
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

137 | P a g e
www.ijacsa.thesai.org

Survey on Impact of Software Metrics on Software

Quality

Mrinal Singh Rawat
1

Department of Computer Science

MGM’s COET,
Noida, India

Arpita Mittal
2

Department of Computer Science

IIMT,
Merrut, India

Sanjay Kumar Dubey
3

Department of Computer Science

Amity University,

Noida, India

Abstract—Software metrics provide a quantitative basis for

planning and predicting software development processes.

Therefore the quality of software can be controlled and improved

easily. Quality in fact aids higher productivity, which has brought

software metrics to the forefront. This research paper focuses on

different views on software quality. Moreover, many metrics and

models have been developed; promoted and utilized resulting in

remarkable successes. This paper examines the realm of software

engineering to see why software metrics are needed and also

reviews their contribution to software quality and reliability.

Results can be improved further as we acquire additional

experience with variety of software metrics. These experiences

can yield tremendous benefits and betterment in quality and

reliability.

Keywords- Software metrics; Software quality; Software reliability;

Lines of code; Function points; object oriented metrics.

I. INTRODUCTION

Software metrics are valuable entity in the entire software
life cycle. They provide measurement for the software
development, including software requirement documents,
designs, programs and tests. Rapid developments of large
scaled software have evolved complexity that makes the
quality difficult to control. The successful execution of the
control over software quality requires software metrics. The
concepts of software metrics are coherent, understandable and
well established, and many metrics related to the product
quality have been developed and used.

 It is essential to introduce definition of software metrics.
Software metrics provides measurement of the software
product and the process of software production. In this paper,
the software product should be seen as an abstract object that
begins from an initial statement of requirement to a finished
software product, including source and object code and the
several forms of documentation exhibited during the various
stages of its development.

Good metrics should enable the development of models that
are efficient of predicting process or product spectrum. Thus,
optimal metrics should be: [1]

 Simple, precisely definable—so that it is clear how
the metric can be evaluated;

 Objective, to the greatest extent possible;

 Easily obtainable (i.e., at reasonable cost);

 Valid—the metric should measure what it is
intended to measure; and

 Robust—relatively insensitive to (intuitively)
insignificant changes in the process or product.

II. OVERVIEW OF SOFTWARE METRICS

A. Classification of Software Metrics

There are three types of software metrics: process metrics,
project metrics and product metrics. [3]

1) Process Metrics:
Process metrics highlights the process of software

development. It mainly aims at process duration, cost incurred
and type of methodology used. Process metrics can be used to
augment software development and maintenance. Examples
include the efficacy of defect removal during development, the
patterning of testing defect arrival, and the response time of the
fix process.

2) Project Metrics:
Project metrics are used to monitor project situation and

status. Project metrics preclude the problems or potential risks
by calibrating the project and help to optimize the software
development plan. Project metrics describe the project
characteristics and execution. Examples include the number of
software developers, the staffing pattern over the life cycle of
the software, cost, schedule, and productivity. [4]

3) Product Metrics:
Product metrics describe the attributes of the software

product at any phase of its development. Product metrics may
measure the size of the program, complexity of the software
design, performance, portability, maintainability, and product
scale. Product metrics are used to presume and invent the
quality of the product. Product metrics are used to measure the
medium or the final product.

We can find more efficient ways of improving software
project, product and process management.

B. Mathematical Analysis

A metric has a very explicit meaning in mathematical
analysis .It is a rule used to determine distance between two
points. More formally, a metric is a function ‘d’ defined on
pairs of objects p and q such that d (p, q) expresses the distance
between p and q. Such metrics must satisfy certain properties:
[11]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

138 | P a g e
www.ijacsa.thesai.org

d (p,p) = 0 for all p : that is, the distance from point p to
itself is zero;

d (p, q) = m (q, p) for all p and q: that is, the distance from
p to q is similar to the distance from q to p;

d (p, r) ≤ d (p, q)+d (q, r) for all p, q and r: that is, the
distance from p to r is no larger than the distance measured by
stopping through an intermediate point.

A prediction system comprise of a mathematical model
along with a set of prediction processes for determining
unknown parameters and depicting the results. The model
should not be complicated for use. Suppose we want to predict
the number of pages, P that will print out as a source code
program, so that we can bring sufficient paper or calculate the
time the program will take for printing. We can use a simple
model,

P = x/a (1)

Where x is a variable, acts as a measure i.e. length of source
code program in LOC (line of code), and ‘a’ is a constant that
represents the average number of lines per page. There are
number of models to determine effort estimation; from analogy
based estimation to parametric models. A generic model can be
used to estimate effort predication.

 E = aSb (2)

Where a and b are constants. E is effort in person-months. S
is the size of source code in Line of code.

III. IMPORTANCE OF SOFTWARE QUALITY

In recent times the importance of software quality has come
to light when random errors on a say a telephone bill, or on a
bank statement were randomly attributed to a bug in the
“computer code” or using the ignorant adage of “the computer
does things” without making an effort to undermine the cause
of the problem or even separating it by hardware or software.
The problem arises when “computer errors” creep into highly
critical aspects of our lives involving situations where a small
error can lead to a cataclysmic chain of events. Bearing all this
in mind, the importance of enforcing software quality in
computer practices has become highly important. Seeing the
penetration of computer code into everyday objects like
washing machines, automobiles, refrigerators, toys and even
things like the mars rover, any system be it a large one or a
small system running embedded IC technology, ensuring the
highest levels of software quality is paramount.

However, that brings us to the next logical question, how
do we assess the quality of something intangible like software
quality? This is a highly subjective question whose answer will
vary according to the situation. For example, a small word
processing error in a student’s assignment will not be a huge
issue. But a slight code error in a space shuttle’s guidance
computer might be mission critical and endanger human lives.

Hence in terms of software quality, it is imperative that we
understand that it’s impossible to have a boilerplate definition
or meaning of software quality. The definition will differ
according to factors like quality of products and business. Also
crucial is the proper setting of goals as well as proactive

monitoring of quality factors and goals making sure that that
the goals set are resolved and completed in the given timelines
and specifics. Views on Software Quality

Software quality, as stated earlier, depends on a number of
factors. Also as theorized by David & Garwin, quality is a
complex as well as multifaceted concept, which can be viewed
according to different points of view as follows

1) User View
The user viewpoint of software quality tends to be a lot

more concrete and can be highly subjective depending upon the
user. This view evaluates the software product against the
user’s needs. In certain types of software products like
reliability performance modelling and operational products, the
user is monitored according to how they use the product.

2) Manufacturing View
This viewpoint looks at the production aspect of the

software product. It basically stresses on enforcing building the
product without any defects and getting it right the first time
rather than subsequently making a defective product and
spending valuable project time and more importantly costs
ironing out the defects or bugs at a later stage. Being process
based, this viewpoint focuses on conformity to the process,
which will eventually lead to a better product.

Models such as ISO 9001 as well as the Capability Maturity
Model do encompass this viewpoint that stress on following the
process as opposed to going by specification. However, that
being said, the theory that following the best and high quality
manufacturing process will automatically lead to a better
product cannot be inferred. The critic’s viewpoint is that
following an optimized and high quality product manufacturing
method can also lead to the standardization of a product
making it more of a commodity rather than a standout product.

That being said, there have been a lot of industry example
where the philosophy of “doing it right” the first time been
profitable. Also both the models CMM as well as the ISO,
indirectly do imply by following the principle of
“Documenting what you do and doing what you say” helps in
improving the product quality.

3) Product View
The product viewpoint looks at the internal features as well

as the characteristics of the product. The idea behind this
viewpoint is that in case a product is sound in terms of the
features and functionality it offers, and then it will also be
favourable when viewed from a user viewpoint in terms of
software quality. The idea is that controlling the internal
product quality indicators will influence positively the external
product behaviour (user quality) There are models trying to
link both the views of software quality but more work is
needed is this area.

4) Value based view
The value-based view becomes important when there are

lots of contrasting views, which are held by different
departments in an organization. For example, the marketing
department generally take a user view and the technical
department will generally take a product-based view. Though
initially these contrasting viewpoints help to develop a 360-

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

139 | P a g e
www.ijacsa.thesai.org

degree product with the different viewpoints complementing
each other, the later stages of the software product development
might have issues

The issues arise when there might be a set of change
proposed to a certain view that can end up throwing a conflict
in the other view. For example, say the marketing department
(user view) want changes to the user interface that are not
technically feasible (product view).

This is where a value-based view comes into play helping
resolve such conflicts so that the software product is not
delayed indefinitely. The value-based viewpoint looks the
conflict with a cost to benefit angle. It help in resolving such
issues by looking at the issue in relation to terms like costing,
constraints, resources, time. Using this viewpoint, it’s possible
to resolve interview conflicts helping to keep the software
product on track and within initial cost and timeline estimates.

IV. CASE STUDY ON SOFTWARE QUALITY

The Boeing 777 project – Boeing with its 777 airplane
project was a giant leap forward in the direction of Software
quality and is compelling case and point in the importance in
reinforcing strong software quality management. With almost
2.5 million lines of code written for the new jetliner’s state of
the art avionics and other on board software, it was super
critical to ensure best software quality practices and
implementation. Complications like an extensive network of
third party suppliers who would supply crucial components for
the 777 made it a large challenge to ensure that deadlines are
met without a compromise on software quality as a whole. [15]

Measures taken by Boeing – interestingly, at the beginning
of the 777 project, since there was extensive vendor
fragmentation, each vendor was using different measures and
metrics to keep in track of software quality and measure the
status of the work. As a result, this soon snowballed into a
situation where due to non-standard practices being followed, it
was extremely hard to understand the progress of the project as
a whole. Therefore, around the 777 project’s midway point,
Boeing implemented measures, which called for uniformity in
reporting as well as monitoring all variables related to the
project status and software quality. A uniform use of metrics
like came into effect which made the suppliers report around
the simple metrics like test definition, resource utilization, test
execution as well as detailed plans for the software coding and
design.

As a result, since the reporting was uniform as well as the
enforcement of these metrics was universal for the of Boeing’s
vendors, each vendor was now reporting on a bi weekly basis
as which now contained information about completed code,
testing as well as design. This not only lowered the effort on
Boeing’s part in consolidating the fragmented data (as was
happening previously) but also allowed Boeing to adjust its
own plans in sync with the vendor’s estimates and hence keep
the project on schedule.

Key Takeaways – Boeing realized early enough of the
importance of enforcing a uniform set of metrics. Also vital
learnings from Boeing’s experience is that done properly,
enforcing software quality in a project ensures that program
risk points can be identified early which would allow a

reasonable time to apply corrective measures without delaying
a project indefinitely. Additional key points are the
implementation of metrics allowed each project point to be
having a check and balance so that the project flows smoothly
without any major roadblocks. A good consequence of the
metrics implementation was the streamlining and the regularity
of communications between Boeing and its vendors, which was
touted as being of equal importance to the metrics as well.
Clear goals, milestones and constant monitoring of the key
metrics around software design coding and testing made sure
the 777 project was a success.

V. COMPARISON OF SOFTWARE METRICS- STRENGTHS AND

WEAKNESSES

The software industry does not have standard metric and
measurement practices. Most of the software metric has
multiple definitions and ambiguous rules for counting. There
are also important subject issues that do not have specific
metrics, such as quantifying the volume or quality levels of
databases, web sites and data warehouses. There is a lack of
strong empirical data on software costs, schedules, effort,
quality, and other tangible elements, which results in metric
problems. [12]

A. Source Code Metrics

“Source lines of code” or SLOC was the first metric
developed for quantifying the outcome of a software project.
The divergent “lines of code” or LOC has similar meaning and
is also widely acceptable. “Lines of code” could be defined
either:

 A physical line of code.

 A logical line of code.

Physical lines of code are sets of coded instructions
terminated by hitting the enter key of a keyboard. Physical
lines of code and logical lines of code are almost identical for
some languages, but for some languages there can be
considerable differences. Generally, the difference between
physical lines of code and logical lines of code is often
excluded from the software metrics literature.

Strengths of physical lines of code (LOC) are:

 It is easy to measure.

 There is a scope for automation of counting.

 It is used in a verity of software project estimation
tools.

Weaknesses of physical LOC are:

 It may include significant “dead code.”

 It may include white spaces and comments.

 This metric is vague for software reuse.

 It does not function for a few “visual” languages.

 Direct conversion to function points is erroneous.

 It is inconsistent for direct conversion to logical
statements.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

140 | P a g e
www.ijacsa.thesai.org

Strengths of the logical LOC are:

 It omits dead code, blanks, and comments.

 Mathematical conversion of logical statements into
function point metrics is possible.

 Logical LOC are used in many software project
estimation tools.

Weaknesses of logical LOC are:

 It can be difficult to measure.

 These are not comprehensively automated.

 These are ambiguous for a number of “visual”
languages.

 This metric is vague for software reuse.

 Direct conversion to the physical LOC metric may be
erroneous.

"Measuring software productivity by lines of code is like
measuring progress on an airplane by how much it weighs." –
Bill Gates.

It is prudent to focus more on building expertise on
Function Point Analysis and use it effectively.

B. Function Point Metrics

The function point analysis to measure software application
is enumerated from analysis of the requirements and logical
design of the application. Function Point count can be applied
to Development projects, Enhancement projects, and existing
applications as well. [13] There are five key elements of
Function Point Analysis, which capture the functionality of the
application. These are:

 External Inputs (EIs),

 External Outputs (EOs)

 External Inquiries (EQs)

 Internal Logical Files (ILFs) and External

 Interface Files (EIFs).

First three elements are of Transactional Function Types
and last two are of Data Function Types. Function Point
Analysis consists of performing the following steps:

 Determine the type of Function Point count

 Determine the application boundary

 Identify and rate transactional function types to
calculate their contribution to the Unadjusted Function
Point count (UFP)

 Identify and rate the data function types to calculate
their contribution to the UFP

 Determine the Value Adjustment Factor (VAF) by
using General System Characteristics (GSCs)

Finally, calculate the adjusted Function Point count

When we examine the patterns of strengths and weaknesses
of function point metrics, we observe that for economic studies
and for studies that include non-coding work such as
specifications, function points are clearly superior to lines of
code metrics. [12]

Strengths of function point metrics are:

 It stays stable regardless of programming languages
used.

 It can compute non-coding activities such as
documentation.

 It can measure non-coding defects in requirements and
design.

 These are useful for software reuse analysis.

 Function points are used for object-oriented economic
studies.

 These are supported by a lot of software cost
estimating tools.

 Mathematical conversion of function points into
logical code statements is very easy.

Weaknesses of function point metrics are:

 Function Point counting requires good deal of
experience.

 Function point counting can be protracted and pricey.

 Function point counting automation is of indefinite
accuracy.

 Function point counts are unreliable for those projects
that are below 15 function points in size.

 Function point variant have no conversion rules to
IFPUG function points.

C. Object-Oriented Metrics

In today’s software development environment, Object-
oriented analysis and design concepts are well known. Object-
Oriented Analysis and Design of software provide many
advantages such as reusability, decomposition of problem into
easily understandable object and the aiding of future
modifications. Object-oriented software development requires
a diverse approach from more traditional functional
decomposition and dataflow development methods. But the
OOAD software development life cycle is not easier than the
typical procedural approach. Therefore, it is necessary to
provide dependable guidelines that one may follow to help
ensure good OO programming practices and write reliable
code. Object-Oriented programming metrics is an aspect to be
considered. Metrics should be a set of standards against which
one can measure the effectiveness of Object-Oriented Analysis
techniques in the design of a system. [2]

Strengths of OO metrics are: [12]

 The OO metrics are psychologically attractive within
the OO community.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

141 | P a g e
www.ijacsa.thesai.org

 The OO metrics come out to be able to differentiate
simple from complex OO projects.

 Weaknesses of OO metrics are:

 The OO metrics do not support studies outside of the
OO paradigm.

 The OO metrics have not yet been applied to testing.

 The OO metrics have not yet been applied to
maintenance.

 The OO metrics have no conversion rules to lines of
code metrics.

 The OO metrics have no conversion rules to function
point metrics.

 The OO metrics lack automation.

 The OO metrics are difficult to enumerate.

 Software project estimation tools do not support the
OO metrics.

OO metrics are not linked to all other known software
metrics. There are no conversion rules between the OO metrics
and any other metrics, so it is complicated to perform alongside
comparisons between OO projects and conservative projects
using the currently available OO metrics.

VI. FUTURE SCOPE

Looking at rising demand for the implementation and
successful case studies of software quality, it is safe to
conclude that in the coming years, software metric’s
importance will increase multifold as industry leaders like
embrace newer and more stringent approaches to monitoring,
improving as well as delivering better software quality in
products as well as processes. A number of metrics are
proposed and exercised for measuring the quality of a system
before implementation. Future research directions include
improvement in existing metrics based on the nature and
magnitude of the problem statement. There is a scope for
various tools to support software project development reducing
time, effort and cost of the project in consistent manner.

VII. SUMMARY AND CONCLUSION

With the rapid advancement in software industries,
software metrics have also developed fast. Software metrics
become the basis of the software management and crucial to
the accomplishment of software development. It can be
anticipated that by using software metrics the overall rate of
progress in software productivity and software quality will
improve. If relative changes in productivity and quality can be
determined and studied over time, then focus can be put upon
an organization’s strengths and weaknesses. Although people
appreciate the significance of software metrics, the metrics
field still needs to mature. Each of the key software metrics
candidates has broken into many competing alternatives, often
following national restrictions. There is no adequate
international standard for any of the extensively used software

metrics. Absence of firm theoretic background and the
assurance of methods, software metrics are still young in
comparison of other software theories.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lips
Software Metrics SEI Curriculum Module, SEI-CM-12-1.1, December
1988

[2] “Software Quality Metrics for Object Oriented System Environments”,

June 1995, National Aeronautics and Space Administration, Goddard
Space Flight Center, Greenbelt Maryland

[3] Tu Honglei1, Sun Wei1, Zhang Yanan1, “The Research on Software

Metrics and Software Complexity Metrics”, International Forum on
Computer Science-Technology and Applications, 2009.

[4] http://www.pearsonhighered.com/samplechapter/0201729156.pdf.

[5] http://www.wohlin.eu/Articles/ICGSE11.pdf.

[6] Barbara Kitchenham, Shari Lawrence,” Quality: The Elusive Target”,

IEEE Software-Vol. 13, No. 1: JANUARY 1996, pp. 12-21.

[7] Henrike Barkmann, Rudiger Lincke and Welf L owe, “Quantitative

Evaluation of Software Quality Metrics in Open-Source Projects”.

[8] Dindin Wahyudin, Alexander Schatten, Dietmar Winkler, A Min Tjoa,
Stefan Biff,“Defect Prediction using Combined Product and Project

Metrics “, March 2008.

[9] Nachiappan Nagappan, Brendan Murphy, and Victor Basili, “The
Influence of Organizational Structure On Software Quality: An

Empirical Case Study”, January 2008.

[10] David I. Heimann,”Implementing Software Metrics at a
Telecommunications Company” – A Case Study,2oo4

[11] Rakesh.L , Dr.Manoranjan Kumar Singh ,and Dr.Gunaseelan Devaraj

,”Software Metrics: Some degree of Software Measuremen and Analysis
“,(IJCSIS) International Journal of Computer Science and Information

Security, Vol. 8, No. 2, 2010

[12] Capers Jones, Chief Scientist Emeritus, “Strengths and Weaknesses of
Software Metrics”, Version 5, March 22, 2006.

[13] Kurmanadham V.V.G.B. Gollapudi, “Function Points or Lines of Code?
– An Insight”

[14] Arti Chhikarai, R.S.Chhillar , “Impact of Aspect Orientation on Object

Oriented Software Metrics”. Vol. 2 No. 3 Jun-Jul 2011, Indian Journal
of Computer Science and Engineering (IJCSE)

[15] Lytz, R., Software Metrics for the Boeing 777: A Case Study, Software

Quality Journal, 4, 1-13 (1995)

AUTHORS PROFILE

1
Ms. Mrinal Singh Rawat is Assitant Professor in the Department of Computer

Science and Engineering in MGM’s COET, Noida, UP, INDIA. Her Research
activities are based on Software Engineering and Reliability Engineering.She

is pursuing her M.Tech in Computer Science and Engineering from Amity
University.

2
Ms. Arpita Mittal is working as Assistant Professor in Department of

Computer Science at IIMT Merrut, UP, INDIA. Her Research activities are
based on Software Engineering and Software Tesing. She is pursuing her

M.Tech in Computer Science and Engineering from Amity University.

3
Mr. Sanjay Kumar Dubey is working as Assistant Professor in Department of

Computer Science and Engineering in Amity University Noida, UP, INDIA.
His Research area includes Software Engineering and Usability

Engineering.He is pursuing his Ph.D in Computer Science and Engineering
from Amity Unversity.

