
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

49 | P a g e
www.ijacsa.thesai.org

Communication and migration of an embeddable

mobile agent platform supporting runtime code

mobility

Mohamed BAHAJ
Department of Mathematics and Computer Science,

Université Hassan 1er, FSTS, LABO LITEN

Settat, Morocco

Khaoula ADDAKIRI
Department of Mathematics and Computer Science,

Université Hassan 1er, FSTS, LABO LITEN

Settat, Morocco

Noreddine GHERABI

Department of Mathematics and Computer Science,

Université Hassan 1er, FSTS, LABO LITEN

Settat, Morocco

Abstract—In this paper we present the design and the

implementation of Mobile-C, an IEEE Foundation for Intelligent

Physical Agents (FIPA) compliant agent platform for mobile

C/C++ agents. Such compliance ensures the interoperability

between a Mobile-C agent and other agents from heterogeneous

FIPA compliant mobile agent platforms. Also, the Mobile-C

library was designed to support synchronization in order to

protect shared resources and provide a way of deterministically

timing the execution of mobile agents and threads. The new

contribution of this work is to combine the mechanisms of agent
migration and their synchronization.

Keywords- Mobile agent; Mobile agent platform;Agent
communication.

I. INTRODUCTION

Mobile agent is a design program with a persistent identity
which migrates in the network and communicates with its
environment and other agent [1]. It has been applied to a
variety of distributed applications, such as manufacturing [2-4],
electronic commerce [5-7], network management [8, 9], health
care [10], and entertainment [11]. During the execution, mobile
agents can be dynamically created and sent to the destination
systems to perform tasks with the up-to-date code. The
mobility allows mobile agent to migrate from one host to
another in the network and provides a several applications with
flexibility and adaptability that are both able to satisfy the
requirement and condition in a distributed environment.

The importance of Mobile agent technology in the design of
distributed applications on the web has led the OMG (Object
Management Group) to define the specifications MASIF
(Mobile Agent System Interoperability Facility) for
interoperability between different systems to mobile agents.
Another effort is made by FIPA (Foundation for Intelligent
Physical Agents) to specify the architecture and also the
semantics of communication between mobile agents.

The majority of mobile agent platforms in use are Java-
oriented. Multiple mobile agent platforms supporting Java

mobile agent code include Mole [12], Aglets [13], Concordia
[14], JADE [15], and Agents [16]. Using a standard language
like the mobile agent code language that provides both high-
level and low-level functionalities is a good choice to treat with
the large number of distributed applications. The choice of
C/C++ is a proper for a mobile agent code language because
it’s provides powerful functions in terms of memory access.
Furthermore, C is a language which can easily interface with a
variety of low-level hardware devices. Ara [17, 18] and
TACOMA [19] are two mobile agent platforms supporting C
mobile agent code, while Ara also supports C++. Mobile agent
code is compiled as byte code [20] and machine code [21] for
execution in both Ara and TACOMA, respectively.

Mobile-C [22-25] was originally developed as a stand-
alone, IEEE FIPA compliant mobile agent platform to
accommodate applications where low-level hardware is
involved and embedded systems [26]. Most of the systems are
written in C/C++; Mobile-C chose C/C++ as the mobile agent
language because C has an advantage for easy interfacing with
control programs and underlying hardware. Additionally,
Mobile-C integrated an embeddable C/C++ interpreter, Ch [27-
29], as the Agent Execution Engine (AEE) in order to run the
mobile agent code. The migration of mobile agent in Mobile-C
is achieved through FIPA agent communication language
(ACL) messages. Using FIPA ACL messages for agent
migration in FIPA compliant agent systems simplifies agent
platform, reduces development effort and easily achieves inter-
platform migration through well-designed communication
mechanisms provided in the agent platform. Messages for
agent communication and migration are presented in FIPA
ACL and encoded in XML. Also, the Mobile-C library was
designed to support synchronization [26] in order to protect
shared resources and provide a way of deterministically timing
the execution of mobile agents and threads.

In this paper we present the Mobile-C library that can
embed Mobile-C into any C/C++ programs to facilitate the
design of mobile agent-based applications, also the possibility

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

50 | P a g e
www.ijacsa.thesai.org

to combine the migration of the mobile agent over the network
and the synchronization mechanism existing in Mobile-C.
Mobile agents are an application that can control the agent
platform, its modules and other mobile agents, as well as
smoothly interface with a variety of low-level hardware
devices. Using FIPA ACL messages for agent migration in
FIPA compliant agent systems simplifies agent platform since
both agent communication and migration can be achieved
through the same communication mechanism provided in the
agent platform. Flexible synchronization mechanisms have
been added for execution and interaction of several mobile
agents. This paper proposes a new approach by combining two
concept migration and synchronization supports in Mobile-C.

The remainder of the article is structured as follows. In
section 2, we present the concept and the properties of mobile
agent. Section 3 introduces the architecture of Mobile-C.
Section 3 presents the migration of mobile agent over the
network from multiple hosts. Section 4 describes the program
structure and implementation of the component of agency.
Section 5 gives an example of a mobile agent that migrates
from hosts via mobile agent messages and illustrates the
synchronization support in Mobile-C.

II. MOBILE AGENTS

An agent is defined as “person who’s acting on behalf of
other people” [30]. In the context of computer science, mobile
agent is considered as an entity that moves from one machine
to another in the network to perform certain tasks on behalf of
the user [31].

Mobile agents have the following properties which
distinguish them from other programs [32]:

 Adaptability - Mobility of agent required to learn about

user's behavior and adapt it to suit the user. Indeed, to evolve

adequately the differences between heterogeneous systems,

the agent must be able to adopt the changes during the

execution.

 Autonomy- Mobile agent must be able to make his own
decision to be performed to achieve the user's tasks, also he
must be able to migrate from one machine to another in the
network and execute the user's tasks.

 Communication - Mobile agent must have the ability to
communicate with others agents of the system in order to

exchange information and benefit from the knowledge and

expertise of other agents.

 Mobility- Mobile agent has the ability to move from one host

to another, either by moving the agent's code or by serializing

both code and state to allow the agent to continue the

execution in a new context.

 Persistence - A persistent agent it will be able to retain the

knowledge and state over extended period of time to be

accessed later on. Once the mobile agent is set up, it is not

dependent on system that has been initiated and it is
automatically recovered when the agent is terminated or

when it is flushed from memory to the database.

III. THE ARCHITECTURE OF MOBILE-C

The system of mobile-C is shown in figure1. Agencies are
the major building blocks of the system and abode in each node
of a network system in order to support Stationary Agents (SA)
and Mobile Agents (MA) at runtime. They serve for locating
and messaging agents, moving mobile agents, collecting
knowledge about other agents and providing several places
where the agent can be run. The core of an agency provides
local service for agents and proxies remote agencies. The
principle of an agency and their functionalities can be
summarized as follows [33]:

 Agent Management system (AMS): The AMS manages the
life cycle of agents in the system. It relates the creation,
authentication, registration, deletion,execution, migration and
persistence of agents. AMS is also responsible for receiving
and dispatching mobile agent’s .Each agent must register
with an AMS in order to get a valid AID.

 Agent Communication Channel (ACC): The ACC
forwardsmessages between local and remote entities. The
interaction and coordination of mobile agents and host
systems can be performed through agent communication
language (ACL).

 Agent Security Manager (ASM): The ASM is responsible for
protection of access for platform and infrastructure.

 Directory Facilitator: DF serves yellow page services. Agents
in the system can register their services with DF for providing
to the community. They can also look up required services
with DF.

 Agent Execution Engine (AEE): AEE serves as the
workhorsefor mobile agents. Mobile agents must reside
inside an engine to execute. AEE has to be platform
independent in order to support a mobile agent executingin a
heterogeneous network.

SA

Agent Communication Channel(ACC)

Agent

Security

Manager

(ASM)

Agent

Management

System

(AMS)

Directory

Facilitator

(DF)

Agent Execution

Engine(AEE)

 MA

Figure 1. The system architecture of agencies in Mobile-C.

IV. MOBILE AGENT MIGRATION

Mobile agent is a software agent who is able to migrate
from one host to another over the network and resume the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

51 | P a g e
www.ijacsa.thesai.org

execution in the new host. The migration and the execution of
mobile agents are supported by a mobile agent system. In
previous studies, Chen et al. have developed a mobile agent
system called Mobile-C.The Mobile-
C supports weak migration. The task of a mobile agent can
be divided into several subtasks whichcan be executed
in different hosts and listed in a list of tasks as shown in figure
2. The task list can be modified by adding
new subtasks and new conditions. Changing dynamically the
task list improves the flexibility of a mobile agent. Thus,
once we start the execution of a subtask in a host, the mobile
agent cannot move until the end of execution.

Figure 2. Agent migration based on a task list and a task progress pointer.

Mobile agent migration is achieved through ACL mobile
agent messages encoded to XML, which convey mobile agents
as the content of a message. Mobile agent message containsthe
data state and the code of an agent. The data state of mobile
agent include general information about mobile agent as agent
name, agent owner and agent home , also the tasks that mobile
agent will performed on destination hosts. The data state and
code will be wrapping up into an ACL message and transmitted
to a remote host trough Agent Communication Channel.
Mobile agent migration based on ACL messages is simple and
effective for agent migration in FIPA compliant systems
because these systems have mandatory mechanisms for
message communication, transmission and procession.

V. THE PROGRAM STRUCTURE AND IMPLEMENTATION OF

COMPONENT OF AGENCY

An agency is a principle program running in each node of
the network [23]. When the execution of an agency is started,
the system is initialized and threads are created for all of the
components in the agent platform.

After the initialization of the system, the agency waits for
defined events. When the agency receives a request to run a
mobile agent, it creates a new thread and embeds an

Embeddable C/C++ Interpreter – Ch into the thread for
executing mobile agent code. After the mobile agent migrates
to the other hosts, this thread is terminated automatically
(figure 3). If the agency receives a system termination request,
the execution of agent platform and the system itself will be
finished. In the current implementation, each mobile agent runs
in an embeddable Ch inside its own thread.

Figure 3. The program structure of an agency

According to the FIPA specifications, each agency should
provide mechanisms to receive and send messages. This
requirement is satisfied by three components: listening thread,
connecting thread and ACC processing thread as shown in
Figure 4. The listening thread serves to listen for client
connections. When a new connection client is accepted, it will
be added to the connection list. Also, the connecting thread is
responsible for making connections with other hosts. The ACC
processing thread processes the lists of client connections and
requests for connecting remote hosts. The ACC facilitates
remote agent to agent communication and remote agent
platform to agent platform communication via ACL messages.
Remote horizontal communication in Mobile-C is implemented
on top of TCP/IP and the transport protocol uses HTTP
(HyperText Transfer Protocol).

Agent Platform

AMS ASM DF

ACC

Listening
ACC

Processing
Connecting

T
h
r
e
a
d
 1

T
h
r
e
a
d
 2

T
h
r
e
a
d
 3 Thread 4 Thread 5 Thread 6

Figure 4. The multi-thread implementation of an agent platform

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress

Agency 1

MA

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress

Agency 2

MA

Migrate
M

ig
ra

te

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress
Agency n

MA

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

52 | P a g e
www.ijacsa.thesai.org

VI. SYNCHRONIZATION SUPPORT IN MOBILE-C

Amongproperties of mobile agents is the ability to
immigrate to perform tasks that exist in the remote host. The
purpose of this example is to use an embeddable mobile agent
system to protect shared resources by used the synchronization
and combines it with the migration of mobile agents from
hosts.

The Mobile-C library allows synchronization via mutex.
The mutex is a program that allows multiple threads to share
the same resource, but not simultaneously.

The example below demonstrates the capabilityof a Mobile-
C mutex to protect a resource that may be shared between two
or more agents in several hosts. As shown in program 1, a
mobile agent is transferred by an agency in the host fsts1 visits
remote host fsts2 then host fsts3 .The mobile agent message is
represented in Extensible Markup Language (XML), it contains
information of the mobile agent and tasks that will be
performed on destination hosts. The general information of a
mobile agent contains:agent name, agent owner, and the home
of the agent. The task information for example the statement
<TASK task=“2” num=“0”> shows that this mobile agent has
two tasks to perform and no task has been done yet.The DATA
element overall information about the number of element, the
name of the task’s return variable, the completeness of the task
and the host to perform the task.The sub-element DATA
ELEMENT contains the return data from the execution task
and the sub-element AGENT_CODE contains a C program
which will be executed in remote host.

<NAME>mobileagent</NAME>
<OWNER>fsts</OWNER>

<HOME>fsts1.fsts.ac.ma:5125 </HOME>

<TASK task= "2" num= "0">

<DATA number_of_elements ="0" name = "results_fsts2"

complete = "0" server = "fsts2.fsts.ac.ma:5138">

<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

Mobile agent code on fsts2

</AGENT_CODE>

</DATA>

<DATA number_of_elements ="0" name = "results_fsts3"
complete = "0" server = "fsts3.fsts.ac.ma:5135">

<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

Mobile agent code on fsts3

</AGENT_CODE>

</DATA>

</TASK>

Program 1: The content of the mobile agent message from the host fsts1 to

fsts2 and to host fsts3

As shown in Program2, the mobile agent 1” MA1”
initialize a mutex with an ID 55 via the function mc_SyncInit()
and defines two functions, SetN1() and GetN1() in the host
fsts2 . After visiting this host, the mobile agent 1 “MA1” visits
the host fsts3 and defines also two functions, SetN2() and
GetN2().The result obtained from the host fsts2 is sent to the
host fsts3 and the return data will be included in the sub-
element DATA_ELEMENT.

<NAME>MA1</NAME>

<OWNER>fsts</OWNER>

<HOME> fsts1.fsts.ac.ma:5125 </HOME>

<TASK task= "2" num= "0">

<DATA number_of_elements ="0" name = "results_fsts2"

complete = "0" server = "fsts2.fsts.ac.ma:5138">
<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

<![CDATA[

int N1;

int main () {

intmutex_id=55;

mc_SyncInit(mutex_id);

return 0;

}

void SetN1(inti){

N1 +=i;

if(N1 > 1000){
N1=0;

}

}

intGetN(){

return N

}

]]>

</AGENT_CODE>

</DATA>

<DATA number_of_elements ="0" name = "results_fsts3"

complete = "0" server = "fsts3.fsts.ac.ma:5135">
<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

<![CDATA[

int N2;

int main () {

intmutex_id=55;

mc_SyncInit(mutex_id);

return 0;

}

void SetN2(inti){

N2*=i;

if(N2 > 1000){
N2=0;

}

}

intGetN(){

return N2

}

]]>

</AGENT_CODE>

</DATA>

</TASK>

Program2 .A mobile agent that contains a global variable and defines function

to access the global variables

As shown in Program 3, the task of the mobile agent
2“MA2” is to perform the operation setting the variable. The
operation includes locking the mutexthrough the function
mc_MutexLock(), setting the global variable by calling

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

53 | P a g e
www.ijacsa.thesai.org

SetN1() from the host fsts2 and SetN2()from the host fsts3via
the function mc_CallAgentFunc(), and unlocking the mutex via
the function mc_MutexUnlock().

<NAME>MA2</NAME>
<OWNER>fsts</OWNER>

<HOME> fsts1.fsts.ac.ma:5125 </HOME>

<TASK task= "2" num= "0">

<DATA number_of_elements ="0" name = "results_fsts2"

complete = "0" server = "fsts2.fsts.ac.ma:5138">

<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

<![CDATA[

#include <stdio.h>

int main (){

MCAgent_t agent;

inti= 0,mutex_id =55 ,retval;
agent= mc_FindAgentByName("MA1");

wile(1){

mc_MutexLock(mutex_id);

mc_CallAgentFunc(agent,"SetN1",NULL,i);

printf("N1:%d\n",retval);

mc_MutexUnlock(mutex_id)

i++;

if(i==20) {

i=0;

 }

}
return 0;

]]>

</AGENT_CODE>

</DATA>

<DATA number_of_elements ="0" name = "results_fsts3"

complete = "0" server = "fsts3.fsts.ac.ma:5135">

<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

<![CDATA[

#include <stdio.h>

int main (){
MCAgent_t agent;

inti= 0,mutex_id =55 ,retval;

agent= mc_FindAgentByName("MA1");

wile(1){

mc_MutexLock(mutex_id);

mc_CallAgentFunc(agent,"SetN2",NULL,i);

printf("N2:%d\n",retval);

mc_MutexUnlock(mutex_id)

i++;

if(i==20) {

i=0;

 }
}

return 0;

]]>

</AGENT_CODE>

</DATA>

</TASK>

Program3. A mobile agent that sets a variable

Likewise, as shown in Program 4, the task of the mobile
agent 3“MA3” is locks the mutex, get the global variable, and
unlocks the mutex from both the host fsts2 and fsts3

<NAME>MA3</NAME>
<OWNER>fsts</OWNER>

<HOME> fsts1.fsts.ac.ma:5125 </HOME>

<TASK task= "2" num= "0">

<DATA number_of_elements ="0" name = "results_fsts2"

complete = "0" server = "fsts2.fsts.ac.ma:5138">

<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

<![CDATA[

#include <stdio.h>

int main (){

MCAgent_t agent;

inti ,mutex_id =55 ,retval;
agent= mc_FindAgentByName("MA1");

mc_MutexLock(mutex_id);

mc_CallAgentFunc(agent,"GetN",&retval,NULL);

printf("N1:%d\n",retval);

mc_MutexUnlock(mutex_id)

return 0;

]]>

</AGENT_CODE>

</AGENT_CODE></DATA>

<DATA number_of_elements ="0" name = "results_fsts3"

complete = "0" server = "fsts3.fsts.ac.ma:5135">
<DATA_ELEMENT></ DATA_ELEMENT >

<AGENT_CODE>

<![CDATA[

#include <stdio.h>

int main (){

MCAgent_t agent;

inti ,mutex_id =55 ,retval;

agent= mc_FindAgentByName("MA1");

mc_MutexLock(mutex_id);

mc_CallAgentFunc(agent,"GetN",&retval,NULL);

printf("N2:%d\n",retval);
mc_MutexUnlock(mutex_id)

return 0;

]]>

</AGENT_CODE>

</DATA>

</TASK>

Program4. A mobile agent that gets a variable from another agent.

The results of the mobile agent 1”MA1”, mobile agent 2
“MA2” and mobile agent3 “Ma3” obtained from both the host
fsts2 and fts3 are send back to the home agency fsts.

VII. CONCLUSION

 In this work we present the design and implementation of
an IEEE FIPA compliant agent platform, Mobile-C. Mobile-C
integrates an embeddable C/C++ interpreter—Ch—into the
platform as a mobile agent execution engine in order to support
mobile agent. The migration of mobile agent is achieved
through ACL messages. Mobile agents, including both its data
state and code, are transported to a remote agent platform via

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

54 | P a g e
www.ijacsa.thesai.org

ACL messages which is encoded in XML, and the execution of
mobile agents is resumed by the task progress pointer. The
Mobile-C library supports the synchronization among mobile
agents and threads because the synchronization functions
protect shared resources and provide a way of deterministically
timing the execution of mobile agents and the migration to a
remote host.

In our future work, this framework will be tested and
extended in various types of industrial applications like e-
commerce and network management.

ACKNOWLEDGMENT

The authors thank the referees for valuable constructive
comments and suggestions which lead to a significant
improvement of this paper.

REFERENCES

[1] D.Chess,C.Harrison, A.Kershenbaum,“Mobile Agentes: Are They a

Good Idea?”, IBM ResearchReport, 1998 [Online] Available :
http://www.research.ibm.com/iagentes/paps/mobile -idea.ps.

[2] W. Shen, D. Xue, D.H. Norrie, An agent-based manufacturing enterprise

infrastructure for distributed integrated intelligent manufacturing
systems, in: Proceedings of the 3rd International Conference on the

Practical Applications of Agents and Multi-Agent Systems (PAAM-98),
London, UK, 1998, pp. 533–548.

[3] H. Wada, S. Okada, An autonomous agent approach for manufacturing

execution control systems, Integrated Computer-Aided Engineering 9 (3)
(2002) 251–262.

[4] H.V.D. Parunak, A.D. Baker, S.J. Clark, The AARIA agent architecture:

from manufacturing requirements to agent-based system design,
Integrated Computer-Aided Engineering 8 (1) (2001) 45–58.

[5] M. Yokoo, S. Fujita, Trends of internet auctions and agent-mediated web

commerce, New Generation Computing 19 (4) (2001) 369–388.

[6] T. Sandholm, eMediator: a next generation electronic commerce server,
Computational Intelligence 18 (4) (2002) 656–676.

[7] S.P.M. Choi, J. Liu, S. Chan, A genetic agent-based negotiation system,
Computer Networks: The International Journal of Computer and

Telecommunications Networking 37 (2) (2001) 195–204.

[8] W.E. Chen, C. Hu, A mobile agent-based active network architecture for
intelligent network control, Information Sciences 141 (1–2) (2002) 3–35.

[9] L. Chou, K. Shen, K. Tang, C. Kao, Implementation of mobile-agent-

based network management systems for national broadband
experimental networks in Taiwan, Holonic and Multi-Agent Systems for

Manufacturing (Lecture Notes in Computer Science) 2744 (2003) 280–
289.

[10] J. Huang, N.R. Jennings, J. Fox, Agent-based approach to health care

management, Applied Artificial Intelligence 9 (4) (1995) 401–420.

[11] I. Noda, P. Stone, The RoboCup soccer server and CMUnited clients:
implemented infrastructure for MAS research, Autonomous Agents and

Multi-Agent Systems 7 (1–2) (2003) 101–120.

[12] K.Straber, J.Baumann and F.Hohl.. Mole - A Java Based Mobile Agent
System. Institute for Parallel and Distributed Computer Systems,

University of Stuttgart,1997

[13] D. Lange, M.Oshima. Programming and Deploying Java Mobile Agents

with Aglets. Addison-Wesley: MA, 1998.

[14] D.Wong, N.Paciorek, T.Walsh, J.DiCelie, M.Young, B.Peet. Concordia:

An infrastructure for collaborating mobile agents. Proceedings of the
First International Workshop on Mobile Agents (MA’97) (Lecture Notes

in Computer Science, vol. 1219). Springer: Berlin, 1997; 86–97.

[15] F.Bellifemine, G.Caire, A.Poggi, G.Rimassa.JADE: A software

framework for developing multi-agent applications.Lessons learned.
Information and Software Technology 2008; 50(1–2):10–21.

[16] R.Gray, G.Cybenko, D.Kotz,R.Peterson, D.Rus. D’Agents: Applications

and performance of a mobile-agent system. Software—Practice and
Experience 2002; 32(6):543–573.

[17] H.Peine. Run-time support for mobile code. PhD Dissertation,

Department of Computer Science, University of Kaiserslautern,
Germany, 2002.

[18] H.Peine .Application and programming experience with the Ara mobile

agent system. Software—Practice and Experience 2002; 32(6):515–541.

[19] D.ohnansen, K.Lauvset, R.V.Renesse, F.B. Schneider, N.P. Sudmann,
K. Jacobsen. A TACOMA retrospective.Software—Practice and

Experience 2002; 32(6):605–619.

[20] MACE—Mobile agent code environment. Available at:
http://wwwagss.informatik.uni-kl.de/Projekte/Ara/mace.html [last

modified 10 August 2004].

[21] N.P.Sudmann,D.Johansen. Adding mobility to non-mobile web robots.

Proceedings of the IEEE ICDCS00 Workshop on Knowledge Discovery
and Data Mining in the World-wide Web, Taipei, Taiwan, 2000; 73–79.

[22] B.Chen, H.H.Cheng. A run-time support environment for mobile agents.

Proceedings of ASME/IEEE International Conference on Mechatronic
and Embedded Systems and Applications, No. DETC2005-85389, Long

Beach, CA, September 2005.

[23] B.Chen,H.H.Cheng,J.Palen. Mobile-C: A mobile agent platform for
mobile C/C++ agents. Software—Practice and Experience 2006;

36(15):1711–1733.

[24] B.Chen, D.Linz, H.H.Cheng. XML-based agent communication,
migration and computation in mobile agent systems. Journal of Systems

and Software 2008; 81(8):1364–1376.

[25] Mobile-C: A multi-agent platform for mobile C/C++ code. Available at:
http://www.mobilec.org.

[26] Y.C. Chou, D. Ko, H. H. Cheng, An embeddable mobile agent platform

supporting runtime code mobility,interaction and coordination of mobile
agents and host systems, Information and Software Technology 52

(2010) 185–196

[27] H.H.Cheng. Scientific computing in the Ch programming language.

Scientific Programming 1993; 2(3):49–75

[28] H.H.Cheng.Ch: A C/C++ interpreter for script computing. C/C++ User’s
Journal 2006; 24(1):6–12.

[29] Ch—An embeddable C/C++ interpreter. Available at:

http://www.softintegration.com .

[30] P.M .Reddy, Mobile Agents Intelligent Assistants on the Internet, July
2002

[31] A. Kaur , S.Kaur, Role of Mobile Agents In Mobile Computing,

Proceedings of National Conference on Challenges & Opportunities in
Information Technology (COIT-2007) RIMT-IET

[32] M. L. Griss, Software Agents as Next Generation Software Components,

Chapter 36 in Component-Based Software Engineering: Putting the
Pieces Together, Edited by George T. Heineman, Ph.D. & William

Councill, M.S., J.D., May 2001,Addison-Wesley

[33] B. Chen, H. H. Cheng, J.Palen, Integrating mobile agent technology with

multi-agent systems for distributed traffic detection and management
systems, Transportation Research Part C 17 (2009) 1–10

http://www.research.ibm.com/iagentes/paps/mobile%20-idea.ps

