
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

117 | P a g e
www.ijacsa.thesai.org

Fault Tolerant Platform for Application Mobility

across devices

T. N. Anitha
1

Associate Professor, Dept of Computer Science &

Engineering , SJCIT, Chickballapur-

562101,Karnataka,India

Jayanth. A
1

Project Engineer,Oracle India Private Limitted

Bhannerughatta Road, Near Diary circle, Koramangala,

Bangalore, Karnataka,India

Abstract—In the mobile era, users started using Smartphone’s,

tablets and other handheld devices, The advances in telecom

technologies like 3G accelerates the migration towards smart

phones. But still battery power and frequent change of handsets

is still a constraint. They burden on user had to manually

synchronize their contacts, applications they use to the new

phones. Also they loss whatever they are doing when the mobile

get power down. In this paper, we propose a solution to the

problem discussed with a new fault tolerant platform which can
provide application mobility across the devices.

Keywords- Fault tolerance; Middle ware; Midstore Manager.

I. INTRODUCTION

 Application mobility refers to the idea application can run
across multiple devices seamlessly even if it fails on one device
say to battery down or users move to some other device. The
application does not stop and it continues doing its work across
user’s movement to devices. We choose smart phones as the
device and laptops as the devices to consider for application
mobility. Application can be anything from word editing,
preparing the power point presentations etc.

 We explain the case for application mobility with some
scenarios. Say a user is a browsing a web page in his
smartphone, his battery power is low, can he work with he
work with the same page in browser in laptop automatically, or
he has another phone and want to work with same page in the
handheld. Say the user is watching a you tube video, he is at 2
min another 3 min video is pending, he wants to watch this
video on his tablet from the 2min or his phone switches off and
he powers again, can he still watch the video from 2min
automatically. Currently there is no solution available in
market for these problems which motivated our work. In this
paper, we address these challenges and design a software
solution these problems.

II. RELATED WORK

Fault Tolerance solutions usually are designed for
production servers like air traffic control, distributed disaster
system, railways reservation system, internet banking where a
single fault may lead to huge loss of money and even human
lives. Replication based technique is one of the popular fault
tolerance techniques [1]. A replica means multiple copies.
Replication is a process of maintaining different copies of a
data item or object. In replication techniques, request from
client is forwarded to one of replica among a set of replicas.

This technique is used for request that do not modify state of
service. Replication adds redundancy in system. In this way
failure of some nodes will not result in failure in system and
thus fault tolerance is achieved.

Checkpoint with rollback-recovery is a well-known
technique. Checkpoint is an operation which stores the current
state of computation in stable storage. Checkpoints are
established during the normal execution of a program
periodically. This information is saved on a stable storage so
that it can be used in case of node failures. The information
includes the process state, its environment, the value of
registers, etc. When an error is detected, the process is roll
backed to the last saved state [2].

Although replication method is widely used as a fault
tolerance technique but number of backups is a main drawback.
Number of backups increases drastically as coverage against
number of faults increases. As the number of backup increases
management of these backups is very costly. Fusion based
techniques overcome this problem. It is emerging as a popular
technique to handle multiple faults. Basically it is an alternate
idea for fault tolerance that requires fewer backup machines
than replication based approaches. In fusion based fault
tolerance a technique, back up machines is used which cross
product of original as fusions is corresponding to the given set
of machines [3]. Overhead in fusion based techniques is very
high during recovery from faults. Hence this technique is
acceptable if probability of fault is low.

All these fault tolerance solutions address only for the
server systems. We cannot use these solutions directly for our
problem; all these solutions are designed for applications
running in homogenous platform and the platform on which
application run are same across devices.

But in our problem we need to work across devices with
different platform. We need to provide application mobility for
application running in Android platform to the Application
running in Symbian platform or to windows on a laptop. So the
fault tolerance solution for application mobility becomes even
more complex.

III. PROPOSED SOLUTION

The proposed solution consists of designing a middleware.
The middle ware will provide fault tolerant application
mobility. The middleware provides API’s for application to
synchronize essential information.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

118 | P a g e
www.ijacsa.thesai.org

The middleware can write the synchronization information
into a memory card and it can also read this synchronization
information and start the applications. We could have used
cloud storage for synchronization of information, but relaying
on cloud will sometimes become a problem like network not
available. Using memory card has its advantages. The read and
write operations for synchronization becomes very much faster.
The memory card can be used to stat the application seamlessly
on another laptop or other handheld easily, just insert the
memory card and start the middleware.

So proposed system now standardizes the protocols and the
standards used for Application Mobility.

A. Middleware

There are two approaches for the design of middleware. In
first case, the application has to manually call the API‘s to set
the synchronization information. In the next case, middle ware
is dynamic and abstract the device API’s.

In this work , we limit our scope to application has to
manually call the middle’s API.

Middleware API’s should take a minimal amount of time
for providing the fault tolerance without affecting the
application performance. Poor design of middleware will
result in lower application performance and will seriously
impact user experience. Middle ware records the session
activity in a XML format in the Memory Card.

Since the Memory Card is also used by user for his
contents, we should provide secure and incorruptible way for
our XML. This can be provided by creating a folder in the
Memory card for the purpose of middleware alone and using a
virtual file system. These way middleware operations are
assured a separate workspace in the Card. This virtual file
system is referred as MidStore from here on.

Applications uses the middleware API’s to record the
current application session activity into the MidStore. At any
point of time, the information in the middleware provides the
snapshot of mobile user’s current activity. The information is
MidStore has this snapshot. Our job of Application mobility in
case of fault tolerance is very easy, if we can reconstruct this
snap on any other device or platform. To make this easy, first
step is standardizing the format of recording the snapshot. We
use XML standard for this purpose. XML is well standardized
way to share data across cross platforms.

Middleware must also provide a reconstruct job as service
which can invoked on the other platform to reconstruct the
snapshot. Based on the discussion above, so far we formulate
the architecture of middleware as

The core of our proposed solution is in the Middleware App
Layer, Mid Store Manager, MidStore and Snap Re constructor.

B. Middleware App Layer

This layer provides the API’s for the application to store the
session activity in the MidStore. Say the Application is browser
on the mobile handset. User has entered a URL and got the
webpage. This activity must be recorded into the midstore.

Say the Middleware provides the API like below.

 RecordActivity (Application, DescritorParam);

The Browser Application will call RecordActivity with the

parameters filled as

Application: IE
DescriptorParam: www.yahoo.com

Once this API call is made, middle API Layer delegates the

API to the MidStore manager.
We care not addressing any specific implementation of

API‘s in this paper. But as a general guideline, the API should
give the following information about user activity to the
Middleware platform. It should provide the activity is related to
which application and the additional descriptor of the activity.

If the user is browsing a webpage with internet explorer, the
application is IE and the descriptor is URL for browsing. If the
user is playing a song with media player, the application is
WMP and the descriptor is the song name.

C. MidStore Manager

As discussed previously the memory card have a virtual file
system called as MidStore. In order to manage the read and
write to the MidStore we need the MidStore manager.

At Handset At Laptop

Application

Middleware

Application

Middleware

Memory

Card

 Memory Card

Applications

 Applications

 Middleware

API Layer

Mid Store

Manger

MidSt

ore

Mid Store

Manger

Snap

Re-constructor

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

119 | P a g e
www.ijacsa.thesai.org

MidStore Manger handles the api call from the APP Layer
and records this activity in the MidStore. It is upto the specific
implementation of Mid Store Manager , to record all the
activity in a single XML file or make separate XML file for
each application. The case of making separate XML for each
application has a particular advantage during reconstruct
process. This will be addressed in the Snap re constructor.

We only suggest a way for the XML format, but it is upto
the specific implementers to have their own way

<midstore>

 <application>
 < instance = “IE”/>

 < descriptor url =www.yahoo.com />

 </application>

</midstore>
Suppose the User have closed the browsing application , the

browser should call an API

RemoveInstance(Application , Descriptor)

With Application value as IE.

When this api is called, the midstore manager must remove
the application entries for IE.

D. SnapReConstructor

SnapReConstructor is an important module in our design. It

reads the midstore and replicates the user activity on any target
platform.

Suppose the mid store has the following

<midstore>

 <application>

 < instance = “IE”/>

 < descriptor url =www.yahoo.com />

 </application>

</midstore>
And reconstuctor is running on desktop system with

windows. Then by reading this snap the reconstuctor should be
able to open the IE browser with url as www.yahoo.com.
SnapReConstructor can also have additional logic called as
ApplicationAliter.

 ApplicationAliter can help partial replication in target
platform. Say IE is not in the target platform, but it’s found out
that Mozilla is installed in the target. Since both IE and Mozilla
are web browsers, SnapReConstructor can start the Mozilla
with url as www.yahoo.com. So this guarantees partial
restoration.

SnapReConstructor must always try to achieve maximum
restoration without user intervention. Instead of
SnapReConstructor to be provided as an application and user
always click to start , it can be made auto start whenever the
device is introduced into target platform. But we leave this to
implementers choice.

For any new application to be supported by the middleware,
we need to extend the middleware API layer for providing
parameters and SnapReConstructor must be extended to start
the application or must ApplicationAliter must be extended for
doing partial reconstruction.

Instead of application reading each application tag in the
MidStore , if it can get all instances for that specific
application, it can start the application at one start with all
instances. We find this very useful in certain targets for some
applications. In windows, stating a IE can be done with
multiple url , so one ie instance comes up with different tabs
for each url.

Not all application available in mobile platform is available
for desktop platform. Also not all applications are available
across different mobile platform. But popular applications for
consumer user and the enterprise application are moving
towards availability in all platforms. Also with the use of
ApplicationAliter we can always find alternative for the
applications.

E. Application of proposed Platform

In this section we detail the possible usage scenarios for our
project.

A user adds contacts to his phone. He adds as many
contacts to his phone. Since mobile phones are cheaper and
new model comes to market every day, and in rapid mobile use
in countries like India , people often change phone , so every
time they change they have sync with contacts , important
messages , calendar events etc , but with our platform in place
, the user can just change the handset and connect to his
computer, the platform will immediately get the application
information like messages , calendar events etc applications
continues in the new handset.

F. Platform against Battery Backup

Modern smart phones even claim a battery backup of 10
days or so, but for busy business users, they see that battery
does not last for even 2 days. Many times business user has to
carry another phone. He has to continue his operation using the
new handset, but from the same point of continuity.

Currently there is no solution for this problem and the
transitory phase for business user from handset to handset is a
very bad experience, but with our platform the transitory is
smooth for the user, with the application snapshot same as he
worked previously.

 Since our platform is not so complex and uses less
resources it can even run with low end platforms.

IV. CONCLUSION

In this paper work, we have provided a solution for
application fault tolerance and mobility across different
platforms. Any Implementation can use the solution to realize it
on different platforms. The Application mobility will be of
great advantage to the enterprise and consumer applications.
The application has to change a bit to save the user activity into
the MidStore. This will be a disadvantage for the existing
applications. In Android platform , with the concept of
Broadcast receiver, any application can watch for certain
events , so browsing a url , playing a song etc are all events , so
a watcher application cab be written to watch for the events and
record user activity to the MidStore. We are looking for the
same kind of solutions on other platforms too. Once we are
able to find the generic watcher solution, the Watcher

http://www.yahoo.com/
http://www.yahoo.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

120 | P a g e
www.ijacsa.thesai.org

component can also be added to the middleware. This will be a
big advantage for providing mobility for existing applications.

REFERENCES

[1] Bhargava B. and Lian S. R., “Independent Checkpointing and
Concurrent Rollback for Recovery in Distributed Systems-An Optimistic

Approach,” Proceedings of 17th IEEE Symposium on Reliable
Distributed Systems, pp. 3-12, 1988.

[2] Cao G. and Singhal M., “On coordinated checkpointing in Distributed

Systems”, IEEE Transactions on Parallel and Distributed Systems, vol.
9, no.12, pp. 1213-1225, Dec 1998.

[3] V. Agarwal, Fault Tolerance in Distributed Systems, I. Institute of

Technology Kanpur, www.cse.iitk.ac.in/report-repository, 2004. ,

[4] "XML Media Types, RFC 3023". IETF. 2001-01. pp. 9–11.
http://tools.ietf.org/html/rfc3023#section-3.2. Retrieved 2010-01-04.^

"XML Media Types, RFC 3023".

[5] Adnan Agbaria, William H. Sanders, “ Distributed Snapshots for Mobile
Computing Systems”, Proceedings of the Second IEEE Annual

Conference on Pervasive Computing and Communications](Percom’04),
pp. 1-10, 2004.

[6] Parveen Kumar, Lalit Kumar, R K Chauhan, “A low overhead Non-

intrusive Hybrid Synchronous checkpointing protocol for mobile
systems”, Journal of Multidisciplinary Engineering Technologies,Vol.1,

No. 1, pp 40-50, 2005.

[7] Parveen Kumar, Lalit Kumar, R K Chauhan, “Synchronous

Checkpointing Protocols for Mobile Distributed Systems: A

Comparative Study”, International Journal of information and computing

science, Volume 8, No.2, 2005, pp 14-21

[8] "XML Serialization in the .NET Framework". Msdn.microsoft.com.

http://msdn.microsoft.com/en-us/library/ms950721.aspx. Retrieved
2009-07-31

[9] V.K Garg,. “Implementing fault-tolerant services using fused state

machines,” Tech-nical Report ECE-PDS-2010-001, Parallel and
Distributed Systems Laboratory,ECE Dept. University of Texas at

Austin (2010).

[10] Extensible Markup Language (XML) 1.1 (Second Edition)".W3.org.
http://www.w3.org/TR/xml11/#charsets. Retrieved 2010-08-22.IETF.

2001-01. pp. 7–9. http://tools.ietf.org/html/rfc3023#section-3.1.
Retrieved 2010-01-04.

[11] M. Murata, D. Kohn, and C. Lilley (2009-09-24). "Internet Drafts: XML

Media Types". IETF. http://tools.ietf.org/html/draft-murata-kohn-lilley-
xml-03. Retrieved 2010-06-10.

[12] "XML 1.0 Specification". W3.org. http://www.w3.org/TR/REC-xml.

Retrieved 2010-08-22.

[13] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,“
Understanding Replication in Databases and Distributed Systems,”

Research supported by EPFLETHZ DRAGON project and OFES).

[14] Checkpoint-based Fault-tolerant Infrastructure for Virtualized Service

Providers.

[15] A Review of Checkpointing Fault Tolerance Techniques in Distributed
Mobile Systems.

