
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

148 | P a g e
www.ijacsa.thesai.org

Self-regulating Message Throughput in Enterprise

Messaging Servers – A Feedback Control Solution

Ravi Kumar G

HP, Research Scholar, JNTUH
Bangalore, India

C.Muthusamy

Yahoo

Bangalore, India

A.Vinaya Babu

JNTUH

Hyderabad, India

Abstract—Enterprise Messaging is a very popular message

exchange concept in asynchronous distributed computing

environments. The Enterprise Messaging Servers are heavily

used in building business critical Enterprise applications such as

Internet based Order processing systems, pricing distribution of

B2B, geographically dispersed enterprise applications. It is

always desirable that Messaging Servers exhibit high

performance to meet the Service Level Agreements (SLAs).

There are investigations in this area of managing the

performance of the distributed computing systems in different

ways such as the IT administrators configuring and tuning the

Messaging Servers parameters, implement complex conditional

programming to handle the workload dynamics. But in practice

it is extremely difficult to handle such dynamics of changing

workloads in order to meet the performance requirements.

Additionally it is challenging to cater to the future resource

requirements based on the future workloads. Though there have

been attempts to self-regulate the performance of Enterprise

Messaging Servers, there is a limited investigation done in

exploring feedback control systems theory in managing the

Messaging Servers performance. We propose an adaptive control

based solution to not only manage the performance of the servers

to meet SLAs but also to pro-actively self-regulate the

performance such that the Messaging Servers are capable to meet

the current and future workloads. We implemented and

evaluated our solution and observed that the control theory based

solution will improve the performance of Enterprise Messaging
Servers significantly.

Keywords-Feedback control; Message Oriented Middleware;

Enterprise Messaging; Java Messaging Service; JMS Providers;

Adaptive Control

I. INTRODUCTION

Enterprise Messaging also known as Message Oriented
Middleware [1] is a popular asynchronous message exchange
mechanism in heterogeneous distributed applications. It
provides the applications in a distributed environment to send
and receive messages, but still being loosely coupled. Loose
coupling between enterprise class applications and legacy
systems such as business workflow applications, databases, and
data warehouses plays a significant role in Enterprise
Application Integration (EAI) [2]. The Message based
integration provides automation and simplifies the time
consuming integration tasks like create, deploy and manage
integration solutions. There are many such applications such as
Business to Business (B2B) solutions, messaging across
various entities within a business enterprise that are

geographically separate where asynchronous messaging
becomes a major building block [2]. Asynchronous Messaging
is a backbone for many of the Event driven architectures due to
the obvious advantages of asynchronous systems where the
message client need not maintain the connection and session
with the message receiver; no confirmation is required from the
receiving application [2]. As we discussed Enterprise
Messaging is an important element in the business critical
environments, it is always important for the Enterprise
Messaging Servers to exhibit high performance and
availability. Typically there would be Service Level
Agreements (SLAs) [3] defined between the business service
providers and the consumers. Performance is an obvious
Service Level Objective in such SLAs. Any violation of
performance SLOs [4] will affect the business and reputation of
the business enterprise. In this paper we want to discuss the
performance regulation of Java based Enterprise Messaging
Servers. There are different implementations of such Enterprise
Messaging Servers. The Java based Messaging Service is
called as Java Message Service [5], included in the
specification for Java based Enterprise Environments called as
JEE (called as J2EE previously) [6]. There are different
vendors who implemented the JMS Specification and Java
based Enterprise Messaging Servers are referred as JMS
Providers. Hence forth in the document the Enterprise
Messaging Servers are referred as JMS Providers [7].

Typically the performance of JMS Providers is measured
by its message throughput, though CPU and Memory usage [8]
are common metrics to measure the performance of any
computing server. The message throughput will depend upon
various factors such as the number of subscribers, message
size, number of publishers, and number of JMS message
brokers [9]. By tuning these different parameters the desired
performance can be achieved on the JMS Providers. One of
the mechanisms to improve the JMS provider’s performance is
by following some best practices such as setting non-durable
messages, set the message time to live parameter appropriately,
close message publishers and subscribers when they complete
their jobs [10]. But these kinds of practices will not be able to
address different kinds of JMS environments and applications
limiting the performance improvement. The other mechanism
is to provide the facilities to the administrators to configure
[11] and fix the various parameters values which influence the
JMS Provider performance. Due to the dynamics of messages
flow and workload on the JMS Provider, it will be difficult for
the administrator to tune these values accurately and

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

149 | P a g e
www.ijacsa.thesai.org

periodically. When there are sudden huge loads administrator
may decide to provision additional resources which may be left
unutilized [12] later when there are relatively lesser loads. This
will eventually lead to either not addressing the performance
needs or ineffective utilization of computing server assets.
Another way to manage the performance is to include
conditional programming within JMS Provider implementation
to change the values of the parameters at runtime based on the
workload and deviation from the expected performance. This
method is though useful it is very complex because during
design the workload dynamics have to be accurately estimated.
During implementation the conditional programming is
implemented which is very complex [13] as the conditions
implemented may not be sufficient to meet the run time
dynamics, any spikes in the workload. To summarize, though
there are different mechanisms to adjust the JMS Providers
parameters to regulate and improve the message throughput
either it involves manual intervention, involve complex
conditional programming implementation.

In order to handle such situations, we propose an adaptive
control [14] based solution that regulates the message
throughput according to the pre-defined reference using a
feedback controller. Also, predict the future load on the JMS
Provider, modify the control parameters accordingly. There
may be a case where the future load predicted may demand
additional servers; our controller will actuate a signal to
provision additional resources.

In this paper we will first present a background on the
choosing feedback control systems in Distributed computing
systems, then a brief overview on the Java Messaging Service,
followed by discussing the adaptive controller algorithm that
we have implemented to regulate the performance of the JMS
Provider.

II. BACKGROUND

We have discussed the importance of JMS Providers and
importance of their performance in building business critical
applications and services in enterprise level or at internet level.
There are attempts to predict the performance of JMS Providers
[15], or study and compare the performance of different
vendors of JMS Providers [16]. Additionally there are some
best practices [10] identified to improve the JMS Providers
performance. Manual configuration is one of the most
common approaches followed to tune the JMS Provider
performance. There is a very limited investigation done in
automatic regulation the JMS Providers performance. The
message throughput of the JMS Providers depends upon the
number of subscribers, publishers and number of brokers.
Allowing more number of subscribers on a given JMS Provider
may decline message throughput or having a less number of
subscribers may leave the JMS Provider less utilized. The
control system based solutions provide mechanism to
automatically tune the maximum number of subscribers in an
optimal operating range. In this paper we propose a control
systems based solution for managing the performance by
tuning the maximum number of subscribers that influence the
message throughput.

Control systems theory has been in investigation to address
these kinds of problems related to regulating the performance,

in computing [17]. But the majority of focus is on Web
Servers [18][19][20], Application Server performance
regulation [21], in computer networks such as congestion
control [22]. There are recent investigations to explore the
applicability of control systems in other areas of Java based
Cloud and Enterprise Environments [23], database driver cache
hit ratio improvement [24], spring based software applications
[25]. But in our study we have observed there is no
investigation carried out in applying feedback control system
theory in improving the performance of JMS based servers. We
investigated to apply control systems theory in Enterprise
Messaging server performance improvement and evaluated
how the feedback controllers improve the JMS Providers
performance significantly.

III. THEORITICAL AND PRACTICAL CONSIDERATIONS

The message throughput of the JMS Providers depends
upon various factors such as publishers, subscribers, JMS
brokers. The performance varies based on whether the
messages are persisted are not. The JMS Providers exhibit
higher performance when the messages are not persisted. In
this paper the persistence factor is not considered and the
performance is evaluated with proposed solution. The
subscribers are identified as a significant independent variable
influencing the message throughput. The number of publishers
and the brokers will have a definite impact on the message
throughput to cater huge publisher and subscriber volumes.
When the subscribers and message throughput are depicted in
mathematical model, the accuracy of the JMS Provider model
depends upon the constant values chosen for that model. These
constants can be determined by using different data set values
of message throughput for varying subscribers. These values
may not hold good for different workload conditions on the
JMS Provider, but the best suitable constants can be chosen
before running the experiments.

IV. ENTERPRISE MESSAGING PRIMITIVES

In this section we discuss a brief overview of the Enterprise
messaging [26] also known as Message Oriented Middleware
(MoM). The key concept behind MoM is the asynchronous
messaging. It means that the sender is not required to wait for
the message to be received or handled by the receiver. The Fig
1 shows high level diagram of MoM. The sender can forward
the message and continue the processing. The asynchronous
messages are treated as autonomic units. The message contains
all the data and state needed by the business logic that
processes it.

A. Enterprise Messaging Architectures

Figure 1. Message Oriented Middleware

1) Centralized Architectures :

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

150 | P a g e
www.ijacsa.thesai.org

In Centralized Architectures there will be a Message Server
also called as a message router or message broker that is
responsible of sending messages such that the message sender
is decoupled from the message receiver. This enables the
clients to be added and removed without impacting the system.
In this model, the hub-and-spoke topology is used as shown in
Fig 2 below:

Figure 2. Centralized MoM Architecture

2) Decentralized Architectures
In Decentralized architectures, the IP multicast is used at

the network level. There is no centralized server and some of
the JMS functionality like persistence, transactions, security is
embedded in the client application. The messaging routing is
delegated to the network layer by using the IP multicast
protocol as shown in Fig 3.

Figure 3. Decentralized MoM Architecture

B. Java Messaging Service [26]

The Java Message Service (JMS) is a specification that
proposes programming API for Enterprise Messaging. JMS
supports messaging as a first-class java distributed computing
paradigm. There are many vendors who implemented the JMS
specification and such implementations are called JMS
Providers, which are nothing but Enterprise Message Servers
based on Java.

1) JMS Messaging Models
The JMS provides two types of messaging models, point-

to-point and publish-subscribe models. The intermediate
element that enables the communication between the message
producer and message consumer in JMS is called a broker.
There are two types of JMS brokers as explained below.

a) Point-to-Point

The Fig 4 below shows point-to-point model in which the
producer can send a message to only one consumer. In JMS
Providers such JMS Brokers called Queues.

Figure 4. Point-to-Point Model

b) Publish-Subscribe

The Fig 5 below shows publish-subscribe model in which
the producer can send a message to many consumers. In JMS
Providers such JMS Brokers called Topics.

Figure 5. Publish-Subscribe Model

V. ADAPTIVE CONTROL

The message throughput (T) depends upon various factors
such as the number of subscribers and publishers to the
different brokers of the JMS Provider, The messages size,
number of brokers running. In this paper we have considered
how the number of subscribers of the JMS brokers affects the
message throughput (T). Though there are other parameters
that influence the JMS Provider message throughput, the
maximum number of subscribers allowed on the server will
affect significantly. The number of publishers are considered to
be constant as 1 in our implementation. The Fig 6 is a Single
Input Single Output (SISO) Adaptive control system [27] that
shows how the message throughput is regulated using the
controller and the Predictor.

Figure 6. Adaptive Control of JMS Provider

We explain how the message throughput depends upon the
number of subscribers of the JMS Provider.

The following equation (1) represents the Message
Throughput and its relation with the number of subscribers.

T = bS (1)

Where

T = Message Throughput of JMS Provider measured as
number of messages per unit time

S = Total number of subscribers on the JMS Providers

b = proportional coefficient for the Subscribers

There is a feedback control loop that is implemented which
is used to calculate the error signal of the actual Message
throughput (Ta) and the Reference Message Throughput (Tref).
The error signal is represented by the equation (2)

E = Tref - Ta (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

151 | P a g e
www.ijacsa.thesai.org

The controller takes the error signal as one input and the
other input signal to the controller is the predicted values of
number of subscribers and message throughput. The predicted
subscribers will help in estimating the possible future
subscriber’s volume. The predicted subscriber’s value is used
to predict the message throughput and the latter one is
important to determine the future resource requirements. The
resources may either be more JMS brokers or additional virtual
machines [28] that can be scaled to cater the future load
requirements on the JMS Providers. There are threshold values
defined for the message throughput based on which the
actuator signals are triggered either to add new virtual
machines or brokers. The following sections explain the
different parts of the solution in detail.

A. Modeling JMS Provider

The JMS Provider, whose message throughput needs to be
controlled, has to be mathematically modeled first in order to
apply the feedback control techniques. There are many ways to
model the compute systems such as difference equations [29],
ARMA models [30] that is based on Least Squares Parameter
Estimation [31]. In our solution we have used the ARMA
model to represent the JMS Provider. The Fig 7 below shows
ARMA based modeling of the JMS Provider.

Figure 7. JMS Provider Model for Feedback control

1) Parameter Estimation

In the JMS Provider the message throughput is defined as a

function

 The number of subscribers that the JMS Provider is
supporting.

 Though the number of publishers and number of
message brokers also influence the JMS Provider
performance we considered the number of subscribers
as the factor in our paper.

According to ARMA, in a Single Input Single Output
model, for a given sample data set, the next sample of the
output can be predicted using the current and previous inputs.
The same is explained in the equation (3) below:

y(t + 1) = ay(t) + bu(t) (3)

 Where

y(t) = The current output

u(t) = The current input

a = The model parameter to be estimated

b = the model parameter to be estimated

y (t + 1) = the output in the next step

The same ARMA model if is applied to model the JMS

Provider, it is represented by the equation (4):

 T(t + 1) = aT(t) + bSmax(t) (4)

Where

T (t) = The current output of message

 Throughput

Smax(t) = the current input of maximum number

 of Subscribers

a = the model parameter to be estimated

b = the model parameter to be estimated

T (t + 1) = the output in the next step

The ARMA model is used to estimate the model parameters
‘a’ and ‘b’. The details of the experiments and the estimated
values are explained in the section VI. “Implementation and
Analysis”. Based on our experiments the parameter ‘a’ is
determined as 0.91 and ‘b’ is 0.12.

2) Input Operating Range
It is important to determine the operating range of the

maximum number of Subscribers (Smax). The training data set
is used again to determine the range of Smax that provides the
desired Tref.

In order to achieve the desired value of the Tref, the
maximum number of subscribers will have to be adjusted. This
value of Smax again will change during runtime due to the
stochastic nature of the load and the controller is useful to
automatically adjust the Smax to meet the Tref. The details are
explained in the Section VI.A “Implementation and Analysis –
Modeling JMS Provider”

B. Adaptive Controller

The adaptive controller is designed and implemented to
self-regulate the message throughput of the JMS Provider for a
pre-defined threshold of message throughput.

We implemented the adaptive control algorithm such that
any changes in the JMS Provider load can be well managed
such that the desired message throughput (Tref) is achieved at
any given point of time. The adaptive control has two different
parts.

 Feedback Controller: The feedback controller is
reactive in nature and tunes the controller gain based
on the current measured message throughput, but
cannot handle the future load on the JMS Provider.
This runs a “sub-control loop” and at the end of each
such loop the controller parameter is tuned such that
the message throughput is in an allowed range of Tref

 Predictor: In order to handle the future dynamics of the
loads on the JMS Provider, a predictor is used that
predicts the Smax and Tref. Based on these predicted
values the P-Controller Gain is tuned if predicted
desired message throughput is lesser than a pre-defined
error. We defined a “parent control loop” that runs
periodically. In each parent-control loop the Smax and
Tref are predicted. After each parent-control loop, the
predicted value of message throughput is compared
with the Tref. If the predicted value is less than Tref
within a pre-defined deviation then controller tunes the
Smax allowed, by adjusting the Controller gain (Kp)
such that subsequent loads on the JMS Provider meet
the Tref. We used the basic P-Controller [32] to tune

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

152 | P a g e
www.ijacsa.thesai.org

the value of Smax. If this deviation is greater than a
pre-defined threshold then it demands additional
resources, then the actuator triggers request to create a
new Virtual Machine.

Now we explain the two different parts of the proposed
Adaptive control solution, Feedback Controller and the
Predictor.

1) Feedback P- Controller
The JMS Provider during its operation will have varying

workloads that may affect its performance. In order to maintain
and regulate the performance in terms of Tref, the maximum
number of subscribers that can be allowed on the JMS Provider
will have to be tuned. We implemented a P-Controller [32] to
adjust the Smax during runtime such that JMS Provider
exhibits desired performance. The lower number of
subscribers will have the possibility of high Tref, but having a
too low value of Smax keeps the JMS Provider under-utilized.
In the section VI.A “Implementation and Analysis – Modeling
JMS Provider” we have discussed optimal operating region of
Smax based on our experiments. In order to keep the desired
Tref, the P-Controller will tune the Smax in the operating
region. But there may be cases where the actual measure
Throughput (Ta) is much lower than Tref. In such scenarios,
the control law will trigger a request to provision additional
compute resource such as more compute power (e.g., Virtual
Machine). The Fig 8 below shows the P-Controller to tune the
Smax.

Figure 8. Feedback Control of JMS Provider

The output of the controller is represented by the equation
(5) below

u(t) = Kp.E(t) (5)

Where

u(t) = The controller output

Kp = Proportional Gain
The P-Controller Gain is represented in the equation (6) in

z-Transform

Kp = E (z)/U (z) (6)

Figure 9. Feedback Control of JMS Provider in z-Transform

The Fig 9 shows the z-Transform [33] of the JMS Provider
adaptive loop control.

The equation (5) represents the controller output is. The
controller output, which is the new Smax becomes the control
input to the JMS Provider. The reactive feedback control runs
for every “sub-control loop”.

The JMS Provider is represented by G (z) is a first order
system as shown in the equation (7) below

G (z) = b/ (z - a) (7)

2) Predictor
The Predictor is a component in our proposed solution that

predicts the maximum number of subscribers for the future
periods. The Time-Series Triple Exponential Smoothing [34] is
used to predict the Smax that represents the possible future
maximum number of subscribers that could be allowed on the
JMS Provider based on the past history.

The smoothing technique has the ability to forecast up to
‘m’ periods ahead. It means that the maximum number of
subscribers that can be supported after ‘m’ periods from the
current time can be predicted and hence the corresponding
Tref.

The Reference Message Throughput is predicted using the
predicted Smax and the previous value of the reference
message throughput. The equation (8) below shows how the
Tref is predicted

Tref(t + 1) = aTref(t) + bSmax(t + 1) (8)
In the Fig 6, we can notice that the Predictor accepts the

measured throughput (Ta), current Smax and outputs the
predicted Tref. (TrefPred) thus helps in tuning the Kp for the
future period.

C. Controller Algorithm

In this section we explain the controller algorithm

The following are the pre-conditions and Initialization
operations before the controller is executed

 The JMS Provider model parameters ‘a’ and ‘b’ are

estimated

 The “parent-loop control” and “sub-control loop” is

initialized

o Sampling time of sub-control loop = ‘m’

o Sampling time of parent-control loop = ‘c’

times of ‘n’

 Determine the P-Controller Gain ‘Kp’

 Initialize subscribers at the beginning = Si

 new VM triggering actuating signal message

throughput threshold = ‘NTh’

 Error Threshold range to tune the Kp = Er,min, Er,max

 Parent-control loop execute threshold for message

throughput = PT

o During running the sub-control loop if the

message throughput , when Ta <= PT then the

parent-control loop is triggered

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

153 | P a g e
www.ijacsa.thesai.org

ALGORITHM

i. Start the JMS Provider

ii. Start loading the JMS Provider with initial number of

subscribers as Si

iii. for every ‘m’ units of time run the sub-control loop as

shown below

a. measure the actual message throughput (Ta)

b. If Ta is observed to be less than Tref for more than 4

times, then trigger the parent-control loop (step iv.)

c. Get Ta , compute the Error ‘e’

i. If ‘e’ is between Er,min and Er,max where Ta < Tref , then

adjust the P-Controller Gain ‘Kp’ to meet Tref

d. Repeat the steps from a. to d. for ‘m’ times

iv. For every ‘c x m’ units of time run the parent-control

loop (i,e for every ‘c’ sub-control loops)

a. Define the prediction period ‘p’ determines the number

of parent control loops from the current parent control

loop)

b. Compute or predict Smax for ‘p’ periods in advance Smax,

p

c. Compute or predict Tref for ‘p’ periods in advance Tref, p

d. Feed the predicted values to feedback controller

v. The controller will compare the Tref, p and the current

message throughput Ta.

a. If the Tref, p is more by NTh than Ta., then trigger the

actuator to provision new Virtual Machine

b. If the Tref, p is less by Er,max than Ta., then tune the P-

Controller Gain ‘Kp’

VI. IMPLEMENATATION AND ANALYSIS

The adaptive control discussed is implemented in Java
using an experiment data collected on Apache JMS Provider
ActiveMQ [35] running on Ubuntu Linux 10.04 , i5 Intel 2
GHz CPU, 4 GB RAM, 1 TB Hard disk. A sample custom JMS
application is run to generate the experiment data. A single
JMS topic and a single publisher are used. The subscribers are
increased which read different messages from the JMS Topic
that are published. The data is collected on the explained
experimental setup.

Then the proposed solution is run offline on the
experimental data to examine the improvement in the message
throughput, without running the proposed controller on the
ActiveMQ server online.

The following are the different steps performed for
implementing and evaluating the performance of the proposed
solution.

 The model parameters (as in Equation (7)) are estimated
with two different data sets. The parameters with least
error are identified and used for the controller

 Operating range of maximum possible number of
subscribers is determined for best possible message
throughput, which is between 60 to 90 subscribers

 Based on the operating range, the P-controller Gain (Kp)

is calculated as 2.67 and the Reference Message

Throughput (Tref) is determined as 220.

 The Feedback Controller and Predictor are implemented

based on the values of P-controller Gain (Kp) and

Reference Message Throughput (Tref). The improvement
in the message throughput using the proposed controller is

evaluated in comparison with the actual message

throughput.

We explain the implementation details of modeling the
JMS Provider, the controller and discuss the results below.

B. Modeling JMS Provider

The model parameters ‘a’ and ‘b’ of the Equation (7) are
estimated using the ARMA model where the actual message
throughput is measured by linearly increasing the number of
subscribers, and predicting the Message throughput. The error
percentage is computed between the measured throughput and
the predicted throughput. The experiments are run with two
different data sets. The Table I shows the estimated model
parameters for both the data sets with their error. We observe
that the values a = 0.91 and b = 0.12 proved to have a lesser
percentage of prediction error.

TABLE I. MODEL PARAMETER ESTIMATION

Data Sets
Model Parameter Estimation

a b
Percentage of

Error

Data Set 1 1 0.28 9.12

Data Set 2 0.91 0.12 8.33

Now using these constants the JMS Provider model in z-

Transform is represented as the equation (9) below, using the
model parameters estimated.

G (z) = 0.12/ (z – 0.91) (9)
The Fig 10 and Fig 11 show the parameter estimation with

actual message throughput (Ta) and the predicted throughput
(Tpred). The message throughput in these figures is number of
messages per second. In Fig 10 the number of messages is
plotted against the increasing number of subscribers. There is a
saturation of message throughput after a certain number of
subscribers.

C. Adaptive Control

The Fig 12 below shows the performance evaluation of the
message throughput without Controller and with adaptive
controller proposed in this paper. We observe that the message
throughput using proposed Controller is better by about 25 %
which is a significant improvement in message throughput over
the throughput without controller. We can notice that there are
spikes where there is a sudden increase of the number of
subscribers. The actual message throughput has reduced
suddenly in such cases, but using a P-Controller tuning along
with the predictor, provided the adaptive control and has
regulated the throughput to be in the operating range between
200 and 250.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

154 | P a g e
www.ijacsa.thesai.org

Figure 10. Model Parameter Estimation – Data set 1

Figure 11. Model Parameter Estimation – Data Set 2

Figure 12. Performance Evaluation of Message Throughput using Adaptive

Control

1) Feedback Controller
From the experimental data the value of P-Controller Gain

Kp is determined as 2.67. This is computed by adjusting the
value of Kp between 2 and 4 and the average Kp is computed.
The reference message throughput is computed from the
operating range average as 220. By tuning Kp the output of the
controller is adjusted which is nothing but the tuning of Smax
to obtain the desired reference message throughput. But our
implementation has shown that the value of Smax is typically
around 59 with a maximum value of 120. The optimal
operating range of Smax is 59 ≤ Smax ≤ 90. The Table II
shows the operating range limits of Kp and Smax.

2) Predictor
We implemented the Triple Exponential Smoothing

predictor using openforecast Java API [36]. The Table III
shows the different values chosen for Predictor.

TABLE II. OPERATING RANGES

P-Controller Gain (Kp) Range

Kp

Range

Smax

Range
Tref

2.67, 3,

2, 2.4
59-90 220

TABLE III. PREDICTOR PARAMETER VALUES

Predictor Values

Triple Exponential

Smoothing

Coefficients

Er,max
Forecast period

(p)

0.2, 0.6, 0.6 70 1

The Fig 13 below shows the predicted values of the Smax

(Smaxp) and the Tref. (Trefpred). These values are predicted
using Triple Exponential Smoothing with coefficients shown in
the Table III. In our experiment the parent control loop is run
once the Trefpred starts decreasing less than 150, which is less
than the Tref by 70. From the Fig 13, the predicted Tref
(TrefPred) is less than 150, the P-Controller gain Kp is tuned
to a value of 4 such that message throughput is regulated
without fluctuations. The Er,max is set to as 70 (220-150). The
predictor adjusts the Kp once the Tref,pred is less by Er,max
(70) than original Tref. In our experimental data we didn’t
simulate the condition of the Ta exceeding the threshold to
trigger addition Virtual Machine requests.

Figure 13. Prediction of Smax and Tref

VII. CONCLUSION

We observed using the P-Controller will have a distinct
improvement in the message throughput of the Enterprise
messaging servers. Our experiments are currently limited to
using the P-Controller only which helps in reducing the rise
time [37], but in order to obtain reduce the overshoot and
settling time using the PI-Controller [17] is more helpful.
Additionally, the parameter estimation is done on experimental
data and only two data set samples are used. Our results are
based on a simulation like environment as the P-Controller is
not directly verified online on the JMS Provider. Our
experiments are rather run on the data collected from the JMS
Provider by running a sample application with one publisher
and one JMS topic. We infer that applicability of adaptive
control systems will have significant improvement on the
performance of the Enterprise messaging servers in distributed
computing systems.

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61

Tpred

Ta

0

50

100

150

200

250

300

1

11 21 31 41 51 61 71 81 91

Tpred

Ta

0

50

100

150

200

250

300

1 1019283746556473

Subscribers

Actual
Throughput

Controlled
Throughput

0

50

100

150

200

250

300

1 9 1725334149576573

Smaxp

Trefpred

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

155 | P a g e
www.ijacsa.thesai.org

VIII. FUTURE WORK

There is a scope of improvement of the solution explained
in this paper. We intend to extend the experiments to adjust the
model parameters during runtime such that model represents
the behavior of the system to be controlled in a real time. Also,
we want to examine the SASO [17] properties of our control
system to determine the controller stability and accuracy. We
also want to verify the solution on the ActiveMQ server with
varying publishers and topics, not limiting to the subscribers
only.

We suggest exploring a hybrid approach where techniques
like fuzzy control [38] can be used in conjunction with the
classic PI controller which can show better performance. The
applicability of fuzzy control enables creating a knowledge
base of rules and can be evaluated against using Triple
Exponential Smoothing for predicting future message
throughput. These rules can be helpful when the Enterprise
Messaging servers are used in massively large distributed
computing systems. We are also studying the different aspects
of Data Mining which can be used to build novel prediction
algorithms there by the adaptive control system is more robust.

REFERENCES

[1] Message Oriented Middleware (MoM):
“http://en.wikipedia.org/wiki/Message-oriented_middleware”

[2] Matjaz B.Juric, S.Jeelani Basha, Rick Leander, Ramesh Nagappan,

“Professional J2EE EAI”, Shroff Publishers 2005

[3] Service Level Agreement , “http://en.wikipedia.org/wiki/Service-
level_agreement”

[4] Service Level Objective,

“http://en.wikipedia.org/wiki/Service_level_objectives”

[5] JMS Specification:

“http://www.oracle.com/technetwork/java/javaee/tech/index.html”

[6] JEE Specification:
“http://www.oracle.com/technetwork/java/javaee/tech/index.html”

[7] JMS Providers: “http://en.wikipedia.org/wiki/Java_Message_Service”

[8] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Design and

evaluation of load control in web server systems”, IEEE American
Control Conference, 2004

[9] JMS Performance Benchmarks :

“http://www.codeproject.com/KB/showcase/PerformanceBenchmarks.as
px”

[10] http://www.precisejava.com/javaperf/j2ee/JMS.htm#JMS111

[11] Bruce Snyder, Dejan Bosanac and Rob Davies, “ActiveMQ In Action”,
Dreamtech Press, 2011

[12] Pradeep Padala, Xiaoyun Zhu, Mustafa Uysal et al. Adaptive Control of

Virtualized Resources in Utility Environments. In the proceedings of the
EuroSys 2007

[13] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, Andrei Voronkov,

“Complexity and expressive power of logic programming”, ACM
Computing Surveys 2003

[14] Karl J.Astrom and Bjorn Wittenmark, “Adaptive Control”, Pearson

Education, 2009

[15] Yan Liu, Ian Gorton, “Performance Prediction of J2EE Applications
using Messaging Protocols”, Proceedings of 2005 Symposium on

Component-based Software Engineering

[16] Michael Menth, Robert Henjes, Christian Zepfel, and Sebastian
Gehrsitz, “Throughput Performance of Popular JMS Servers”, ACM

SIGMETRICS '06

[17] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn Tilbury,

“Feedback Control of Computing Systems”, John Wiley 2004

[18] Ying Lu, Avneesh Saxena and Tarek E Abdelzaher, “Differentiated

Caching Services; A Control-Theoretical Approach”, IEEE
International Conference on Distributed Sysytems, 2001

[19] Keqiang Wu, David J. Lilja, Haowei Bai, “The Applicability of

Adaptive Control Theory to QoS Design: Limitations and Solutions”,
IEEE Parallel and Distributed Processing Symposium, 2005

[20] Ying Lu, Tarek Abdelzaher and Gang Tao, “Direct Adaptive Control of

A Web Cache System”, Proceedings of the American Control
Conference, Denver, Colorado, 2003

[21] Giovanna Ferrari, Santosh Shrivastava,Paul Ezhilchelvan, “An

Approach to Adaptive Performance Tuning of Application Servers”,
IEEE International Workshop on QoS in Application Servers, 2004

[22] Seungwan Ryu, Chulhyoe Cho,”PI-PD-controller for robust and

adaptive queue management for supporting TCP congestion control”,
Simulation Symposium, 132 - 139 April 2004

[23] Ravi Kumar Gullapalli, Dr.Chelliah Muthusamy and Dr.A.Vinaya Babu

, “Control Systems application in Java based Enterprise and Cloud
Environments – A Survey” , IJACSA, Volume 2, No 8, August 2011

[24] Ravi Kumar Gullapalli, Dr.Chelliah Muthusamy, Dr.A.Vinaya Babu and
Raj N. Marndi, “A FEEDBACK CONTROL SOLUTION IN

IMPROVING DATABASE DRIVER CACHING”, IJEST, Vol 3, No 7,
July 2011

[25] Dr. Wolfgang Winter , “Applying control theory concepts in software

applications”, http://www.theserverside.com/feature/Applying-
controltheory-concepts-in-software-applications

[26] Richard Monson-Haefel and David A.Chappell, “Java Message

Service”, O’Reilly 2001

[27] Single Input Single Output : “http://en.wikipedia.org/wiki/Single-
input_single-output_system”

[28] Virtual Machines : “http://en.wikipedia.org/wiki/Virtual_machine”

[29] Erwin Kreyzig, “Advanced Engineering Mathematics”, John Wiley and

Sons

[30] ARMA:

http://en.wikipedia.org/wiki/Autoregressive_moving_average_model

[31] MICHAEL L.JOHNSON and LINDSAY M.FAONT Parameter
Estimation by Least Squares Error :”

http://mljohnson.pharm.virginia.edu/pdfs/174.pdf”

[32] P-Controller, “http://en.wikipedia.org/wiki/Proportional_control”

[33] Z-Transform: Saed Vaseghi,
“http://dea.brunel.ac.uk/cmsp/Home_Saeed_Vaseghi/Chapter04-Z-

Transform.pdf

[34] Triple Exponential Smoothing:
“http://itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm”

[35] Apache ActiveMQ, “http://activemq.apache.org/”

[36] Openforecast API, “http://openforecast.sourceforge.net/docs/”

[37] Jinghua Zhong, “PID Controller : A Short Tutorial”, Purdue University,
2006

[38] Jan Jantzen, “Design of Fuzzy Controllers”, Tech report, 1988,

Technical University of Denmark

AUTHORS PROFILE

Ravi Kumar G is working as a Technical Expert in Hewlett-Packard.,

Bangalore, India. He obtained his M.Tech in Computer Science from Birla
Institute of Technology, Mesra,India. He is currently pursuing Ph.D from

JNTU Hyderabad,AP, India.

Dr.Chelliah Muthusamy is Academic Relations Head at Yahoo, Bangalore,.
He obtained his Ph.D from Georgia Tech and M.Sc(Engg) in Computer

Science from Indian Institute of Science(IISc), Bangalore India

Dr.A.Vinaya Babu is a Professor of Computer Science working as Principal,
JNTUH College of Engineering, JNTU Hyderabad, AP, India. He obtained his

Ph.D and M.Tech in Computer Science from JNTU, Hydreabad.

http://en.wikipedia.org/wiki/Message-oriented_middleware
http://en.wikipedia.org/wiki/Service-level_agreement
http://en.wikipedia.org/wiki/Service-level_agreement
http://en.wikipedia.org/wiki/Service_level_objectives
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://en.wikipedia.org/wiki/Java_Message_Service
http://www.codeproject.com/KB/showcase/PerformanceBenchmarks.aspx
http://www.codeproject.com/KB/showcase/PerformanceBenchmarks.aspx
http://www.precisejava.com/javaperf/j2ee/JMS.htm#JMS111
http://www.theserverside.com/feature/Applying-controltheory-concepts-in-software-applications
http://www.theserverside.com/feature/Applying-controltheory-concepts-in-software-applications
http://en.wikipedia.org/wiki/Single-input_single-output_system
http://en.wikipedia.org/wiki/Single-input_single-output_system
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
http://mljohnson.pharm.virginia.edu/pdfs/174.pdf
http://en.wikipedia.org/wiki/Proportional_control
http://dea.brunel.ac.uk/cmsp/Home_Saeed_Vaseghi/Chapter04-Z-Transform.pdf
http://dea.brunel.ac.uk/cmsp/Home_Saeed_Vaseghi/Chapter04-Z-Transform.pdf
http://itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm
http://activemq.apache.org/
http://openforecast.sourceforge.net/docs/

