
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

153 | P a g e

www.ijacsa.thesai.org

A Harmony Search Based Algorithm for Detecting

Distributed Predicates

Eslam Al Maghayreh

Computer Science Department

Faculty of Information Technology and Computer Science

 Yarmouk University, Irbid 21163, Jordan

Abstract— Detection of distributed predicates (also referred to

as runtime verification) can be used to verify that a particular

run of a given distributed program satisfies certain properties

(represented as predicates). Consequently, distributed

predicates detection techniques can be used to effectively

improve the dependability of a given distributed application.

Due to concurrency, the detection of distributed predicates can

incur significant overhead. Most of the effective techniques

developed to solve this problem work efficiently for certain

classes of predicates, like conjunctive predicates. In this paper,

we have presented a technique based on harmony search to

efficiently detect the satisfaction of a predicate under the

possibly modality. We have implemented the proposed

technique and we have conducted several experiments to

demonstrate its effectiveness.

Keywords- Distributed Systems; Detection of Distributed

Predicates; Runtime Verification; Harmony Search; Testing;

Debugging.

I. INTRODUCTION

The design and construction of dependable distributed
applications is not an easy task. Several techniques have
been used in the literature to improve the dependability of
distributed applications. Detection of distributed predicates
(runtime verification) is one of the techniques that have
attracted a great deal of attention in this regard [1], [2], [3],
[4], [5], [6].

Runtime verification techniques can be used to verify
whether a given run of a distributed application satisfies
certain properties or not. Figure 1 depicts the runtime
verification environment [7].

Runtime verification can be used to verify a particular
implementation rather than verifying a model of the appli-
cation as is done in model checking. Moreover, in runtime
verification, the properties to be verified can be formally
specified, i.e. using temporal logic. Consequently, runtime
verification is considered more powerful than traditional
testing in this regard [1], [7].

In addition to runtime verification, detecting distributed
predicates has several applications. The followings are some
of these applications:

a) Detection of when a distributed computation enters

a stable state. This involves the detection of a condition

which once becomes true, remains true indefinitely. For

example, termination detection and deadlock detection.

b) Testing and debugging of distributed programs.

Any condition that must be true in a correct run of a

distributed application can be specified and then its oc-

currence can be verified. For example, when debugging a

distributed mutual exclusion algorithm, it is useful to

monitor the system to detect concurrent accesses to the

shared resources. Another example is detecting the presence

of multiple leaders in distributed leader election.

c) Identifying bottlenecks. For example, detecting

posi- tions during a run of a distributed application where

more than n processes from some set are simultane- ously

blocked.

Concurrency in distributed applications makes the detec-
tion of distributed predicates a very hard and expensive task.
Consequently, several techniques have been introduced in the
literature to reduce the cost of detecting distributed predicates
[7], [1], [8]. A brief review of these techniques will be
presented in Section III. However, most of these techniques
work well for only certain classes of predicates. It has been
proved that the problem of verifying whether a run of a
distributed program satisfies certain predicate or not is, in
general, an NP-complete problem [1].

In this paper, we exploit harmony search in developing
a more powerful technique to detect distributed predicates.
This technique can work efficiently for predicates under the
possibly modality (a predicate under the possibly modality is
evaluated to true if it is true in at least one global state [1]).
Harmony search is a popular evolutionary algorithm that
can be used effectively to solve problems with exponential
size search space (as it is the case in distributed predicates’
detection).

The remainder of this paper is organized as follows. In
section II, we present a formal model of a run of a distributed
program. We discuss other related works in section III. A
brief introduction to harmony search is provided in section
IV. We present the proposed algorithm in section V. Section
VI presents the experimental results. Finally, we conclude
our work in section VII.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

154 | P a g e

www.ijacsa.thesai.org

A Trace of a

Distributed Program

Properties to be

Verified (Predicates)

Detection

Algorithms

Properties Satisfied?

Yes/No

Figure1. Runtime verification environment.

II. MODEL AND PROBLEM DEFINITION

A distributed program consists of n processes denoted
by P0 , P1 , ..., Pn−1 and a set of unidirectional channels. An

event is the result of executing a statement in a distributed
program. An event can be computational event or message
event (send/receive). Events are related by their execution
order in a process and/or message send/receive relations

across processes. The happened-before relation (→) defined

by Lamport in [9] applies to all events executed.

Definition 1: A run of a distributed program is an event

structure <E, →>, where E is the set of events executed, and (

→) is the happened-before relation among the events in E.

The space-time diagram shown in Figure 2 depicts a run
of a distributed program involving three processes. Time is
represented in the horizontal direction and space in the
vertical direction. Events are shown as circles in the space-

time diagram. Event eij is the j th event of process Pi. A

directed edge is used to link every send event with the
corresponding receive event.

The happened-before relation → is a partial order relation

on the set of events of any run of a distributed application.

eij → ekl if and only if there is a directed path in the

corresponding space-time diagram from event eij to event
ekl . If two events eij and ekl are not related by the happened-
before relation, we say that they are concurrent events

(denoted by eij ║ ekl). For example, in Figure 2, e01 ║e21

because ¬(e01 → e21) and ¬(e21 → e01).

A consistent cut C of a run <E, →> is a finite subset of E

(C ⊆ E) such that if eij ∈ C and ekl → eij then ekl ∈ C

. The dotted line shown in Figure 2 represents a consistent

cut C1 ={ e01 , e11}. Every consistent cut corresponds to a

global state of the distributed application represented by
the values of the program variables and channels states
attained upon the completion of the execution of the events
in that consistent cut. The set of global states of a given
run endowed with set union and set intersection operations
forms a distributive lattice, referred to as the state lattice
[10].

Figure 3 depicts the state lattice associated with the run
depicted in Figure 2. Each global state can be labeled by the
most recent event executed in each process upon reaching
it. For example, (e01 , e13 , e22) is the state reached after

executing event e01 in P0 , event e13 in P1 and event e22 in

P2 . Using the state lattice, we can verify whether a run of a

given distributed program satisfies the necessary properties
or not (Distributed Predicates Detection).

A predicate is called distributed predicate if the variables
involved in expressing the predicate belongs to more than
one process. Consequently, the evaluation of a distributed
predicate requires the collection of information from several
processes. A predicate that involves variables of a single
process is called local predicate.

possibly: φ is true if the predicate φ is evaluate to true in
at least one global state in the state lattice. definitely: φ is
true if, for all paths from the initial global state to the final
global state, φ is true in at least one global state along that
path [11], [12]. In this paper, we will consider predicates
under the possibly modality.

The difficulty of the detection of a distributed predicate
is due to the following characteristics of a distributed appli-
cation [1]:

1) There is no global clock in a distributed
application. Consequently, the events of a given run of a
distributed application can only be partially ordered.

2) The processes of a distributed application do not have
shared memory. As a result, collecting the information
necessary to detect a predicate will incur significant message
overhead.

3) In any distributed application, there will be several
processes running concurrently. As a result, the number of
global tates that must be considered to detect a predicate
will be exponential in number of processes.

In fact it has been proved that it is, in general, NP-
complete to detect a distributed predicate in a run of a
distributed application [1]. The next section is dedicated to
explore the techniques presented in the literature to detect a
predicate in a run of a given distributed application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

155 | P a g e

www.ijacsa.thesai.org

 e e

P

C1

e01 e02 e03

P0

e11

1

e12 e13

P2

21 22

Figure2. A space-time diagram corresponding to a run of a distributed program.

(-, -, -)

P1 P2 P3

(e01, e13, e22)

(e03, e13, e22)

Figure 3. The state lattice corresponding to the run shown in Figure 2.

III. RELATED WORKS

Three main approaches have been presented in the litera-
ture to detect a predicate in a run of a distributed application.
The first approach exploits the global snapshot algorithm
proposed by Chandy and Lamport [13], [14], [15]. In this
approach, a global state of a run is captured and the predicate
to be detected is evaluated on it, if the predicate is evaluated
to false, another global state will be captured. This process
will continue until we found a global state satisfying the
desired predicate. This approach is applicable for stable
predicates (once they become true they will not turn false).

The second distributed predicates detection approach was
proposed by Cooper and Marzullo [11]. This approach can
be used to detect both stable and unstable predicates. It
can be used to detect possibly: φ and definitely: φ.
However, the detection is very expensive because it requires

the construction of the entire state lattice and exploring mn

global states in the worst case, where n is the number
of processes and m is the number of local states in each
process.

To avoid the construction of the state lattice, the third
detection approach exploits the structure of the predicate to
identify a subset of the global states, such that if the predi-
cate is true, it must be true in one of the states in this subset.
This approach is not as general as the second approach,
but it can be used to develop more efficient algorithms for

certain classes of predicates. Garg and Waldecker [5], [6]

have proposed algorithms of complexity O(n2 m) to detect
possibly : φ and definitely : φ when φ is a conjunction of
local predicates.

Several techniques have been introduced in the literature
to reduce the cost of detecting a predicate. Computation
slicing is one of these techniques. It was introduced in [16],
[17], [18], [19] as an abstraction technique for analyzing
distributed computations (finite execution traces). A compu-
tation slice, defined with respect to a distributed predicate,
is the computation with the minimum number of global
states that contains all global states satisfying the predicate.

Computation slicing can be used to eliminate the
irrelevant global states of the original computation, and keep
only the states that are relevant for our purpose. In [19],
Mittal and Garg proved that a slice exists for all global
predicates. However, it is, in general, NP-complete to
compute the slice. They developed efficient algorithms to
compute slices for special classes of predicates.

Lamport has presented a theorem on atomicity to simplify
verification of distributed and parallel systems [20]. Accord-
ing to this theorem, a sequence of statements in a distributed
program can be grouped together to form an atomic action
under some stated conditions. An atomic action can receive
information from other processes, followed by at most

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

156 | P a g e

www.ijacsa.thesai.org

one externally visible event (for example, changing the value
of a variable involved in one of the properties to be verified)
before sending information to other processes. Based on this
theorem, a distributed program can be abstracted and hence
the cost of verifying it can also be reduced.

In [21], [22], [23], the authors have formally defined
the notion of atomic actions in message-passing distributed
programs. They have exploited the atomicity concept in
reducing the state space to be considered in runtime ver-
ification of message-passing distributed programs.

In this paper, we exploit harmony search in developing a
general and at the same time efficient detection algorithm
of distributed predicates under the possibly modality. In the
following two sections we will present a brief introduction
to harmony search and we will present the details of our
proposed detection algorithm.

IV. INTRODUCTION TO HARMONY SEARCH

Harmony Search (HS) is metaheuristic algorithm (also
known as an evolutionary algorithm) that emulates the
improvisation behavior of musicians [24]. In the music
improvisation process, each musician (decision variable)
plays (generates) a note (value) for finding a best harmony
(global optimum). HS can handle discrete variables [25] as
well as contin- uous variables [26], [27]. It has been
successfully applied to a wide variety of both discrete and
continuous practical optimization problems such as game
scheduling problems [28], [29], clustering problems [30],
timetabling problems [31], and structural design [32].

The HS algorithm consists of the following main steps

[24]:

Step 1. Initialization of the optimization problem and
algo- rithm parameters:

In this step, the optimization problem is characterized as
a function f to be optimized (minimize or maximize). Addi-
tionally, the control parameters of the Harmony Search are
specified in this step including: the Harmony Memory Size
(HMS); Harmony Memory Consideration Rate (HMCR);

Pitch Adjusting Rate (PAR); and the stop criterion
(i.e. Number of Improvisations (Iterations)).

Step 2. Harmony Memory (HM) initialization:

As shown in (1), the HM composed of HMS (Harmony
Memory Size) candidate solutions with N decision

variables

xi = [xi
1 , . . . , xi

N], i ∈ {1, . . . , H M S}. The objective

function f in (1) measures the solution quality.

In this step, the HM is randomly initialized within the

solution space.

Step 3. New Harmony improvisation:

In this step, a new harmony vector xnew = (x
1
new,

x
2
new, …, x

N
new) is generated based on three operators: (1)

memory consideration, (2) pitch adjustment, and (3) random
selection.

Step 4. Harmony memory update:

In this step, the objective function value is evaluated for
the vector xnew to determine if the new harmony should be

included in the harmony memory. If the new harmony vector
is better than the worst harmony in the HM, then the worst
harmony is replaced with the new harmony.

Step 5. Repetition of Steps 3 and 4 until the
termination criterion is satisfied:

Steps 3 and 4 will be repeated until the stop criterion is
satisfied (i.e. maximum number of improvisations).

V. THE USE OF HS FOR DETECTING DISTRIBUTED

PREDICATES

In this section, we will present an approach based on HS
that can be used to detect Possibly: P for any predicate P
As we have shown earlier, there are some approaches that
can efficiently detect Possibly: P for certain classes of
predicates P , like conjunctive predicates. However, there is
no efficient approach that can be used to detect Possibly: P
for any predicate P. This is due to the fact that the number
of global states to be considered in detection is exponential

(mn global states in the worst case, where n is the number
of processes and m is the number of local states in each
process). Harmony search can be used in this case to provide
a powerful general solution in such a case where the search
space size to be considered is exponential.

The algorithms developed to detect distributed predicates
can be online or offline. Online detection works during the
execution of the application, and hence it may change the
behavior of the application in unexpected manner. However,
it has the advantage of avoiding the need to keep very
large trace files as it is the case in offline detection. Offline
detection collects the necessary information at runtime and
later analyzes it to decide whether a given predicate has been
satisfied during the execution or not. Offline detection does
not have a strong impact on the behavior of the application
under consideration. However, it requires the collection of
very large trace files.

In this paper we are adopting the offline approach. In
fact the use of harmony search fits more appropriately with
the offline approach due to the fact that harmony search
operators investigate global states in the whole search space
randomly and does not investigate global states in the order in
which they may appear during the execution of a given
distributed application.

Now we will describe the details of the harmony search
algorithm used in our solution. We will start with the
representation of a run of a distributed program that the
harmony search algorithm can manipulate. We assume that
the algorithm to be developed wants to detect the predicate

Possibly: P where P is the predicate x0 +x1 +· · ·+xn−1 = c

where xi is a variable of process Pi and c is a constant.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

157 | P a g e

www.ijacsa.thesai.org

There is no algorithm presented in the literature to efficiently
detect this predicate [1].

We will assume that each process is instrumented to
collect at runtime the local states that may affect the desired
predicate along with their vector clock timestamp (The
vector clock is a very well known technique to assign
timestamps to the events of a run of a given distributed
program [10], [33]). Consequently, each process Pi will have a

trace file of the form

Val1 , timestamp1

Val2 , timestamp2

.

.

.

Valm , T imestampm

Where Valj is the value of variable xi of process Pi in

the local state number j. T imestampj is the vector clock
time stamp of local state j. For example, if we have the run
shown in Figure 4 (a) and we want to detect the predicate
x + y + z = 2, then the trace files of these processes will be
as shown in Figure 4 (b). Each trace file contains a list of all
local states that may be part of a global state that satisfies
the desired predicate in the given run. The local state of a
process Pi involves the value of the variables involved in the

predicate of interest and the vector clock time stamp of the
local state. For example, the first local state of process P0 is

0, (1, 0, 0). This means that the value of variable x (which
is one of the variables involved in the predicate of interest)
at this local state is zero and the vector clock time stamp of
this local state is (1, 0, 0).

Assuming that we have n processes we will have n trace
files. The size of each of them is linear with respect to the
number of events executed by each corresponding process.
These files will represent the input to the HS algorithm that
will be used to detect the above mentioned predicate. The
contents of these files can be changed to include additional
information if we want to detect other types of predicates. For
example, if the predicate of interest involves two or more
variables of process Pi , then the values of these variables

has to be added to each local state in the trace file of Pi .

Now we will move to the details of the harmony search al-
gorithm itself starting with the representation of the harmony
memory (HM) to be used. The HM is a two dimensional
array where each row represents a solution of the problem
under consideration along with its fitness (quality). In our
problem (Distributed predicates detection), each row in the
HM represents a global state of the distributed application
under consideration. Consequently, each row will have n
local states (one from each process) such that all of the local
states form a global state of the application. Each global state
in the HM is a candidate solution for our problem which is
mainly finding a global state that satisfies the predicate to
be detected. Moreover, the last element of each row contains
the fitness of the solution encoded in that row.

In our example, where we have the run shown in
Figure4 (a) and we want to detect the predicate x + y + z

= 2, the HM can have the form shown in Figure 4 (c) where
the size of it is HMS and each row represents a global
state along with its fitness. Each element in column i is a
local state of process Pi taken from its trace file. For

example, the element HM[0][0] shown in Figure 4 (c) is one
of the local states of process P0 taken from its trace file

shown in Figure 4 (b).

HS operators may result in solutions that do not represent
global states due to the fact that the cuts represented by
the resulting chromosomes are not consistent. This problem
can be solved by increasing the fitness of such solutions
(solutions with small fitness value are better than others with
larger fitness value). In our algorithm we will assign the
value of 9999999 as the fitness value for any chromosome
that does not represent a global state.

Now we will move to the most important step in our
algorithm, namely, the design of the fitness function. In fact
all of the above steps in the algorithm will be identical for
any predicate under consideration. The only difference
between the algorithms to detect two different predicates
is in the fitness function. This is considered as a strong
side in HS. More precisely, HS algorithms are more general
than other algorithms in the sense that they can be used to
detect any predicate with small modifications on the fitness
function. There is no need to develop a tailored algorithm
to efficiently detect each type of predicates.

The fitness function has to evaluate each possible solution
in the HM and assign to it a fitness value indicating whether
the solution is close to the optimal solution or not. In our
example, the value assigned by the fitness function to each
solution will indicate whether the global state represented
by the solution satisfies the predicate of interest or not, and
if it does not satisfy the predicate, how close it is to the
values that can satisfy the predicate.

The fitness function will first check whether the solution
represents a global state or not (consistent cut), if the
chromosome does not represent a global state then the fitness
value assigned to it will be 9999999 indicating that this
solution cannot represent a global state that satisfies the
predicate. Otherwise the fitness function will assign a fitness
value to the solution according to the following formula:

F itness = x0 + · · · + xn−1 − c

For example the fitness of the solution presented in HM[0]

in Figure 4 (c) is 0 + 2 + 2 − 2 = 2

Consequently, when the solution satisfies the predicate its
fitness value will be 0. When the algorithm finds a global
state that satisfies the predicate, it will terminate directly
since we are looking for the predicates under the possibly
modality.

To avoid keep running the algorithm forever in cases
there is no global state satisfying the predicate in the run
under consideration, we can also fix the maximum number
of iterations the HS algorithm can go through. However, it
is better to choose a large enough bound on the number of
iterations depending on the complexity of the predicate, the
number of processes, and the length of the trace files. The
larger the number of processes and trace files the larger the
number of iterations that need to be considered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

158 | P a g e

www.ijacsa.thesai.org

0, (1, 0, 0) 2, (2, 3, 0) 2, (0, 0, 1) 2

3, (3, 0, 0) 2, (2, 3, 0) 0, (0, 0, 3) 3

x = 0 x = 3
P0

y = 1
P1

y = 2

z = 2
P2

(a)

z = 0

Trace file

of P0

0, (1, 0, 0)

3, (3, 0, 0)

Trace file

of P1

1, (0, 1, 0)

2, (2, 3, 0)

(b)

Trace file

of P2

2, (0, 0, 1)

0, (0, 0, 3)

Harmony Memeory (HM)

HM[0]

Fitness

HM[HMS-1]

(c)

Figure 4. An example to demonstrate the use of HS in detecting distributed predicates.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section we will give more details about the
implementation of the proposed HS-based distributed pred-
icates detection algorithm. Moreover, we will present some
experimental results. We have implemented our algorithm
using Java pro- gramming language. We assume that the
algorithm to be developed wants to detect the predicate

Possibly : P where P is the predicate (x0 + · · · + xn−1

= c) where xi is a variable of process Pi and c is a

constant. We assume that we have n processes. In the
previous section we have described the fitness function used
in our example. Other parts of the HS algorithm can be
implemented in a general manner and can be used in
detecting any other predicate. The only thing that has to be
changed if we want to detect other predicates is the fitness
function.

We have executed our algorithm on a computer with Intel
Core 2 Duo CPU, 2.4GHz with 2GB of RAM. We have
executed the algorithm on a trace of a distributed application
that involves 25, 50, and 75, processes where each process
has executed 1000, 2000, 3000 events in each run. We have
set the parameters of the HS as follows (HMS = 10, HMCR
= 0.9 and PAR = 0.4). The results are summarized in Table
1. For example, given a run that involves 75 processes where
each process has executed 3000 events, the algorithm was

able to detect the predicate x0 + x1 + · · · + x74 = 67 after

88457221 iterations and the total time required to detect the
predicate was 1687.125 seconds.

The other general approach that can be used to detect
any predicate under the possibly modality is to construct the

entire state lattice and to test the global states in it one by one
until we reach a global state where the predicate of interest is

satisfied. This approach requires exploring mn global states
in the worst case where n is the number of processes and
m in the number of local states in each process. Obviously,
exploring such a large number of states will require much
more time than the time required by the HS-based algorithm.
For example, a run that involves 20 processes where each

process have executed 5 events will have (520) global states.
If we want to examine all the global states in this small run,

and assuming that we can examine 109 global states per
second, then we need 26.49 hours to finish. Consequently,
it is clear (See Table 1) that the detection algorithm based
on HS is much more powerful.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an efficient distributed
predicates detection algorithm based on harmony search.
The proposed algorithm can be used to detect distributed
predicates under the possibly modality. Distributed predi-
cates detection (also referred to as runtime verification) is
an effective technique to reason about a particular implemen-
tation of a given distributed application. Consequently, the
results presented in this paper can be exploited in developing
more dependable distributed applications.

Genetic algorithms (GAs) can be used effectively to solve
problems with exponential size search space as it is the
case in distributed predicates’ detection. In one of our
current research efforts we are trying to investigate the
effects of using the mutation operator of GAs in HS to
solve certain optimization problems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

159 | P a g e

www.ijacsa.thesai.org

Table I
TH E R E S U LT S O F S E V E R A L E X P E R I M E N T S .

Number of

Processes

Number of events

executed by each

process

Time spent

to detect the

predicate/ seconds

Number of

Iterations

25
1000 0.031 72
2000 0.047 282
3000 0.062 587

50
1000 1.234 92580
2000 1.5 117323
3000 2.032 159467

75
1000 830.454 44732576
2000 1504.641 80262355
3000 1687.125 88457221

One possible avenue for the continuation of the work

presented in this paper is to consider the effects of using the
mutation operators of GAs on the performance of the HS
algorithm developed to detect distributed predicates.
Moreover, we can develop a detecting approached based
completely on GAs and compare it with the approach
developed based on HS. Another important avenue for future
work is improving the fitness function. In fact, if we can
find a more powerful fitness function, then the performance
of the proposed algorithm will certainly be improved.

REFERENCES

[1] Vijay K. Garg, Elements of distributed computing, John Wiley & Sons,
Inc., New York, NY, USA, 2002.

[2] G. Dumais and H.F. Li, “Distributed predicate detection in series-
parallel systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, no. 4, pp. 373 –387, apr 2002.

[3] Felix C. Freiling and Arshad Jhumka, “Global predicate detection
in distributed systems with small faults,” in Pro- ceedings of the 9th
international conference on Stabilization, safety, and security of
distributed systems, Berlin, Heidelberg,2007, SSS’07, pp. 296–310,
Springer-Verlag.

[4] Chunbo Chu and M. Brockmeyer, “Predicate detection modality and
semantics in three partially synchronous mod- els,” in the Seventh
IEEE/ACIS International Conference on Computer and Information
Science, may 2008, pp.444–450.

[5] Vijay K. Garg and Brian Waldecker, “Detection of weak unstable
predicates in distributed programs,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 3, pp. 299–307, 1994.

[6] Vijay Garg and Brian Waldecker, “Detection of strong unstable
predicates in distributed programs,” IEEE Trans. Parallel Distrib.
Syst., vol. 7, no. 12, pp. 1323–1333, 1996.

[7] Eslam Al Maghayreh, Simplifying Runtime Verification of Distributed
Programs: Ameliorating the State Space Explosion Problem, VDM
Verlag, 2010.

[8] Craig M. Chase and Vijay K. Garg, “Detection of global predicates:
Techniques and their limitations,” Distributed Computing, vol. 11, no.
4, pp. 191–201, 1998.

[9] Leslie Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–565,
1978.

[10] Friedemann Mattern, “Virtual Time and Global States of Distributed
Systems,” in Proceedings of the International Workshop on Parallel
and Distributed Algorithms, Château de Bonas, France, October 1989,
pp. 215–226.

[11] Robert Cooper and Keith Marzullo, “Consistent detection of global
predicates,” SIGPLAN Not., vol. 26, no. 12, pp. 167– 174, 1991.

[12] Roland Jegou, Raoul Medina, and Lhouari Nourine, “Linear space
algorithm for on-line detection of global predicates.,” in Proceedings
of the International Workshop on Structures in Concurrency Theory
(STRICT), Berlin, 1995, pp. 175–189.

[13] K. Mani Chandy and Leslie Lamport, “Distributed snapshots:
Determining global states of distributed systems,”ACM Trans. Comput.

Syst., vol. 3, no. 1, pp. 63–75, 1985.

[14] Luc Bougé, “Repeated snapshots in distributed systems with
synchronous communications and their implementation in CSP,” Theor.
Comput. Sci., vol. 49, pp. 145–169, 1987.

[15] Madalene Spezialetti and Phil Kearns, “Efficient distributed snapshots,”
in ICDCS, 1986, pp. 382–388.

[16] H. F. Li, Juergen Rilling, and Dhrubajyoti Goswami, “Granularity-driven
dynamic predicate slicing algorithms for message passing systems,”
Automated Software Engg., vol. 11, no. 1, pp. 63–89, 2004.

[17] Alper Sen and Vijay K. Garg, “Detecting temporal logic pred- icates in
distributed programs using computation slicing.” in OPODIS, 2003, pp.
171–183.

[18] Vijay K. Garg and Neeraj Mittal, “On slicing a distributed
computation,” in ICDCS ’01: Proceedings of the The 21st nternational
Conference on Distributed Computing Systems, 2001, p. 322.

[19] Neeraj Mittal and Vijay K. Garg, “Computation slicing:
Techniques and theory,” in DISC ’01: Proceedings of the 15th
International Conference on Distributed Computing, London, UK, 2001,
pp. 78–92, Springer-Verlag.

[20] L. Lamport, “A theorem on atomicity in distributed algo- rithms,”
Distributed Computing, vol. 4, no. 2, pp. 59–68, 1990.

[21] Eslam Al Maghayreh, “Block-based atomicity to simplify the
verification of distributed applications,” in 24th Cana- dian
Conference on Electrical and Computer Engineering (CCECE), may
2011, pp. 887–891.

[22] H. F. Li, Eslam Al Maghayreh, and D. Goswami, “Detecting atomicity
errors in message passing programs,” in PDCAT’07: Proceedings
of the Eighth International Conference on Parallel and Distributed
Computing, Applications and Technologies. 2007, pp. 193–200, IEEE
Computer Society.

[23] H. F. Li, Eslam Al Maghayreh, and D. Goswami, “Using atoms to
simplify distributed programs checking,” in DASC’07: Proceedings of
the Third IEEE International Symposium on Dependable, Autonomic
and Secure Computing, 2007, pp.75–83.

[24] Zong Woo Geem, Joong-Hoon Kim, and G. V. Loganathan, “A new
heuristic optimization algorithm: Harmony search,” Simulation, vol.
76, no. 2, pp. 60–68, 2001.

[25] Zong Geem, “Novel derivative of harmony search algorithm for
discrete design variables,” Applied Mathematics and Computation,
vol. 199, no. 1, pp. 223–230, 2008.

[26] Kang S. Lee and Zong W. Geem, “A new meta-heuristic algorithm
for continuous engineering optimization: harmony search theory and
practice,” Computer Methods in Applied Mechanics and Engineering,
vol. 194, no. 36-38, pp. 3902–3933, Sept. 2005.

[27] Zong Woo Geem, “Global optimization using harmony search:
Theoretical foundations and applications,” in Foun- dations of
Computational Intelligence (3), pp. 57–73. 2009.

[28] Zong Geem, “Harmony search algorithm for solving sudoku,” in
Knowledge-Based Intelligent Information and Engineering Systems
(KES), 2007, pp. 371–378.

[29] Zong Geem, “Harmony search for multiple dam scheduling,” in
Encyclopedia of Artificial Intelligence, pp. 803–807. 2009.

[30] Osama Moh’d Alia, Mohammed Azmi Al-Betar, Mandava Rajeswari,
and Ahamad Tajudin Khader, “Data clustering using harmony search

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 10, 2012

160 | P a g e

www.ijacsa.thesai.org

algorithm,” in Proceedings of Second International Conference Swarm,
Evolutionary, and Memetic Computing (SEMCCO 2), 2011, pp. 79–88.

[31] Mohammed Azmi Al-Betar and Ahamad Tajudin Khader, “A harmony
search algorithm for university course timetabling,” Annals OR, vol.
194, no. 1, pp. 3–31, 2012.

[32] Zong Woo Geem, Kang Seok Lee, and Chung-Li Tseng, “Harmony
search for structural design,” in Proceedings of Genetic and
Evolutionary Computation Conference (GECCO 2005), 2005, pp. 651–
652.

[33] Colin Fidge, “Timestamps in Message-Passing Systems that Preserve
the Partial Ordering,” in Proceedings of the 11th Australian Computer
Science Conference, 1988, pp. 56–66.

