
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

184 | P a g e
www.ijacsa.thesai.org

Re-tooling Code Structure Based Analysis with

Model-Driven Program Slicing for Software

Maintenance

Oladipo Onaolapo Francisca (PhD)

Computer Science Department,

Nnamdi Azikiwe University

Awka, Nigeria

Abstract—Static code analysis is a methodology of detecting

errors in program code based on the programmer's reviewing the

code in areas within the program text where errors are likely to

be found and since the process considers all syntactic program

paths; there is the need for a model-based approach with slicing.

This paper presented a model of high-level abstraction of code

structure analysis for a large component based software system.

The work leveraged on the most important advantage of static

code structure analysis in re-tooling software maintenance for a

developing economy. A program slicing technique was defined

and deployed to partition the source text to manageable

fragments to aid in the analysis and statecharts were deployed as

visual formalism for viewing the dynamic slices. The resulting

model was a high-tech static analysis process aimed at

determining and confirming the expected behaviour of a software
system using slices of the source text presented in the statecharts.

Keywords- software maintenance; static analysis; syntactic program

behavior; program slicing.

I. INTRODUCTION

There had been a growing use of static analysis both in
commercial and academic areas in the verification of properties
of software used and locating potentially vulnerable code
in critical sensitive computer systems [1]. Static code
analysis is the analysis of computer software that is performed
without actually executing programs built from that software.
This is in contrast to the analysis performed on executing
programs which is known as dynamic analysis [2]. Empirical
evidence from [3] and [4] showed that software maintenance
consumed between 50% and 80% of the resources in the total
software budget. In addition, according to [5] and [6]; an
estimated 50% to 80% of the time and material involved in
software development is devoted to maintenance of existing
code, hence the main justification for this work was to leverage
on the most important advantage of static code structure
analysis in re-tooling software maintenance for a developing
economy.

The most important advantage of static code analysis lied in
the possibility of considerable cost saving by defects
elimination in a program; this is expected to bring about some
economic benefits to a developing country as technological

innovations were known to do and they can be expected to save
considerable costs in software maintenance. The earlier an
error is determined; the lower the cost of its correction.
According to [7], correction of an error at the testing stage is
ten times more expensive than its correction at the construction
(coding) stage.

This paper presented a model for code structure analysis for
a large component based software system. A program slicing
technique was deployed to partition the code to manageable
fragments to aid in the analysis and statecharts were deployed
as visual formalism to view the dynamism of the static slices.
The model aimed at determining and confirming the expected
behavior of a software system using the source text because
research had shown that during maintenance, the most reliable
and accurate description of the actual behavior of a software
system is its source code [8]. The rest of this paper is organized
as follows: A background to the concepts of static codes
structure analysis and program slicing was presented in section
II; section 3 described the materials and methods adopted in the
research, the resultant models were discussed in section 4 and
the section 5 concluded the paper.

II. RESEARCH BACKGROUND

Identifying errors in software during development is very
important so that the end product can be error free and perform
to its specification. Reference [9] believed that early
identification of bugs in a developing program can be achieved
through the concept of program slicing. Generally, program
slice has a wider spectrum of applications that include
debugging, testing, maintenance, code understanding,
complexity measurement, security etc.

Static analysis is any form of analysis that does not require
a system to be operated. The process complements dynamic
analysis, where system operation is central. When applied to
code, static analysis is typically referred to as white-box, glass-
box, structural or implementation based techniques [10]. In
most cases the analysis is performed on some version of
the source code and in the other cases some form of the object
code. The term is sometimes applied to the analysis performed
by an automated tool, with human analysis being called
program understanding, program comprehension or code

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

185 | P a g e
www.ijacsa.thesai.org

review. Static Analysis is performed without program
execution and the process includes almost everything except
conventional testing. This is because dynamic testing requires
running code, some program properties such as race conditions
are too hard to test for and though it may be impossible to
program correctness, one can easily prove simple properties of
simplified models. Static analysis can be applied earlier in
development because some kinds of defects are hard to find by
testing (e.g., timing-dependent errors) and because testing and
analysis are complementary; each is best at finding different
faults. The sophistication of the analysis performed by tools
varies from those that only consider the behavior of individual
statements and declarations, to those that include the complete
source code of a program in their analysis. Uses of the
information obtained from the analysis vary from highlighting
possible coding errors to formal methods that mathematically
prove properties about a given program [11].

One implementation technique of formal static analysis is
model checking; it includes the consideration of systems that
have finite state or may be reduced to finite state
by abstraction. Data-flow analysis is a lattice-based static
analysis technique for gathering information about the possible
set of values and the abstract interpretation models the effect
that every statement has on the state of an abstract machine. In
this case, the model 'executes' the software based on the
mathematical properties of each statement and declaration. This
abstract machine over-approximates the behaviours of the
system and the abstract system is thus made simpler to analyze,
at the expense of incompleteness since not every property true
of the original system is true of the abstract system. If properly
done, though, abstract interpretation is sound as every property
true of the abstract system can be mapped to a true property of
the original system [12].

The sophistication of the analysis performed by the model
varies from those that only consider the behavior of individual
statements and declarations, to those that include the complete
source code of a program in their analysis. Uses of the
information obtained from the analysis vary from highlighting
possible coding errors to formal methods that mathematically
prove properties about a given program [13]. Static analysis
can find weaknesses in the code at the exact location, it can be
conducted by trained software assurance developers who fully
understand the code and it allows a quicker turn around for
fixes. In addition to all these, it permits weaknesses to be found
earlier in the development life cycle, reducing the cost to fix.

Program slicing was initially proposed to guide
programmers during program debugging, but had been found to
be useful for the process of understanding programs. Dynamic
slicing was used to identify those parts of the program that
contributed to the computation of the selected function for a
given program execution. This can be used to understand
program execution by adopting a commonly used high level
abstraction. Program slicing is the computation of the set of
programs statements, the program slice that may affect the
values at some point of interest, referred to as a slicing
criterion. Program slicing can be used in debugging to locate
source of errors more easily. Other applications of slicing
include software maintenance, optimization, program analysis,

and information flow control. [13]. Slicing techniques have
been seeing a rapid development since the original definition
by Mark Weiser. At first, slicing was only static, i.e., applied
on the source code with no other information than the source
code. Reference [14] introduced dynamic slicing, which
worked on a specific execution of the program; for a given
execution trace. Based on the original definition of [15],
informally, a static program slice S consists of all statements in
program P that may affect the value of variable v at some point
p. The slice is defined for a slicing criterion C=(x,V), where x
is a statement in program P and V is a subset of variables in P.
A static slice includes all the statements that affect variable v
for a set of all possible inputs at the point of interest (i.e., at the
statement x). Static slices are computed by finding consecutive
sets of indirectly relevant statements, according to data and
control dependencies. Dynamic slicing techniques provided a
means to prune unrelated computation, and it may help to
narrow down this part of a program that contributed to the
computation of a function of interest for a particular program
input.

III. MATERIALS AND METHODS

The methodology adopted in the work was a modification
of the Jakstab framework [16]. Jakstab is an Abstract
interpretation-based, integrated disassembly and static analysis
framework for designing analyses on executables and
recovering reliable control flow graphs. In order to make the
framework suitable for the research in this paper, the author
added an extra layer of abstraction to the original framework to
obtain a modified methodology suitable for the task at hand.
While the starting point for the Jakstab framework is binary
source, the approach in this paper performs the analysis on the
program source code.

In addition to the modified Jakstab framework; the
following materials were deployed in building the model-based
high-tech source analysis system.

 A bottom-up dynamic slicing technique was defined in
this work and deployed to obtain a hybrid-tech static
analysis model (Fig. 1). A slice was constituted by an
executable portion of the original program whose
behavior is, under the same input, indistinguishable
from that of the original program on a given variable
‘V’ at point ‘P’ in the program. Reference [13] had
showed that bottom-up program slicing techniques
could be successfully deployed to transform a large
component-based program into a smaller one that
contains only statements relevant to the computation of
a given function.

 Statecharts notations used in [17] were deployed as a
concise visual formalism that captured the dynamic
behaviour of a system in representing program slices in
this work. Illustrated below is a visualization of a login
module Passwd.pas (Fig. 2).

 Goal models- a graph structure representing
stakeholder goals and their inter-dependencies was
deployed to decompose goals into sub-goals through
AND/OR refinements (Fig. 3).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

186 | P a g e
www.ijacsa.thesai.org

Figure 1. Source model-based slicing for static analysis

Figure 2. Sample statechart notation

Figure 3. Patterns to extract goal models from abstract code [17]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

187 | P a g e
www.ijacsa.thesai.org

Figure 4. The model-based high-tech source analysis system

IV. RESULTS AND DISCUSSIONS

This work described a model-based high-tech methodology
for static source analysis which consisted of systematically
using slices of code source models as primary source artifacts
throughout the analysis process (Fig.1). This was because,
though proving program correctness may be wrong at static
analysis phase, it is possible to prove simple properties of
simplified models. The process took as input, the program
source text and generated slices based on slicing criterion.

The knowledge schema at this point comprised of the
knowledge of the syntax and semantics of the programming
language (Fig.4). Low-tech static analysis that involved simple
software inspection and manual checking of simple syntactic
standards were first carried out. This was followed by the high-
tech static analysis that included enforced syntactic checks,
check for conformance with respect to specifications, designs,
and the code data flow analysis. The model was bottom-up and
generated slices were analyzed, refined if necessary and
evaluated. The sum of all analyzed parts (slices) gave the
whole (entire source) at the end of the day which may
eventually become a candidate for analysis at a later time.
Generated slices were represented by statecharts and resolved
into goal models.

The Static analysis model was applied to a real-life legacy
application [13]. A procedural application developed for a
commercial bank in Nigeria prior to the consolidation of the
banking sector in the country was chosen due to its high
availability and statecharts were deployed to show the abstract
description of the behaviour of the source system. Fig. 5
showed the statechart that implemented the login page of the
application, passwd.pas.

Visualizations like the one above (Fig. 5) were built for
different slices of the application and the different
visualizations were combined to obtain a high-level meta-
model that contained the entire description of the original
system (Fig. 6).

The top-level statechart above was converted to an
annotated goal model using the conversion process described

earlier (Fig. 3), all the transitions were converted into goals
using the AND/OR decomposition rules. Some tasks in the
goal model contributed to quality concerns modeled by the
softgoals; for example, “correctPassword” contributed to the
security concern while “ErrorMessage” contributed to the
usability concern (Fig.7).

Figure 5. Sample visualization of the login module using Statechart

V. CONCLUSION

Previous research had showed that the maintenance of
existing software source code consumed up to ¾ of the
resources in the total software budget (time and material), and
that the earlier an error is determined, the lower is the cost of
its correction. In addition, [18] opined that code comprehension
require 47% and 62% of the total time for enhancement and
correction tasks, respectively. The main justification for this
work therefore is to leverage on the most important advantage
of static code structure analysis in re-tooling software
maintenance for a developing economy- cost saving. In this
work, a framework for code structure analysis for a large
component based software system with program slicing was
developed as a re-tooling technique for developing economies
in order to enable an early detection of bugs during a software
development process thereby saving significant costs in
software maintenance.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

188 | P a g e
www.ijacsa.thesai.org

Figure 6. Sample top-level Statechart of the Procedural application

Figure 7. Sample goal model for the application [13]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

189 | P a g e
www.ijacsa.thesai.org

REFERNCES

[1] B. Livshits, “Improving Software Security with Precise Static and

Runtime Analysis” Section 7.3 “Static Techniques for Security,”
Stanford doctoral thesis, 2006. http://research.microsoft.com/en-

us/um/people/livshits/papers/pdf/thesis.pdf

[2] B. A.Wichmann, A. A. Canning, D. L. Clutterbuck, L. A. Winsbarrow,
N. J. Ward, and D. W. R. Marsh, “Industrial Perspective on Static

Analysis,” Software Engineering Journal vol 10, pp. 69-75, March,
1995.

[3] B. W. Boehm, “Software engineering economics,” Prentice-Hall,

Englewood Cliffs, NH, 1981.

[4] C. McClure, “The three Rs of software automation,” Prentical Hall,

Englewood Cliffs, NJ, 1992.

[5] A.F. Ackerman, L. S. Buchwald, and F. H. Lewski. “Software
Inspections: An Effective Verification Process,” IEEE Software, Vol. 6,

No. 3, May 1989, pp. 31-36.

[6] K. Erdos, & H. M. Sneed, "Partial Comprehension of Complex
Programs enough to perform maintenance," Proceedings of the IEEE

Sixth International Workshop on Program Comprehension, June 24 – 26,
1998.

[7] S. McConnell, Code Complete, 2nd ed., Microsoft Press: Paperback,

2004, 914 pages, ISBN: 0-7356-1967-0.

[8] R. Klosch, “Reverse Engineering: Why and How to Reverse Engineer
Software”, Proceedings of the International Conference on

Software Engineering, 2001, pp. 123-132.

[9] K. Thiagarajan, C.Saravanakumar, G. Poonkuzhali, Ponnammal
Natarajan, and S.Jeyabharathi, “Static program slicing for composite

data using FSM-Model,” World Academy of Science, Engineering and
Technology Journal, Issue 32 Aug. 2009, pp. 820-824. Downloaded

December 2011 from http://www.waset.org/journals/waset/v32.php

[10] A. Ireland, “Static Analysis Techniques,” Lecture notes on F28SD2:

“Software Design”, School of Mathematical and Computer Science,
Heriot-Watt University, Edinburgh

[11] Wikipedia the free encyclopedia, “Static Program Analysis,”

Downloaded November 2011 from
http://en.wikipedia.org/wiki/Static_program_analysis

[12] P. Jones, "A formal methods-based verification approach to medical

device software analysis". Journal of Embedded Systems Design, 2010.

[13] O.F. Oladipo, “Software reverse engineering of legacy applications,”

Ph.D. Dissertation Computer Science Department, Nnamdi Azikiwe
University, Awka Nigeria, March 2010, unpublished

[14] B. Korel and J. Laski. “Dynamic program slicing,” Information

Processing. Letters, vol. 29, no 3, pp.155-163, Oct. 1988.

[15] M. Weiser. "Program slicing". IEEE Transactions on Software
Engineering, vol. 10, Issue 4, pages 352–357, IEEE Computer

Society Press, July 1984.

[16] Jakstab Framework homepage http://www.jakstab.org/

[17] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J.
Cesar Sampaio do Prado Leite, “Reverse Engineering Goal Models from

Legacy Code,” In: 13th IEEE International Conference on Requirements
Engineering (RE'05), 29 Aug-2 Sept 2005, Paris, France, Downloaded

October 2009 from www.cs.toronto.edu/~alexei/pub/re05re.pdf

[18] M. L. Nelson, “A Survey of Reverse Engineering and Program
Comprehension,” Lecture notes on CS 551: “Software Engineering

Survey,” Old Dominion University, April 19, 1996, Downloaded
November 2011 from arxiv.org/pdf/cs/0503068

AUTHOR’S PROFILE

Oladipo, Onaolapo Francisca holds a Ph.D in Computer

Science from Nnamdi Azikiwe University, Awka, Nigeria;

where she is currently a faculty member. Her research

interests spanned various areas of Computer Science and

Applied Computing. She has published numerous papers

detailing her research experiences in both local and

international journals and presented research papers in a number of

international conferences. She is also a reviewer for many international

journals and conferences. She is a member of several professional and

scientific associations both within Nigeria and beyond; they include the

British Computer Society, Nigerian Computer Society, Computer

Professionals (Regulatory Council) of Nigeria, the Global Internet

Governance Academic Network (GigaNet), International Association of

Computer Science and Information Technology (IACSIT), the Internet

Society (ISOC), Diplo Internet Governance Community and the Africa ICT

Network.

http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
http://www.waset.org/journals/waset/v32.php
http://en.wikipedia.org/wiki/Static_program_analysis
http://www.jakstab.org/

