
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

126 | P a g e
www.ijacsa.thesai.org

The Performance between XEN-HVM, XEN-PV and

Open-VZ during live-migration

Igli Tafa, Elinda Kajo, Ariana Bejleri, Olimpjon Shurdi, Aleksandër Xhuvani

Polytechnic University of Tirana,

Faculty of Information Technology, Computer Engineering Department,
Tirana, Albania

Abstract— The aim of this paper is to compare the performance

between three hypervisors: XEN-PV, XEN-HVM and Open-VZ.

We have simulated the migration of a virtual machine by using a

warning failure approach. Based on some experiments we have

compared CPU Consumption, Memory Utilization, Total

Migration Time and Downtime. We have also tested the

hypervisor’s performance by changing the packet’s size from

1500 byte to 64 byte. From these tests we have concluded that

Open-VZ has a bigger CPU Consumption than XEN-PV, but the

Total Migration time is smaller than in XEN-PV. XEN-HVM has

a worse performance than XEN-PV, especially regarding to
Downtime parameter.

Keywords- Hypervisor; XEN-PV; XEN-HVM; Open-VZ; CPU

Consumption; Memory Utilization; Downtime.

I. INTRODUCTION

One of the most interesting technologies in the field of
information technology nowadays is Virtualization. This
technology gives some advantages regarding cost, source and
energy consumption, tolerance to failures, isolation to different
attacks etc. Anyway, in this technology there are some black
holes which have to do with the performance of the
applications related to communication speed, sources or their
energy consumption.

To realize a virtualization, it‟s needed to establish a
hypervisor. The hypervisor is the administrator and the
manager of the sources used by the virtual machines. The
hypervisor can be established above the hardware and this is
called full virtualization, or it can be established above the
operating system and this is called OS virtualization. The full
virtualization has got the advantage to integrate physical
machines with different characteristics for example Intel x86
with AMD without doing any modification in Operating
System‟s kernel. The performance offered by this type of
virtualization is not high (i.e the communication with I/O
devices is slow etc).

To increase the performance, para-virtualization approach
is used. This approach requires the modification of the kernel
of Guest Operating Systems. It is also required that the
processors have the same characteristics. In this way, the
communication between applications in virtual machines and
I/O devices will be realized through virtual I/O drivers which
rise above the hypervisor. This will give an increase of
communication speed between applications and I/O devices.

One of the most important points in the technology of
virtualization is live migration. This means that if a virtual
machine which is running an application undergoes a
discontinuity or it‟s CPU is loaded heavily, then the application
can be migrated from this virtual machine to another. The
virtual machine migration includes the transfer of page
memories that are working; the transfer of the sources that are
participating in this application (i.e network card, disc etc) and
CPU‟s status. Each virtual machine has got its own CPU, its
own physical memory (which is shared between different
virtual machines), its own I/O etc. Memory migration is the
most crucial point of virtual machine‟s migration. There are
some methods of its migration, but the most used is the
iteration method with Pre-Copy approach. In this method, at
first the modified pages are transferred, which are registered
from a table in memory which is managed by XEN. This table
is created with bitmap method which marks with „‟1‟‟ anytime
a memory page is written. The modified pages are iterated
again until the end when CPU‟s status is transferred. In this
method, the interruption time “downtime” because of the
migration is not high, it is calculated in the order of
milliseconds, despite of migration capacity.

In our article we have studied three types of hypervisors
and we have measured their performance regarding the file‟s
time of transfer, CPU efficiency and memory utilization from a
virtual machine to another in the same physical host or between
virtual machines in different physical hosts. The tested
hypervisors are Xen-PV, Xen-FV and OpenVZ,. Xen
hypervisor rises above the bare hardware, whereas OpenVZ is
a hypervisor which rises above the Host Operating System.

Figure 1. The three types of hypervisors

Xen Hypervisor can pass from a PV level to FV if we raise
Xen/Qemu. This will make possible the emulation of I/O
drivers in user‟s space. To achieve this is needed that the
hardware supports this technology. Intel and AMD processors
recently support virtualization (Intel VT dhe AMD-V). Using
these processors we can raise the Full Virtualization technique.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

127 | P a g e
www.ijacsa.thesai.org

This means that a GuestOS can be a Windows XP. These
processors use VTX/SVM instructions. Generally Full
Virtualization decreases the communication‟s performance
with I/O disks. This technique used by Xen is often called Xen-
HVM. Usually HostOS is called Dom0 and GuestOS is called
DomU. Unlike Xen-HVM where an application uses two
system calls to access a hardware driver, Xen-PV uses special
calls who will offer the possibility to access virtual drivers who
are managed by Dom0 and can be connected directly with the
hardware. Referring to XenPV, the hypervisor lies in ring 0,
whereas GuestOS lie in ring 1. The applications are in the third
ring, the second ring is not used, like it‟s shown in Figure 2. In
Xen-HVm the ring 0 is reserved for GuestOS and the
virtualized hardware lies in ring 1.

Figure 2. The rings of x86 architecture and the way they are used by XEN

OpenVZ is an OS Virtualization. GuestOS is called

container or Virtual Private Server. Unlike Xen where each
Guest has got its own kernel, in OpenVZ all the containers
have one kernel in common with the HostOS. Anyway every
GuestOS has got its own IP, its own I/O and its own memory.
Since every GuestOS is a process in OpenVZ hypervisor, this
method offers a better possibility than Xen in scalability but
weaker in isolation. OpenVZ can modify the Linux‟s kernel
giving to every unmodified Linux-based OS the possibility to
be executed as a process in Linux.

All the above hypervisors support the SMP (Symmetric
Multi-Processor) technique. This means that some GuestOS
can use some host processors at the same time.

II. RELATED WORKS

In reference [15] is shown the difference between OpenVZ
and XEN and is analyzed their performance. From the
experiments it can be seen that OpenVZ has got a higher speed
then Xen. The speed in reading is almost the same. OpenVZ
has got a good performance because the hypervisor introduces
a smaller complexity then XEN, expect that GuestOS in
OpenVZ are treated like processes and have a common kernel
with the host.

In [3] are used different measurements using different tools
like „’pktgen’’, a module that incorporates in Linux‟s kernel
and serves to generate traffic (packets with different sizes)
from one host to another. Another benchmark called ‘’ stress
tool’’ is used to measure CPU consumption and memory
utilization. It is noticed that when packet‟s size decreases from
1500B to 64B, it is not utilized the whole bandwidth offered
for all the hypervisors, anyway OpenVZ has the best
performance. In [3] is tested the case when are used different
streams using packets with different sizes for both hypervisors

from a virtual machine to another in a computer network
connected with a gigabit switch. In all the tested cases,
OpenVZ has the best performance.

In [2] is tested the performance between XEN and
OpenVZ. In this system is built for the first time the multilayer
approach where Web Server works in a layer, DB works in
another layer and the PHP interface works in another layer.
Using this multi-layer approach, the system‟s performance in
scalability, isolation and speed is higher than in analogue cases
[4]. The tool used to measure their performance is called
RUBIS. When the number of the applications increases, the
average response time of the packets RTT in OpenVZ is four
times smaller than in the first case. This occurs because XEN
has a bigger overhead than OpenVZ. Based on [2] there are a
lot of miss cache for instruction in L2 cache. Anyway, from [2]
is seen that OpenVZ consumes more CPU because of the
common kernel between the host and guests and because of the
fair CPU sharing between containers. To measure the overhead
here is used the tool ‘’Oprofile’’. This tool generates data
anytime there is a Hardware event, i.e anytime it happens a
miss cache. This tool [5] is adapted to the XEN performance
and is called „’Xenoprof’’. To measure the CPU consumption
in XEN is used the tool ‘’ xentop –b’’ which gives detailed
information about the CPU consumption of every GuestOS.
There isn‟t any specific tool to measure the CPU consumption
of the containers in OpenVZ, anyway here the data here are
measured from the generation of the time report which gives
the time CPU spends in every container in /proc/vz/vstat. To
measure the performance of every hypervisor is used RUBIS
benchmark which can increase the CPU load increasing the
number of threads generated by a script in C. Is measured the
throughput, the response time of the packets and CPU
consumption. In all of these three cases is concluded again that
OpenVZ has the best performance.

In [6] is shown that the creation of a multilayered disc
increases the migration performance of virtual machines. Xen
has lower scalability than OpenVZ, because for OpenVZ the
GuestOSs are processes, although they consume a lot of
memory and processing [4]. In reference [8] is compared the
performance of CPU consumption for the same applications
between XEN-PV, Xen-FV. It is seen that XEN-PV consumes
less CPU. To measure the CPU performance here is used the
tool ‘’SAR’’. XEN-PV has the highest speed of writing SAS
disc.

III. BACKGROUND

In this article we want to test three parameters: CPU
Consumption, Memory Utilization and the Migration time of
the virtual machine due to a warning failure. To create a
warning failure is used a tool of CentOS 5.5 called
„’Heartbeat’’. Using this tool we will get notified if a machine
has „‟dead‟‟ and so the Hypervisor will migrate the applications
(actually not only the applications) that were running in the
„‟dead‟‟ machine to maintain the continuity. In our article we
will realize a script in C which will simulate the stop of the
virtual machine in the physical host, regardless the fact that in
reality it hasn‟t stopped yet. So, the virtual machine in the first
host will finish it‟s execution only in the moment that the
virtual machine will start it‟s execution in the physical host

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

128 | P a g e
www.ijacsa.thesai.org

where it is migrated. In this case the performance will be better
than the case when „‟Heartbeat‟‟ acts normally [9]. The case
of the study of an uncontrolled failure will be a study object in
the future. However, we will examine the case when the virtual
machine is relocated in the same physical host, without passing
the network. The virtual machine‟s migration passes some
steps:

a) The migration of memory pages that are in RAM who

belong to the application that was being executed in the

virtual machine.

b) The migration of the drivers of I/O devices.

c) The migration of virtual I/O discs as part of the

activity of the virtual machine.

d) The migration of CPU-statuses.

This method is called pre-copy [10]. The purpose is that
during the migration of the applications, to reduce the time of
the interrupt down-time as much as possible. In pre-copy
approach, the down-time is lower, but there is a problem with
the total time of the migration as a result of the iteration of
dirty pages, which are saved in a bitmap table in RAM. As we
know all the virtual machines have the possibility to share the
common memory, I/O discs, CPU etc and all these processes
are managed by the hypervisor. The application that is going to
be tested is a 180MB application played online (game). We
will examine the parameters mentioned above using the
hypervisors:

XEN-PV, Xen-FV, Open-VZ

We have used a computer and have exploited it in all the
possible cases. The parameters of the computer we have used
are:

Intel Core i7 920, Quad Core +, L2 4x256 KB, L3 = 8 MB,
Asus, Three Channel DDR3 1600 Mhz, RAM 3x2GB, 64 bit
processor, Hyperthread Technology, Freq 3.2 Ghz, VT
Support, Turbo Boost Support.

We will start the experiment with XEN-PV and then with
the two other hypervisors. The purpose is to find the hypervisor
with the better performance during the migration of a virtual
machine.

IV. THE EXPERIMENTAL PHASE

A. The simulation of warning failure in x0 virtual machine

Referred to figure 3, initially we will prepare a warning
failure of x0 virtual machine. It means that x0 virtual machine
in reality is operating, but the hypervisor and the other virtual
machine built above the hypervisor are informed from
heartbeat tool which is included in CentOS 5.5, that it is
stopped as we explained in section 3.To simulate a warning
failure we should create a script in C programming language
and we call it heartcare. This script is located in /proc and
sends a message to heartbeat every time we want to execute it.
At this moment heartbeat is informed for the virtual machine
which should get interrupted (in our example it is x0 virtual
machine), and at the same time heartbeat informs x1 virtual
machine and Xen Hypervisor for this situation. Thus the
hypervisor begins to migrate x0 virtual machine to x1 virtual

machine based on pre-copy approach, which is explained in
section 3.

HYPERVISOR

Virtual Machine

xo

Virtual Machine

x1

Figure 3. Two Virtual machines that Lay above the Hypervisor

B. Xen-PV

As we explained in section 3 initially we have installed Xen
as hypervisor, above it is installed Dom0 with CentOS 5.5
version and 2 virtual machines DomU (GuestOS) each has
Ubuntu 10.04 Server installed. In x0 virtual machine is
executed a 180 MB application.

1) CPU consumption in Xen Hypervisor before and after

the migration of x0
At first we will evaluate CPU consumption of Xen

Hypervisor before migrating the x0 virtual machine. The
migration occurs at the moment when a warning failure signal
from heartcare script is sent to “Heartbeat” tool. To evaluate
the CPU consumption in Xen first we have been located in
/proc directory and typed the command xentop –b. The output
results of this command are saved in a matrix form in a script
called XenCProc which is located in /proc/xen. This script
presents the CPU consumption for every 5 sec. At the moment
when we push s key in the keyboard it will give us the average
of CPU consumption up to this moment. The value is 2,23%.
This is because the resources, memory consumption, virtual
disks I/O, virtual network etc are not being used heavily.

After x0 virtual machine is migrated, the CPU consumption
at the first moment increases slightly, then it is increased up to
9,63 %, in 1,65 sec; this is the peak of consuming, because of
page faults. When the page faults increase, the CPU
consumption increases too. This result depends from the
iteration of dirty pages which are maintained by bitmap table in
“Grant Shared Table” located in RAM and managed by the
Hypervisor. As it looks in table 1 after 2,54 sec CPU
consumption decreases to 3,11%. After 3,66 sec CPU
consumption is decreased to 2,11%. This is the stabilized
value. If we compare both cases before and after migration, the
CPU consumption after the stabilization phase in the second
case decreases up to 0,12%. The reason is the reduction of
resources which were implemented to x0 virtual machine.

TAB 1. CPU CONSUMPTION IN XEN HYPERVISOR AFTER X0 VIRTUAL MACHINE

IS MIGRATED TO X1.

CPU rate consumption (%) Time (sec)

2,23 % 0

9,63% 1,65

3,11% 2,54

2,11% 3,66

2) Memory utilization in Xen Hypervisor before and after

x0 migration

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

129 | P a g e
www.ijacsa.thesai.org

To evaluate the memory utilization in Xen before migration
we will use the tool named “MemAccess” located in /etc [11].
Initially the memory utilization is 10,6 %. After the migration
of x0 virtual machine, memory utilization increases 10,7% for
1,55sec. This is the peak of memory utilization value. After
that value the memory utilization will be stabilized at 10,5% at
2,04 sec (see table 2). If we compare the memory utilization
inertia with CPU consumption, it is clear that the memory has
more stability because of its native nature. During the
migration in memory are just added some extra code (pages
migrated from x0 virtual machine). This extra code is replaced
in dirty bit map table located in Grant Shared Table.

TAB 2. MEMORY UTILIZATION IN XEN HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

Memory Utilization Time

10,6% 0

10,7% 1,55

10,5% 2,04

As it look from table 2 the stability of memory utilization
happens after 2,04 sec from the migration process. If we
compare table 1 and table 2 again, the peak of memory
utilization happens after 1,55 sec while the peak of CPU
consumption after 1,65 sec. This is because the iteration
process does not affect directly to memory but it affects CPU
consumtion. Also the CPU should adapt some additional
parameters during the migration such as memory management,
I/O disk refresh etc.

3) Average Total Time migration of x0 virtual machine to

x1.
Initially we should clarify that the migration has occured in

the same physical host. At the moment when heartcare script
send a message to heartbeat tool to crash x0 virtual machine, a
counter is programmed to start and it is implemented into that
script. This counter will evaluate the total transferring time. At
the end of migration another message is sent to heartcare script.
This message is sent from XenCProc script because the last of
phase of pre-copy migration is dedicated to CPU status of x0
virtual machine [10].

The CPU status can be identified using XenCProc script
because the CPU status is the first argument saved in stack
[12]. The ID of CPU status is in the end of the transfer. At the
final transfer, XenCProc sends a message to heartcare script.
The total time is shown in display. The average total
transferring time in our test is evaluated 2,66 sec. This is a very
effective time, because the application installed is 180 MB (of
course just a little size of this application is being transfered,
because most of this is located in the hypervisor which is
similar to a SAN device between two virtual machines, this is
not part of our study).

4) Downtime during the migration of x0 virtual machine to

x1 virtual machine.
This is a very critical case, because live migration phase

depends from this parameter. To evaluate the downtime we
will refer to XenCProc. Based on [10] downtime is evaluated
as the transfer time of CPU status. Thus we should evaluate the
total transferring time of Program Counter Register (also the
same thing will be done with the execution instructions at the

moment when the warning failure occurs in x0 virtual machine)
of x0 virtual machine to x1 virtual machine. PC register is
encapsulated in the shared memory of the Hypervisor. So in the
same manner, with total transferring time transferring we
should identify the last process.

As we know when an interrupt occurs, CPU saves its status
and PC counter. So we should identify the ID of the first
process. This ID is recorded in XenCProc at the moment when
heartbeat stops x0 virtual machine, then it passes to
/proc/xentop file.

The downtime algorithm is:

a) Heartcare sends a message to XenCProc

b) XenCProc saves the ID of the first process

c) Then we type xentop command

d) ID process is transported to xentop file

e) CPU status iss transferred, it send automatically a

sys call to the hypervisor

f) Xen look the xentop file and starts the CPU status in

x1 virtual machine

g) The downtime is saved at XenCProc

h) It is showed in display

The downtime is evaluated 4 ms. It is a small value. There
are some reasons:

a) We are doing a migration inside a physical host

b) CPU is very fast, see section 3.

c) There are some extra parameters such as Turbo

BOOST

d) The application is not big (It can be considered

small, only 180 MB)

e) There are no data dependency [13] etc.

Now we will repeat from a-d the experiments by changing
the MTU (Message Transfer Unit). By changing the MTU
value, the packet size will change automatically. It will affect
the transferring time, downtime, memory utilization and CPU
consumption too. The data packets are transferred from
network virtual driver of x0 virtual machine to x1. Both virtual
drivers form a team and are connected by a bridge soft which is
managed by Xen. To change the packet data size we can
change MTU from 1500B, which is standard of Ethernet
Network Adapter, to 500 B and 64 B. For each VM we type the
command:

Ifconfig eth0 mtu 500

This is a temporary value and we suppose that packet data
size is 500 B. We should clarify that the results taken till now
belong to the case when the packet data size is 1500 B.

MTU = 500 B

TAB 3. CPU CONSUMPTION IN XEN HYPERVISOR AFTER X0 VIRTUAL MACHINE

IS MIGRATED TO X1.

CPU rate consumption (%) Time (sec)

2,26 % 0

11,47% 1,87

3,87% 2,96

2,24% 3,91

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

130 | P a g e
www.ijacsa.thesai.org

TAB 4. MEMORY UTILIZATION IN XEN HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

Memory Utilization Time

11,3% 0

11,9% 2,30

11,2% 2,41

MTU=64 B

TAB 5. CPU CONSUMPTION IN XEN HYPERVISOR AFTER X0 VIRTUAL MACHINE

IS MIGRATED TO X1.

CPU rate consumption (%) Time (sec)

9,24 % 0

21,13% 2,78

16,32% 4,50

8,03% 5,21

TAB 6. MEMORY UTILIZATION IN XEN HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

Memory Utilization Time

11,9% 0

12,6% 3,42

11,6% 4,05

If we compare the tables 1-6, we see that the CPU
consumption increases when packet data size decreases. The
same thing happens with the memory utilization. The reason is
the increasing of the overhead, because small packets have
more context switch and more overhead [14].

TAB.7 THE AVERAGE TOTAL MIGRATION TIME AND DOWNTIME FOR

DIFFERENT MTU SIZES

Packet data size Average Total

Migration time of

x0_VM

Downtime

500 B 3,37 sek 6ms

64 B 5,12 sek 9 ms

C. Xen-FV

If we want to use Xen as a Full virtual machine we should
have a hardware that supports it. As we see in section 3 the
parameters of our computer match with our requirements [15].
Also we should built QEMU on Xen, thus we should emulate
the hardware in user space [16],[17]. The Full virtualization in
Xen has the same characteristics as VMWare which means that
we can build OS with different native nature and different
architecture, such as Windows in DomU. Also in Full
virtualization it is not necessary to modify kernel OS Host or
Guest. Nevertheless Full Virtualization has some disadvantages
such as the increase of access time in I/O disks, because there
are 2 trap instructions to access a disk [18]. The Full
virtualization includes an additive complex layer presented by
QEMU emulation software. In order to emulate network
drivers in both GuestOS we should install e1000 emulator in
/root directory.

MTU 1500 B

TAB 8. CPU CONSUMPTION IN XEN-HVM AFTER X0 VIRTUAL MACHINE

MIGRATION IN X1.

CPU rate consuming (%) Time (sec)

2,66 0

10,52 2,14

4,08 3,25

3,16 4,31

TAB 9. MEMORY UTILIZATION IN XEN-HVM AFTER X0 VIRTUAL MACHINE IS

MIGRATED TO X1.

Memory Utilization Time

11,5 0

11,9 2,26

11,5 2,84

MTU = 500 B

TAB 10. CPU CONSUMPTION IN XEN-HVM AFTER X0 VIRTUAL MACHINE IS

MIGRATED TO X1.

CPU rate consumption (%) Time (sec)

3,72 0

14,59 2,51

6,11 4,33

3,6 5,70

TAB 11. MEMORY UTILIZATION IN XEN-HVM AFTER X0 VIRTUAL MACHINE IS

MIGRATED TO X1.

Memory Utilization Time

12,4 0

13,2 2,92

12,4 3,54

 MTU=64 B

TAB 12. CPU CONSUMPTION IN XEN-HVM AFTER X0 VIRTUAL MACHINE IS

MIGRATED TO X1.

CPU rate consumption (%) Time (sec)

11,8 0

24,5 3,91

19,1 6,84

11,7 8,16

TAB 13. MEMORY UTILIZATION IN XEN-HVM AFTER X0 VIRTUAL MACHINE IS

MIGRATED TO X1.

Memory Utilization Time

13,02 0

13,7 5,7

12,9 6,16

If we compare the tables 8-13, the CPU consumption and
memory utilization in Xen-HVM are bigger than in Xen-PV.

TAB.14 AVERAGE TOTAL MIGRATION TIME AND DOWNTIME FOR DIFFERENT

MTU SIZE

Packet data size Average Total time

migration of x0_VM

Downtime

1500 B 4,10 sec 8 ms

500 B 5,24 sec 11 ms

64 B 6,08 sec 16 ms

As it look from the table 14, downtime and Average Total
time are increase when the number of packet size is decrease.

D. OpenVZ

1) The Evaluation of CPU consumption in OpenVZ
To evaluate the CPU consumption in OpenVZ we don‟t

have any specific tool nevertheless we can measure the CPU
wasted time in /proc/vz/vstat. To evaluate the CPU
consumption we create a script in C which is called traceproc.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

131 | P a g e
www.ijacsa.thesai.org

It traces the active and idle processes in hypervisor by
scanning the status of each process in vstat file. Each process
has a wake bit in Process Status Register, if it is 1 this process
is active and if it is 0 the process is idle. In Traceproc script
located in /proc/vz we have implemented a formula:

The availability of the process= (Time for each active
process)/(Total CPU time) x100% (1)

The sum of the availability active processes = CPU
Availability (2)

In reality this formula doesn‟t calculate the CPU
availability, because when the processes are idle they still
spend CPU time, consequently their consume CPU. Thus for
the idle process we should build a semaphore variable [7] in
order to make them sleep. In this way they will not consume
CPU. Semaphore variables are built in a script in C called
semaphore, which records the ID of all idle processes. This
information is taken from Traceproc script. For each passive
process we generate a thread which sends a signal to these
processes.

In this manner, the passive processes are transformed in
sleep processes. At the moment when CPU sends an interrupt
message for one of the sleeping processes, the semaphore script
is the first that takes this signal. This script reads the ID of
calling processes, records it in a specific address into a specific
register and then calls the specific thread. The thread wakes up
the sleeping process. Thus the process can take the interrupt
launched from CPU. This is a very dangerous approach
because the script is implemented in user space, it means that
after the interrupt request from CPU, the generated thread can‟t
wake the process up. So the process is going to sleep forever.
Nevertheless after this modification to traceproc script we will
evaluate the CPU consumption by using the formula:

CPU consumption= Sum of active processes/ Total nr of
process (3)

 We should emphasize that this script gives us an
approximately value of CPU consumption in OpenVZ
hypervisor.

2) The evaluation of Memory Utilization in OpenVZ
We have to use a tool named stream_tool [8] to evaluate

the memory utilization. There is one problem, this tool cannot
evaluate the dynamic changing i.e the iteration of dirty pages
while the x0 machine migrates to x1. So we should build a
script that finds the number of page faults and multiples them
with the page size.

Nevertheless we cannot find the appropriate number of
transferred pages in a unit of time in case a page miss occurs.
So we should implement another tool called Bonnie ++, which
calculates the bandwidth transfer for 2 disks. We take
RAM_VM1 as first disk and RAM_VM2 as second disk and
we can calculate the total number of transferred pages for each
iteration by using the formula:

The nr of transferred pages= Total size transferred (B)/ Page
size (4)

The calculated from stream benchmark at 0 time:

Total memory utilization= (Time before a page fault
occurs) + (Nr of transferred page while a page fault occurs) x
(Nr of page faults) x (Page size) (5)

All these formulas are implemented in Mem0 script,
written in C language.

3) The evaluation of transferring time and downtime
To evaluate the transferring time we can use the same script

we did in previous cases, but this script is located in /proc/vz.

MTU 1500 B

TAB 15. CPU CONSUMPTION IN OPENVZ HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

CPU rate consumption (%) Time (sec)

2,24 % 0

9,67% 1,52

3,20% 2,24

2,18% 3,04

TAB 16. MEMORY UTILIZATION IN OPENVZ HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

Memory Utilization Time

10,8% 0

10,9% 1,42

10,8% 1,57

MTU = 500 B

TAB 17. CPU CONSUMPTION IN OPENVZ HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

CPU rate consuming (%) Time (sec)

2,28 % 0

11,48% 1,77

3,88% 2,91

2,26% 3,84

TAB 18. MEMORY UTILIZATION IN OPENVZ HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

Memory Utilization Time

11,2% 0

11,7% 1,59

11,2% 2,22

 MTU=64 B

TAB 19. CPU CONSUMPTION IN XEN HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

CPU rate consuming (%) Time (sec)

9,76 % 0

22,53% 2,1

17,11% 3,29

8,62% 4,27

TAB 20. MEMORY UTILIZATION IN XEN HYPERVISOR AFTER X0 VIRTUAL

MACHINE IS MIGRATED TO X1.

Memory Utilization Time

11,9% 0

12,8% 3,11

11,6% 3,58

If we compare tables 15-20 in OpenVZ, the CPU
consumption and memory utilization is just a little bit more

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 9, 2011

132 | P a g e
www.ijacsa.thesai.org

than the parameters in Xen, the reason is that all the Containers
and Hosts share the same fair resources such as CPU, but the
transition time in OpenVZ is smaller than that on Xen-PV,
because in OpenVZ each container is considered a process.

TAB.21 AVERAGE MIGRATION TOTAL TIME AND DOWNTIME WITH DIFFERENT

MTU SIZES

Packet data size Average Total Migration

time of x0_VM

Downtime

1500 B 2,06 sec 3 ms

500 B 2,57 sec 4 ms

64 B 3,72 sec 5 ms

In Tab 21 is presented the Average Total Migration time of
x0_VM is smaller than that of XEN. The same thing happens
with downtime. The reason is the low complexity of OpenVZ,
Overhead and Context Switch; because each container is
considered a process.

V. CONCLUSIONS

From the above experiments we conclude the following
results:

1) CPU Consumption and Memory Utilization in XEN-PV

are lower than in Open-VZ because Open-VZ uses the same

kernel for Host OS and Guests OS by fair sharing the CPU.

XEN has got a better sharing of the CPU between Host OS

and Guests OS.

2) XEN-HVM consumes more CPU because of the

emulator’s complexity (QEMU).

3) All the parameters for the three hypervisors increase

with the decrease of packet’s size. This causes a slower

performance.

4) The Total Migration Time and Downtime are smaller in

Open-VZ than in XEN because in OPEN-VZ the overhead is

smaller (every OS works as a process).

VI. FUTURE WORKS

As a future intention we would want to test and compare
the performance for five hypervisors XEN-HVM, XEN-PV,
Open-VZ, KVM-FV and KVM-PV in a LAN. Also we will test
these hypervisors not using a warning failure, but simulating an
unwarning failure.

REFERENCES

[1] Jianhua Che, Qinming He, Kejiang Ye, and Dawei Huang, “Performance

Combinative Evaluation of Typical Virtual Machine Monitor”, 2010

[2] Daniel Schlosser, Michael Duelli, and Sebastian Goll,, “Performance
Comparison of Hardware Virtualization Platforms” , 2010

[3] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G.

Shin, “Performance Evaluation of Virtualization Technologies for Server
Consolidation”, 2007

[4] Christopher Clark, Keir Fraser, Steven Hand, Jakob Gorm Hanseny,Eric

July, Christian Limpach, Ian Pratt, Andrew Warfield, “Live Migration of
Virtual Machines” , 2009

[5] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman,and W. Zwaenepoel,

“Diagnosing performance, overheads in the Xen virtual machine
environment.In Proceedings of the First ACM/USENIX

International Conference on Virtual Execution Environments(VEE) , pages

13–23”, 2005

[6] Katharina Haselhorst, Matthias Schmidt, Roland Schwarzkopf, Niels
Fallenbeck, Bernd Freisleben, “Efficient Storage Synchronization for

Live Migration in Cloud Infrastructures”, 2010

[7] Andrew Tanenbaum, Modern Operating System 4-th edition, chap 2,

Semaphores, 2009

[8] Lucas Nussbaum, Fabienne Anhalt, Olivier Mornard, Jean-Patrick Gelas
“Linux-based virtualization for HPC clusters”, 2007

[9] Espen Braastad, “Management of high availability services using

virtualization”, 2006

[10] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan, “Live
migration with post copy”, 2007

[11] Jin Heo Xiaoyun, Zhu, Pradeep Padala, Ann Arbor, Zhikui Wang,

“Memory Overbooking and Dynamic Control of Xen Virtual Machines
in Consolidated Environments “, 2009

[12] Andrew Tanenbaum, Modern Operating System 4-th edition, chap 2

processes, 2009

[13] John Henessy, David Peterson, Computer Organization and Design 4 –th

edition, chap 4, p. 330, “Pipeline Data Path and Control”, 2010

[14] Andrew Tanenbaum, 2009, Modern Operating System 4-th edition, chap
3, Size of Page Memory

[15] Nathan Regola, Jean-Christophe Ducom, “Recommendations for

Virtualization Technologies in High Performance Computing” , 2010

[16] Chunqiang Tang, “FVD: a High-Performance Virtual Machine Image
Format for Cloud”, 2008

[17] Daniel P. Berrang´e, “Taking full advantage of QEMU in the Xen user-

space”, 2007

[18] Andrew Tanenbaum, 2009, Modern Operating System 4-th edition, chap
1, Virtual Machines

AUTHORS PROFILE

Igli TAFA – Assistant Pedagogue in Polytechnic University of Tirana.
PhD Student. His interesting field is Virtual and Cloud Technology.

Elinda KAJO – Pedagogue in Polytechnic University of Tirana. She is
graduated in PhD at 2008. She is interesting in JAVA Technology and C
Programming

Ariana BEJLERI - Pedagogue in Polytechnic University of Tirana. She is
interesting in Programming Languages Technology

Olimpion SHURDI - Pedagogue in Polytechnic University of Tirana. He is
very interesting in Hardware and Computer Network Technology

Aleksander XHUVANI - Professor in Polytechnic University of Tirana.
He is lider of Software Laboratory in University. His interesting field is
Software Engineering.

