‗max_iterations‘ count or the change of normalized mean
squared error (nMSE) between the last EVALUATE phase and
the current, a checking is done to find if the values is below a
THRESHOLD. In such case, the program goes into the
RESULT phase during which, it saves the learned LWPR.

A. Adding an extra projection dimension

The program can be initialized with ‗init_n_reg=1‘. It is
taken as a special case of one projection LWPR where the
number of local projection employed by each local model is
restricted to one. The distance metric adjusts in order to
accommodate for this restrictions. This may take a long time to
converge for regression problems in which the inherent
dimensionality is high. If there is no prior knowledge of the
intrinsic local dimensionality, then initialize the variable
‗init_n_reg=2‘. This implies one dimension for the regression
and the additional dimension used to check whether to add an
extra projection or not. The mean squared error of the current
regression dimension is compared against the previous one.

Only if the ratio
oldadd_thresh

nMSEr

1nMSEr

, a new regression
is added. This criterion is used in conjunction with a few more
checks to ensure that the decision is based on enough data
support before deciding to add a new dimension.

B. Pruning an existing RF (local model)

If there is a local model that elicits substantial activation in

response to a training data, it prevents the allocation of an

additional local model for that training data. Since the distance

metric is changing with the gradient descent updates, there can

arise cases in which there is a considerable overlap between

two local models. Due to this pruning of the variables required.

The pruning is due to
i. too much overlap with another one (If 2 receptive

fields elicits response greater than ‗w_prune‘ to a

training data), then one with the larger error is pruned.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 8, 2011

48 | P a g e
www.ijacsa.thesai.org

ii. too high variance in the error compared to the ‗std‘ of

all the random field(RFs) (determined by the variable

‗factor_prune‘).

iii. excessive error in one of the RFs.

C. Maintaining the local nearest neighbor (nn) list

When using the regression analysis in applications where
the input values change smoothly, it is useful to keep a
neighborhood list and perform training by looking at only the
neighboring local models which are close to each other or have
a substantial overlap in their activation profiles. This saves a lot
of computing resources as opposed to going through all the
local models and finding out those that have enough activation
to be updated. It suffices to look at the neighborhood list to
check for activations that are above the threshold and need to
be updated.

D. Second order updates

The gradient descent updates of the distance metric is
speeded up for faster convergence - and is more efficient if
Newton‘s second order gradient information (meta learning) is
used. If the ‗allow_meta_learning‘ variable is TRUE, then the
second order learning is on.

E. Forgetting factor

The forgetting factor is a variable that is used to discount
the effects of the statistics computed at an earlier stage and give
more weight to the recent statistics - which are a result of
having experienced more data points. It can be thought of as a
sliding window over which the stochastic sufficient statistics
are accumulated. The forgetting factor (‗lambda‘) takes a value
[0, 1] where 0 corresponds to using only the current point and 1
corresponding to not `forgetting ‗anything. An annealed
forgetting rate can be used which forgets more at the start
specified by ‗init_lambda‘ and anneals towards a value closer
to one (‗final_ lambda‘) - not forgetting anything based on
annealing factor ‗tau_lambda‘.

IV. RESULTS AND DISCUSSION

Let us assume that there are two users editing the dial of the
fork. User1 edits O1 and hence O2 will be locked sequentially
(Table 1). Immediately user2 wants to edit O2, however he will
not get transaction as already O2 is locked. However, user2 or
any other user can try to access O3 to O14. The variables used
for training the ANN about locks assigned to different objects
are transaction id, object id, lock mode (Table 2).

TABLE I. SHAPE AND DIMENSION CONSISTENCY

MANAGEMENT

Group First feature Remaining feature to be locked

G1 1 2

G2 10 11,12,13,14

G3 5 6,7,8

G4 3 4

Transaction id represents the client or any other
intermediate transactions. Object id represents the entire
feature or an entity in the file. Mode represents type of lock
assigned to an object.

In Table 2, column 1 represents the lock type. column 2
represents the value to be used in the input layer of the LWPR.
Column 3 gives binary representation of Lock type to be used
in the output layer of LWPR. The values are used as target
outputs in the module during lock release on a data item.

TABLE II. BINARY REPRESENTATION OF LOCK TYPE

Lock type

(Input layer

representation

numerical value).

Binary

representation in

target layer of the

LWPR

Object Not
locked

 0 000

S 1 001

X 2 010

IS 3 011

IX 4 100

Initially, user 1 and user 2 have opened the same dial of
fork file from the common database. The following steps
shows sequence of execution and results

T1 edits O1 with write mode. Table 4 shows pattern formed
for the training.

TABLE III. FIRST TIME PATTERN USED FOR TRAINING

LWPR

Object number Input

pattern

Target output pattern

O1 [1 1] [0 1 0]

Step 1: The transaction manager locks objects mentioned in
the third column of Table 1. Repeat step 1 with the patterns
given in Table 4.

TABLE IV. ADDITIONAL PATTERNS USED FOR TRAINING

OML LWPR

Object number Input

pattern

Target output pattern

O1 [1 1] [0 1 0]

O2 [2 1] [0 1 0]

Step 2: A new transaction T2 access O2. A pattern is
formed to verify if lock has been assigned to O2 and its
associated objects O1. Only when the locks are not assigned to
O2 and O1 then T2 is allowed.

The following input patterns are presented to the testing

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 8, 2011

49 | P a g e
www.ijacsa.thesai.org

module to find if the output [0 0 0] is obtained in the output
layer. During testing, the final weights obtained during training
will be used. Otherwise it means that lock has been assigned to
either O2. In such case, transaction is denied for T2. Else the
following Table 5 is presented in step 1.

TABLE V. ADDITIONAL PATTERNS USED FOR TRAINING LWPR

Object number Input pattern Target output pattern

O1 [1 1] [0 1 0]

O2 [2 1] [0 1 0]

O3 [3 1] [0 1 0]

O4 [4 1] [0 1 0]

O5 [5 1] [0 1 0]

O6 [6 1] [0 1 0]

O7 [7 1] [0 1 0]

O8 [8 1] [0 1 0]

Step 3: To know the type of lock value assigned to an
object and for a transaction, testing is used. Testing uses the
final weights created by training. The proposed LWPR for lock
state learning and lock state finding have been implemented
using Matlab 7.

The performance of the LWPR algorithm has been
presented on the following criteria.

1. Locking time for each object. (Figure 3)

2. Releasing time for each object.(Figure 4)

3. Total Locking time for each transaction

group.(Figure 5)

4. Arrival rate (Figure 6)

5. Response time (Figure 7)

V. CONCLUSION

An artificial neural network with LWPR has been
implemented for providing concurrency control to maintain
consistency in the CAD database. A dial of fork has been
considered that contains 14 objects. The 14 objects have
categorized into 4 groups. The transaction behavior and
concurrency control by the two users on the 14 objects have
been controlled using LWPR network. The LWPR method
requires less memory based on the topology used for storing
objects and its transactions when compared with conventional
method.

REFERENCES

[1] Rosenkrantz .D , Stearns R .and. Lewis P, ―System-level concurrency
control for distributed database systems,‖ In ACM Transactions on

Database Systems, vol. 3, No. 2, . 1978, pp. 178-198,

[2] Peter A. Buhr, Ashif S. Harji, Philipp E. Lim and Jiongxiong
Chen,‗Object-oriented real-time concurrency‘, In Proceedings of the

15th ACM SIGPLAN conference on Object-oriented programming
systems, languages and applications, 2000,pp. 29-46.

[3] Mihalis Yannakakis, ‗Issues of correctness in database concurrency

control by locking‘, In Proceedings of the thirteenth annual ACM
symposium on Theory of computing, 1981,pp. 363–367.

[4] Klahold .P , Schlageter G. and Wilkes W., August, ‗A General Model

for Version Management in Databases‘, In Proceedings of the
International Conference on Very Large Data Bases, Kyoto, 1986,pp.

319-327.

[5] Katz R.H. and Lehman T.J, ‗Database Support for Versions and
Alternatives of Large Design Files‘, In IEEE Transactions on Software

Engineering, vol. 10, No. 2, ., March 1984,pp. 191-200.

[6] Herrmann U., Dadam P., Küspert K., Roman E. A. and Schlageter G.,

1990, ‗A lock technique for disjoint and non-disjoint complex objects‘,
In Springer Advances in Database Technology — EDBT '90, vol. 416,

pp. 219-237.

[7] Garza J. and Kim W., ‗Transaction management in an object-oriented
database system‘. In Proceedings of the ACM SIGMOD International

Conference on the Management, Vol. 17,No. 3,1988,,pp. 37-45.

[8] Eliot B. Moss, , ‗Transaction Management for Object-Oriented
Systems‘,In Proceedings of the IEEE Computer Society International

Workshop on Object-Oriented Database Systems, 1986,pp. 229.

[9] Raviram P., Wahidabanu R. S. D. and Purushothaman S., “Concurrency
Control in CAD with KBMS using Counter Propagation Neural

Network”, IEEE International Advance Computing Conference, 6-7
March 2009, pp. 1521-1525.

[10] Purushothaman S., Elango M.K. and Nirmal Kumar S., Application of

Hilbert Huang Transform with Locally Weighted Projection Regression
Method for Power Quality Problems, International Review on Electrical

Engineering, vol. 5. no. 5, October 2010, pp. 2405-2412

[11] Mohammed Khaja Nizamuddin, Dr. Syed Abdul Sattar, 2010, ―Data
Count Driven Concurrency Control Scheme with Performance Gain in

Mobile Environments‖ in Journal of Emerging Trends in Computing and
Information Sciences, vol 2 ,no. 2, pp 106-112.

[12] Salman Abdul Moiz, Dr. Lakshmi Rajamani, ―An Algorithmic approach
for achieving Concurrency in Mobile Environment‖, INDIACom,

2007,pp.209-211,.

[13] K M Prakash Lingam, 2010, ―Analysis of Real-Time Multi version
Concurrency Control Algorithms using Serialisability Graphs‖

International Journal of Computer Applications (0975 - 8887), vol 1 ,no.
21, pp. 57 – 62.

[14] Quilong Han,Haiwei pan, ―A Concurrency Control Algorithm Access to

Temporal Data in Real-Time Database Systems,‖ imsccs, , International
Multi symposiums on Computer and Computational Sciences,2008,

pp.168-171.

[15] Tae-Young Choe, 2008, ―Optimistic Concurrency Control based on
Cache Coherency in Distributed Database Systems‖ IJCSNS

International Journal of Computer Science and Network Security, vol.8,
no.11, November 2008, pp 148–154

[16] Mohammed Khaja Nizamuddin, Syed Abdul Sattar, ―Adaptive Valid

Period Based Concurrency Control Without Locking in Mobile
Environments‖ In: Recent Trends in Networks and Communications,

Springer CCIS, vol.90, Part 2, , 2010, Springer Heidelberg, pp 349-358

[17] Arun Kumar Yadav & Ajay Agarwal, ―An Approach for Concurrency
Control in Distributed Database System‖ in International Journal of

Computer Science &Communication, vol. 1, no. 1, January-June 2010,
pp. 137-141

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 8, 2011

50 | P a g e
www.ijacsa.thesai.org

[18] Arumugam.G and Thangara.M ―An Efficient Locking Model For

Concurrency Control In Oodbs‖ Data Science Journal, vol 4, 31 August
2005, pp 59-66.

[19] Poonam Singh, Parul Yadav, Amal Shukla and Sanchit Lohia ―An
Extended Three Phase Commit Protocol for Concurrency Control in

Distributed Systems‖ in International Journal of Computer Applications
(0975 – 8887) vol 21,no.10, May 2011

[20] Jinhua Guo, ―An Exploratory Environment for Concurrency Control

Algorithms‖ in International Journal of Computer Science vol 1 ,no 3,
March 29, 2006, pp 203-211.

Figure 2. LWPR training modules

Filenames: 1.lwpr_main(), 2.lwpr_test(), 3.lwpr(),
4.utilities()

Figure 3. Locking time for each object

Figure 4. Releasing time for each object

Figure 5. Locking time for each group

Figure 6. Arrivals rate

Figure 7. Response time

