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Abstract— Detection  of distributed predicates  (also  referred to 

as runtime verification)  can be used to verify that  a particular  

run  of a given distributed program satisfies certain  properties  

(represented  as  predicates).  Consequently,   distributed 

predicates   detection   techniques can   be used to effectively 

improve the dependability of a given distributed application. 

Due to concurrency, the detection of distributed predicates can 

incur significant overhead.   Most  of  the  effective  techniques 

developed  to  solve  this  problem  work  efficiently  for  certain  

classes of predicates,  like conjunctive  predicates.  In this paper, 

we have  presented  a  technique  based  on  harmony search  to 

efficiently detect the satisfaction  of a predicate  under  the 

possibly  modality.  We have implemented the proposed 

technique and we have conducted several experiments to 

demonstrate its effectiveness. 

Keywords- Distributed Systems;  Detection   of   Distributed 

Predicates; Runtime Verification; Harmony  Search; Testing; 

Debugging. 

I. INTRODUCTION 

The design and construction of dependable distributed 
applications is not an easy task. Several techniques have 
been used in the literature to improve the dependability of 
distributed applications. Detection of distributed predicates 
(runtime verification) is one of the techniques that have 
attracted a great deal of attention in this regard [1], [2], [3], 
[4], [5], [6].  

Runtime verification techniques can be used to verify 
whether a given run of a distributed application satisfies 
certain properties or not. Figure 1 depicts the runtime 
verification environment [7]. 

Runtime verification can be used to verify a particular 
implementation rather than verifying a model of the appli- 
cation as is done in model checking. Moreover, in runtime 
verification, the properties to be verified can be formally 
specified, i.e. using temporal logic. Consequently, runtime 
verification is considered more powerful than traditional 
testing in this regard [1], [7]. 

In addition to runtime verification, detecting distributed 
predicates has several applications. The followings are some 
of these applications: 

a) Detection of when a distributed computation enters 

a stable state. This involves the detection of a condition 

which once becomes true, remains true indefinitely. For 

example, termination detection and deadlock detection. 

b) Testing and  debugging of distributed programs.  

Any condition that must be true in a correct run of a 

distributed application can be specified and then its oc- 

currence can be verified. For example, when debugging a 

distributed mutual exclusion algorithm, it is useful to  

monitor the  system to  detect concurrent accesses to the 

shared resources. Another example is detecting the presence 

of multiple leaders in distributed leader election. 

c) Identifying bottlenecks. For example, detecting 

posi- tions during a run of a distributed application where 

more than n processes from some set are simultane- ously 

blocked. 

Concurrency in distributed applications makes the detec- 
tion of distributed predicates a very hard and expensive task. 
Consequently, several techniques have been introduced in the 
literature to reduce the cost of detecting distributed predicates 
[7], [1], [8]. A brief review of these techniques will be 
presented in Section III. However, most of these techniques 
work well for only certain classes of predicates. It has been 
proved that the problem of verifying whether a run of a 
distributed program satisfies certain predicate or not is, in 
general, an NP-complete problem [1]. 

In this paper, we exploit harmony search in developing 
a more powerful technique to detect distributed predicates. 
This technique can work efficiently for predicates under the 
possibly modality (a predicate under the possibly modality is 
evaluated to true if it is true in at least one global state [1]). 
Harmony search is a popular evolutionary algorithm that 
can be used effectively to solve problems with exponential 
size search space (as it is the case in distributed predicates’ 
detection). 

The remainder of this paper is organized as follows. In 
section II, we present a formal model of a run of a distributed 
program.  We discuss other related works in section III. A 
brief introduction to harmony search is provided in section 
IV. We present the proposed algorithm in section V. Section 
VI presents the experimental results. Finally, we conclude 
our work in section VII. 
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Figure1.    Runtime verification environment. 

II. MODEL AND PROBLEM DEFINITION 

A distributed program consists of n processes denoted 
by P0 , P1 , ..., Pn−1 and a set of unidirectional channels. An 

event is the result of executing a statement in a distributed 
program. An event can be computational event or message 
event (send/receive). Events are related by their execution 
order in a process and/or message send/receive relations 

across processes. The happened-before relation (→) defined 

by Lamport in [9] applies to all events executed. 

 

Definition 1:  A run of a distributed program is an event 

structure <E, →>, where E is the set of events executed, and (

→) is the happened-before relation among the events in E. 

The space-time diagram shown in Figure 2 depicts a run 
of a distributed program involving three processes. Time is 
represented in the horizontal direction and space in the 
vertical direction. Events are shown as circles in the space- 

time diagram. Event eij is the j th event of process Pi. A 

directed edge is used to link every send event with the 
corresponding receive event. 

The happened-before relation → is a partial order relation 

on the set of events of any run of a distributed application. 

eij    → ekl  if and only if there is a directed path in  the 

corresponding space-time diagram from event eij   to event 
ekl . If two events eij and ekl are not related by the happened- 
before relation, we say that they are concurrent events 

(denoted by eij ║ ekl). For example, in Figure 2, e01 ║e21 

because ¬(e01  → e21 ) and ¬(e21  → e01 ). 

A consistent cut C of a run <E, →> is a finite subset of E 

(C ⊆ E) such that if eij ∈ C and ekl → eij   then ekl ∈ C 

. The dotted line shown in Figure 2 represents a consistent 

cut C1 ={ e01 , e11}. Every consistent cut corresponds  to a 

global state of the distributed application represented by 
the values of the program variables and channels states 
attained upon the completion of the execution of the events 
in that consistent cut. The set of global states of a given 
run endowed with set union and set intersection operations 
forms a distributive lattice, referred to as the state lattice 
[10]. 

Figure 3 depicts the state lattice associated with the run 
depicted in Figure 2. Each global state can be labeled by the 
most recent event executed in each process upon reaching 
it.  For  example,  (e01 , e13 , e22 )  is  the  state  reached  after 

executing event e01   in P0 , event e13   in P1   and event e22  in 

P2 . Using the state lattice, we can verify whether a run of a 

given distributed program satisfies the necessary properties 
or not (Distributed Predicates Detection). 

A predicate is called distributed predicate if the variables 
involved in expressing the predicate belongs to more than 
one process. Consequently, the evaluation of a distributed 
predicate requires the collection of information from several 
processes. A predicate that involves variables of a single 
process is called local predicate. 

possibly: φ is true if the predicate φ is evaluate to true in 
at least one global state in the state lattice. definitely: φ is 
true if, for all paths from the initial global state to the final 
global state, φ is true in at least one global state along that 
path [11], [12]. In this paper, we will consider predicates 
under the possibly modality. 

The difficulty of the detection of a distributed predicate 
is due to the following characteristics of a distributed appli- 
cation [1]: 

1) There is no global clock in a distributed 
application. Consequently, the events of a given run of a 
distributed application can only be partially ordered. 

2) The processes of a distributed application do not have 
shared memory. As a result, collecting the information 
necessary to detect a predicate will incur significant message 
overhead. 

3) In any distributed application, there will be several 
processes running concurrently. As a result, the number of 
global tates that must be considered to detect a predicate 
will be exponential in number of processes. 

In fact it has been proved that it is, in general, NP- 
complete  to  detect  a  distributed  predicate in  a  run  of  a 
distributed application [1]. The next section is dedicated to 
explore the techniques presented in the literature to detect a 
predicate in a run of a given distributed application.
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Figure2.    A space-time diagram corresponding to a run of a distributed program. 
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Figure 3.    The state lattice corresponding to the run shown in Figure 2. 

III. RELATED WORKS 

Three main approaches have been presented in the litera- 
ture to detect a predicate in a run of a distributed application. 
The first approach exploits the global snapshot algorithm 
proposed by Chandy and Lamport [13], [14], [15]. In this 
approach, a global state of a run is captured and the predicate 
to be detected is evaluated on it, if the predicate is evaluated 
to false, another global state will be captured. This process 
will continue until we found a global state satisfying the 
desired predicate. This approach is applicable for stable 
predicates (once they become true they will not turn false). 

The second distributed predicates detection approach was 
proposed by Cooper and Marzullo [11]. This approach can 
be used to detect both stable and unstable predicates. It 
can  be  used  to  detect  possibly: φ and definitely: φ. 
However, the detection is very expensive because it requires 

the construction of the entire state lattice and exploring mn 

global  states  in  the  worst  case,  where  n  is  the  number 
of processes and m  is the number of local states in each 
process. 

To avoid the construction of the state lattice, the third 
detection approach exploits the structure of the predicate to 
identify a subset of the global states, such that if the predi- 
cate is true, it must be true in one of the states in this subset. 
This approach is not as general as the second approach, 
but it can be used to develop more efficient algorithms for  

 

certain classes of predicates. Garg and Waldecker [5], [6] 

have proposed algorithms of complexity O(n2 m)  to detect 
possibly : φ and definitely : φ when φ is a conjunction of 
local predicates. 

Several techniques have been introduced in the literature 
to reduce the cost of detecting a predicate. Computation 
slicing is one of these techniques. It was introduced in [16], 
[17], [18], [19] as an abstraction technique for analyzing 
distributed computations (finite execution traces). A compu- 
tation slice, defined with respect to a distributed predicate, 
is the computation with the minimum number of global 
states that contains all global states satisfying the predicate. 

Computation slicing can be used to eliminate the 
irrelevant global states of the original computation, and keep 
only the states that are relevant for our purpose. In [19], 
Mittal and Garg proved that a slice exists for all global 
predicates. However, it is, in general, NP-complete to 
compute the slice. They developed efficient algorithms to 
compute slices for special classes of predicates. 

Lamport has presented a theorem on atomicity to simplify 
verification of distributed and parallel systems [20]. Accord- 
ing to this theorem, a sequence of statements in a distributed 
program can be grouped together to form an atomic action 
under some stated conditions. An atomic action can receive 
information from other processes, followed by at most
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one externally visible event (for example, changing the value 
of a variable involved in one of the properties to be verified) 
before sending information to other processes. Based on this 
theorem, a distributed program can be abstracted and hence 
the cost of verifying it can also be reduced. 

In  [21],  [22],  [23],  the  authors  have  formally  defined 
the notion of atomic actions in message-passing distributed 
programs. They have exploited the atomicity concept in 
reducing the state space to be considered in runtime ver- 
ification of message-passing distributed programs. 

In this paper, we exploit harmony search in developing a 
general and at the same time efficient detection algorithm 
of distributed predicates under the possibly modality. In the 
following two sections we will present a brief introduction 
to harmony search and we will present the details of our 
proposed detection algorithm. 

IV. INTRODUCTION TO HARMONY SEARCH 

Harmony Search (HS) is metaheuristic algorithm (also 
known as an evolutionary algorithm) that emulates the 
improvisation behavior of musicians [24]. In the music 
improvisation process, each musician (decision variable) 
plays (generates) a note (value) for finding a best harmony 
(global optimum). HS can handle discrete variables [25] as 
well as contin- uous variables [26], [27]. It has been 
successfully applied to a wide variety of both discrete and 
continuous practical optimization problems such as game 
scheduling problems [28], [29], clustering problems [30], 
timetabling problems [31], and structural design [32]. 

The HS algorithm consists of the following main steps 

[24]: 
 

Step 1. Initialization of the optimization problem and 
algo- rithm parameters: 

In this step, the optimization problem is characterized as 
a function f to be optimized (minimize or maximize). Addi- 
tionally, the control parameters of the Harmony Search are 
specified in this step including: the Harmony Memory Size 
(HMS); Harmony Memory Consideration Rate (HMCR); 

Pitch Adjusting Rate (PAR); and the stop criterion 
(i.e. Number of Improvisations (Iterations)). 

Step 2. Harmony Memory (HM) initialization: 

As shown in (1), the HM composed of HMS (Harmony 
Memory Size) candidate solutions with N decision 

variables 

xi    =  [xi
1 , . . . , xi

N  ],  i   ∈   {1, . . . , H M S}.  The objective 

function f in (1) measures the solution quality. 

 
In this step, the HM is randomly initialized within the 

solution space. 

Step 3. New Harmony improvisation: 

In   this   step,   a   new   harmony   vector xnew = (x
1
new,  

x
2
new, …, x

N
new) is generated based on three operators: (1) 

memory consideration, (2) pitch adjustment, and (3) random 
selection. 

Step 4. Harmony memory update: 

In this step, the objective function value is evaluated for 
the vector xnew to determine if the new harmony should be 

included in the harmony memory. If the new harmony vector 
is better than the worst harmony in the HM, then the worst 
harmony is replaced with the new harmony. 

Step  5. Repetition of Steps 3 and 4 until the 
termination criterion is satisfied: 

Steps 3 and 4 will be repeated until the stop criterion is 
satisfied (i.e. maximum number of improvisations). 

V. THE USE OF HS FOR DETECTING DISTRIBUTED 

PREDICATES 

In this section, we will present an approach based on HS 
that can be used to detect Possibly: P for any predicate P 
As we have shown earlier, there are some approaches that 
can efficiently detect Possibly: P for certain classes of 
predicates P , like conjunctive predicates. However, there is 
no efficient approach that can be used to detect Possibly: P 
for any predicate P. This is due to the fact that the number 
of global states to be considered in detection is exponential 

(mn global states in the worst case, where n is the number 
of processes and m is the number of local states in each 
process). Harmony search can be used in this case to provide 
a powerful general solution in such a case where the search 
space size to be considered is exponential. 

The algorithms developed to detect distributed predicates 
can be online or offline. Online detection works during the 
execution of the application, and hence it may change the 
behavior of the application in unexpected manner. However, 
it  has  the  advantage  of  avoiding  the  need  to  keep  very 
large trace files as it is the case in offline detection. Offline 
detection collects the necessary information at runtime and 
later analyzes it to decide whether a given predicate has been 
satisfied during the execution or not. Offline detection does 
not have a strong impact on the behavior of the application 
under consideration. However, it requires the collection of 
very large trace files. 

In this paper we are adopting the offline approach. In 
fact the use of harmony search fits more appropriately with 
the offline approach due to the fact that harmony search 
operators investigate global states in the whole search space 
randomly and does not investigate global states in the order in 
which they may appear during the execution of a given 
distributed application. 

Now we will describe the details of the harmony search 
algorithm used in our solution. We will start with the 
representation of a run of a distributed program that the 
harmony search algorithm can manipulate. We assume that 
the algorithm to be developed wants to detect the predicate 

Possibly: P where P is the predicate x0 +x1 +· · ·+xn−1  = c 

where xi  is a variable of process Pi  and c is a  constant. 
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There is no algorithm presented in the literature to efficiently 
detect this predicate [1]. 

We  will  assume  that  each  process  is  instrumented  to 
collect at runtime the local states that may affect the desired 
predicate  along  with  their  vector  clock  timestamp  (The 
vector clock is a very well known technique to assign 
timestamps to the events of a run of a given distributed 
program [10], [33]). Consequently, each process Pi will have a 

trace file of the form 

Val1 , timestamp1 

Val2 , timestamp2 

. 

. 

. 

Valm , T imestampm 

Where Valj is the value of variable xi of process Pi in 

the local state number j. T imestampj is the vector clock 
time stamp of local state j. For example, if we have the run 
shown in Figure 4 (a) and we want to detect the  predicate 
x + y + z = 2, then the trace files of these processes will be 
as shown in Figure 4 (b). Each trace file contains a list of all 
local states that may be part of a global state that satisfies 
the desired predicate in the given run. The local state of a 
process Pi involves the value of the variables involved in the 

predicate of interest and the vector clock time stamp of the 
local state. For example, the first local state of process P0   is 

0, (1, 0, 0). This means that the value of variable x (which 
is one of the variables involved in the predicate of interest) 
at this local state is zero and the vector clock time stamp of 
this local state is (1, 0, 0). 

Assuming that we have n processes we will have n trace 
files. The size of each of them is linear with respect to the 
number of events executed by each corresponding process. 
These files will represent the input to the HS algorithm that 
will be used to detect the above mentioned predicate. The 
contents of these files can be changed to include additional 
information if we want to detect other types of predicates. For 
example, if the predicate of interest involves two or more 
variables of process Pi , then the values of these variables 

has to be added to each local state in the trace file of Pi . 

Now we will move to the details of the harmony search al- 
gorithm itself starting with the representation of the harmony 
memory (HM) to be used. The HM is a two dimensional 
array where each row represents a solution of the problem 
under consideration along with its fitness (quality). In our 
problem (Distributed predicates detection), each row in the 
HM represents a global state of the distributed application 
under consideration. Consequently, each row will have n 
local states (one from each process) such that all of the local 
states form a global state of the application. Each global state 
in the HM is a candidate solution for our problem which is 
mainly finding a global state that satisfies the predicate to 
be detected. Moreover, the last element of each row contains 
the fitness of the solution encoded in that row. 

In our example, where we have the run shown in 
Figure4 (a) and we want to detect the predicate x + y + z 

= 2, the HM can have the form shown in Figure 4 (c) where 
the size of it is HMS and each row represents a global 
state along with its fitness. Each element in column i is a 
local state of process Pi   taken from its trace file. For 

example, the element HM[0][0] shown in Figure 4 (c) is one 
of the local states of process P0   taken from its trace file 

shown in Figure 4 (b). 

HS operators may result in solutions that do not represent 
global states due to the fact that the cuts represented by 
the resulting chromosomes are not consistent. This problem 
can be solved by increasing the fitness of such solutions 
(solutions with small fitness value are better than others with 
larger fitness value). In our algorithm we will assign the 
value of 9999999 as the fitness value for any chromosome 
that does not represent a global state. 

Now we will move to the most important step in our 
algorithm, namely, the design of the fitness function. In fact 
all of the above steps in the algorithm will be identical for 
any predicate under consideration. The only difference 
between the algorithms to detect two different predicates 
is in the fitness function. This is considered as a strong 
side in HS. More precisely, HS algorithms are more general 
than other algorithms in the sense that they can be used to 
detect any predicate with small modifications on the fitness 
function. There is no need to develop a tailored algorithm 
to efficiently detect each type of predicates. 

The fitness function has to evaluate each possible solution 
in the HM and assign to it a fitness value indicating whether 
the solution is close to the optimal solution or not. In our 
example, the value assigned by the fitness function to each 
solution will indicate whether the global state represented 
by the solution satisfies the predicate of interest or not, and 
if it does not satisfy the predicate, how close it is to the 
values that can satisfy the predicate. 

The fitness function will first check whether the solution 
represents a global state or not (consistent cut), if the 
chromosome does not represent a global state then the fitness 
value assigned to it will be 9999999 indicating that this 
solution  cannot represent a  global state  that  satisfies the 
predicate. Otherwise the fitness function will assign a fitness 
value to the solution according to the following formula: 

F itness = x0  + · · · + xn−1 − c 

For example the fitness of the solution presented in HM[0] 

in Figure 4 (c) is 0 + 2 + 2 − 2 = 2 

Consequently, when the solution satisfies the predicate its 
fitness value will be 0. When the algorithm finds a global 
state that satisfies the predicate, it will terminate directly 
since we are looking for the predicates under the possibly 
modality. 

To avoid keep running the algorithm forever in cases 
there is no global state satisfying the predicate in the run 
under consideration, we can also fix the maximum number 
of iterations the HS algorithm can go through. However, it 
is better to choose a large enough bound on the number of 
iterations depending on the complexity of the predicate, the 
number of processes, and the length of the trace files. The 
larger the number of processes and trace files the larger the 
number of iterations that need to be considered. 
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Figure 4.    An example to demonstrate the use of HS in detecting distributed predicates. 

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In this section we will give more details about the 
implementation of the proposed HS-based distributed pred- 
icates detection algorithm. Moreover, we will present some 
experimental results. We have implemented our algorithm 
using Java pro- gramming language. We assume that the 
algorithm to be developed wants to detect the predicate 

Possibly : P  where P  is the predicate (x0   + · · · + xn−1  

= c) where xi   is  a variable of process Pi  and c is a 

constant. We assume that we have n processes. In the 
previous section we have described the fitness function used 
in our example. Other parts of the HS algorithm can be 
implemented in a general manner and can be used in 
detecting any other predicate. The only thing that has to be 
changed if we want to detect other predicates is the fitness 
function. 

We have executed our algorithm on a computer with Intel 
Core 2 Duo CPU, 2.4GHz with 2GB of RAM. We have 
executed the algorithm on a trace of a distributed application 
that involves 25, 50, and 75, processes where each process 
has executed 1000, 2000, 3000 events in each run. We have 
set the parameters of the HS as follows (HMS = 10, HMCR 
= 0.9 and PAR = 0.4). The results are summarized in Table 
1. For example, given a run that involves 75 processes where 
each process has executed 3000 events, the algorithm was 

able to detect the predicate x0  + x1  + · · · + x74   = 67 after 

88457221 iterations and the total time required to detect the 
predicate was 1687.125 seconds. 

The other general approach that can be used to detect 
any predicate under the possibly modality is to construct the 

entire state lattice and to test the global states in it one by one 
until we reach a global state where the predicate of interest is 

satisfied. This approach requires exploring mn global states 
in the worst case where n is the number of processes and 
m in the number of local states in each process. Obviously, 
exploring such a large number of states will require much 
more time than the time required by the HS-based algorithm. 
For example, a run that involves 20 processes where each 

process have executed 5 events will have (520) global states. 
If we want to examine all the global states in this small run, 

and assuming that we can examine 109    global states per 
second, then we need 26.49 hours to finish. Consequently, 
it is clear (See Table 1) that the detection algorithm based 
on HS is much more powerful. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we have developed an efficient distributed 
predicates detection algorithm based on harmony search. 
The proposed algorithm can be used to detect distributed 
predicates under the possibly modality. Distributed predi- 
cates detection (also referred to as runtime verification) is 
an effective technique to reason about a particular implemen- 
tation of a given distributed application. Consequently, the 
results presented in this paper can be exploited in developing 
more dependable distributed applications.  

Genetic algorithms (GAs) can be used effectively to solve 
problems  with exponential  size search space as  it  is  the 
case  in  distributed  predicates’  detection.  In  one  of  our 
current  research  efforts  we  are  trying  to  investigate  the 
effects  of  using the  mutation operator of  GAs in  HS to 
solve certain optimization problems.  
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Table I 
TH E R E S U LT S O F S E V E R A L E X P E R I M E N T S . 

 

Number  of 

Processes 

Number  of events 

executed  by each 

process 

Time spent 

to detect  the 

predicate/ seconds 

Number  of 

Iterations 

 

25 
1000 0.031 72 
2000 0.047 282 
3000 0.062 587 

 

50 
1000 1.234 92580 
2000 1.5 117323 
3000 2.032 159467 

 

75 
1000 830.454 44732576 
2000 1504.641 80262355 
3000 1687.125 88457221 

 
One possible avenue for the continuation of the work 

presented in this paper is to consider the effects of using the 
mutation operators of GAs on the performance of the HS 
algorithm developed to detect distributed predicates. 
Moreover, we can develop a detecting approached based 
completely on GAs and compare it with the approach 
developed based on HS. Another important avenue for future 
work is improving the fitness function. In fact, if we can 
find a more powerful fitness function, then the performance 
of the proposed algorithm will certainly be improved. 
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