
 (IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 10, 2012

192 | P a g e

www.ijacsa.thesai.org

Request Analysis and Dynamic Queuing System for

VANETs

Ajay Guleria

Department of Computer

Centre

 PU Chandigarh, India

 Narottam Chand

 Department of CSE

NIT Hamirpur, India

Mohinder Kumar

Department of CSE

NIT Hamirpur, India

Lalit Awasthi

Department of CSE

NIT Hamirpur, India

Abstract—Vehicular Ad hoc Network (VANET) is a kind of

mobile ad hoc network using the capabilities of wireless

communication for Vehicle-to-Vehicle and Vehicle-to-Roadside

communication to provide safety and comfort to vehicles in

transportation system. People in vehicles want to access data of

their interest from Road Side Unit (RSU). RSU need to schedule

these requests in a way to maximize the service ratio. In this

paper we have proposed new methods for careful analysis of

incoming requests to find whether these requests can be

completed within deadline or not and to provide dynamic service

queue. Simulation results show that the proposed schemes

increase the service ratio significantly.

Keywords- Road Side Uni; Service Ratio; Propagation Delay;

Service Queue.

I. INTRODUCTION

Vehicular ad hoc network (VANET) is emerging as
important technology to provide safety and comfort to vehicles
in transportation system. It is special type of mobile ad hoc
network with highly mobile nodes. Federal Communications
Commission has allocated 5.850-5.925 GHz portion of the
spectrum for inter-vehicle communication (IVC) and vehicle
to roadside communication (VRC) [1, 2]. VANETs are not
purely mobile ad hoc network; they have fixed points called
Road Side Units (RSUs) to provide services to vehicles. RSU
can provide safety, local news and advertisement, music,
radio, video, etc. [3, 4, 5, 6]. Applications of VANET can be
broadly classified into two categories.

A. Safety related applications: accident related alerts, red light
warning, etc.

B. Non-safety related applications: these applications include
downloading audio/video programs, digital map, internet
related services, traffic information, weather forecast and
other communication applications.

Some of the major challenges for communication in
VANETs are high mobility, dynamically changing topology,
sparsely located nodes and very short duration of
communication. So, serving the requested data items to
vehicles before it goes outside the coverage of RSU is very
important. This paper makes the following contributions:

We have proposed an algorithm to check whether the
incoming request can be completed before its deadline or not.
Proposed an algorithm to provide dynamic service queuing to
work efficiently under variable density of traffic.

Conducted simulation to evaluate the performance of
VANETs when performing operations with both proposed
algorithms.

Rest of the paper is organized as follows. Section II
discusses related work in this field. Section III describes
system model. Section IV proposes algorithms for request
analysis and dynamic queuing system.Section V talks about
simulation environment and results.Finally Section VI is
devoted to concluding remarks.

II. RELATED WORK

Major research challenges in VANETs are introduced in
[7, 8 and 9]. High mobility of vehicles is main challenge in
VANETs which leads to short deadline to access data from
RSU and causes highly dynamic topology. In case of vehicle
to roadside data access there is more than one vehicle under
coverage of one RSU. So multiple vehicles can send data
upload/download request to RSU. Because deadlines are short
therefore RSU needs to process these requests efficiently in
terms of time. Many broadcasting algorithm have been
proposed to reduce the waiting time [10, 11,12].

In [13] Acharya and Muthukrishnan proposed a data
scheduling algorithm called longest total stretched first
(LTSF) which is based on a new metric called stretch i.e.
service ratio of the response time of a request to its service
time. LTSF optimizes stretch and maintains balance between
worst case and average case but implementation of LTSF for
large system is not practical because server needs to
recalculate stretch for every data item with pending request, to
find next data to be broadcasted.

In [14] Xu et al. proposed online scheduling algorithm for
time critical on demand data broadcast but they assumed that
data can only be updated by server i.e. vehicle can only
request download, it does not allow vehicles to update urgent
data. Jiang and Vaidya in [15] proposed periodic push based
broadcast, which is not well suited to VANET applications.

In [16] Zhang et al. proposed a vehicle platoon aware data
access called V-PADA. In this scheme vehicles contribute
their part of buffer to replicate data for others in the same
platoon and share data with others. When vehicle leaves a
platoon it prefetches interested data and transfers its buffered
data to other vehicles in advance so that they can still access
the data after it leaves.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2012

193 | P a g e

www.ijacsa.thesai.org

V-PADA consists of two components: first a vehicle
platooning protocol to identify platoon formation and platoon
splitting by using stochastic time series analysis, second a data
management to guide platoon members to replicate and
fetchmost suitable data to achieve high availability and low
control overhead.

In [17] Zhang et al. first proposed D*S algorithm, further
optimized downloading by using D*S/N and optimized
uploading by using D*S/R while maintaining different queues
for download and upload requests. The algorithm assigns
different bandwidth to these queues and serves upload requests
on basis of service rate of data items in past.

 None of the earlier data access schemes considered the
optimization of service queue and incoming request analysis to
remove the various sources of time wastage in data access
scheme for VANETs. In contrast we have provided algorithms
for analysis of incoming data and to make service queue size
dynamic to increase the deadline by reducing the time
wastage. The simulation results show that the proposed
algorithms significantly improve the service ratio.

III. STSTEM MODEL

In vehicular ad hoc networks there are two communicating
entities i.e. vehicles and roadside unit (RSU). Each vehicle in
VANET is equipped with On Board Unit (OBU) which has
transceiver, computational power and omnidirectional
antenna. RSU has transceiver, antenna, processor, sensors.
RSU manages data and provides services to vehicle. Vehicles
use services provided by RSU. Communication can be either
inter-vehicle or vehicle-to-infrastructure. Fig. 1shows various
steps involved in communication between vehicle and RSU.

Operation sequence of VANETs can be summarized in Fig. 2.

Figure 1.Various steps in communication between vehicleand RSU.

RSU is generally placed at intersections to increase service
ratio and safety. We have also assumed that RSU is placed at
intersection and vehicles are synchronized with Global
Positioning System(GPS). Further, we have assumed two
lanehighways for simplicity. The proposed scheme is
applicable to multilane highways without any major change.
OBU on vehicle is capable of calculating average speed of
vehicle for last few minutes.

A request from vehicle is represented by five tuple as
given below:

<VEHICLE_ID, DATA_ID, AVG_SPEED,
CURRENT_LOCATION, OP_CODE>

VEHICLE_ID: Unique Identity of Vehicle.

DATA_ID: Unique Identification code of requested data.

AVG_SPEED: Average Speed of vehicle.

CURRENT_LOCATION: Current Location of vehicle.

OP_CODE: Operation Code i.e. either upload or
download.

It is assumed that RSU maintains single queue for upload
and download requests.RSU is capable of determining
CURRENT_LOCATION. Hence it can find the direction of
movement of vehicle.

IV. PROPOSED SCHEMES

In this section we have proposed two independent
algorithms PROCESS_REQUEST to find whether incoming
request can be completed before its deadline or not and
SRBAQS to provide dynamic queuing system.

As shown in Fig. 2, our first proposed algorithm
PROCESS_REQUEST uses following notations:

LNS: Lane from north to south.

LSN: Lane from south to north.

LWE: Lane from west to east.

LEW: Lane from east to west.

(XN, YN): Location of last coverage point of RSU in
north.

(XS, YS): Location of last coverage point of RSU in south.

(XE, YE): Location of last coverage point of RSU in east.

(XW, YW): Location of last coverage point of RSU in
west.

(XI, YI): Point of intersection of horizontal and vertical
dividers.

(XR, YR): Reference point (discussed below).

(XV, YV): Current location of vehicle.

Size(i): Size of data item requested in current request.

t: transfer rate of data from RSU to vehicle.

ΔT: Average propagation delay of request from vehicle to
RSU.

TTRANSFER: Time required for transferring requested
data to vehicle.

TLIFE: Connection life time i.e. duration for which vehicle
will remain in range of RSU.

Reference point: It is last coverage point in direction of
movement of vehicle when vehicle requested the data. Even if
vehicle takes a left or right turn, reference point will remain

 (IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 10, 2012

194 | P a g e

www.ijacsa.thesai.org

same i.e. change in direction of movement after request has
been sent to RSU does not make any effect on the proposed
scheme.

PROCESS_REQUEST uses procedure
REFERENCE_POINT to find the reference point.
REFERENCE_POINT procedure is as below.

1. REFERENCE_POINT(XV, YV)

2. If (XV, YV) ϵ LNS

3. then return (XS, YS)

4. If (XV, YV) ϵ LSN

5. then return (XN,YN)

6. If (XV, YV) ϵ LEW

7. then return (XW, YW)

8. If (XV, YV) ϵ LWE

9. then return (XE, YE)

In procedure REFERENCE_POINT lines 2 and 3 return

reference point as (XS, YS) if vehicle is in lane from north to
south i.e. moving from north to south direction. Lines 4 and 5
return reference point as (XN, YN) if vehicle is in lane from
south to north i.e. moving from south to north direction. Lines
6 and 7 return reference point as (XW, YW) if vehicle is in
lane from east to west i.e. moving from east to west direction.
Similarly lines 8 and 9 return reference point as (XE, YE) if
vehicle is in lane from west to east i.e. moving from west to
east direction.

Figure 2. System model and notations.

1. PROCESS_REQUEST(XV, YV, AVG_SPEED)

2. (XR, YR)=REFERENCE_POINT(XV, YV)

3. d1 = √((XR-XV)2+(YR-YV)2)

4. if ((XR==XS)||(XR==XN))

5. d2 = √((XI-XW)2+(YI-YW)2)+ √((XI-XV)2+(YI-

YV)2)

6. d3 = √((XI-XE)2+(YI-YE)2)+ √((XI-XV)2+(YI-

YV)2)

7. if ((XR==XW)||(XR==XE))

8. d2 = √((XI-XN)2+(YI-YN)2)+ √((XI-XV)2+(YI-

YV)2)

9. d3 = √((XI-XS)2+(YI-YS)2)+ √((XI-XV)2+(YI-

YV)2)

10. d=min {d1, d2, d3}

11. di =d-(ΔT * AVG_SPEED)

12. TLIFE=di/AVG_SPEED

13. TTRANSFER=Size(i)/t

14. if (TLIFE >=TTRANSFER)

15. then put request in Queue

16. else

17. reject the request

Algorithm PROCESS_REQUEST at RSU determines
whether the coming request can be completed within deadline
or not. This algorithm takes current location of vehicle i.e.
(XV, YV) and AVG_SPEED as input. Other values including
Size(i) are known to RSU.

Line 2 calls the procedure REFERENCE_POINT on
current location of vehicle to find the reference point. In line 2
(XA, YA) = (XB, YB) implies XA = XB and YA= YB. Line 3
computes distance between current location of vehicle and
reference point, it is case when vehicle does not take any turn
i.e. distance between (Xv, YV) and reference point computed
in step 2 i.e. (XR, YR). Line 4 checks whether vehicle is
moving in LNS or LSN i.e. vehicle can take turn to either west
or eastside. If result of line 4 is true then line 5 computes total
distance to be travelled by vehicle if it takes turn to west and
line 6 computes total distance to be travelled by vehicle if it
takes turn to east.

Line 7 checks whether vehicle is moving in LWE or LEW
i.e. vehicle can take turn to either north or south side. If result
of line 7 is true then line 8 computes total distance to be
travelled by vehicle if it takes turn to north and line 9
computes total distance to be travelled by vehicle if it takes
turn to south.

Line 10 finds the minimum distance which can be travelled
by vehicle without going outside the coverage of RSU. Line
11 reduces distance to be travelled by vehicle, by the distance
vehicle has travelled till its request reaches the RSU. Line 12
finds the time period for which vehicle will remain under
coverage of RSU. Line 13 finds the time to be taken to transfer
data to vehicle by dividing the requested data size by transfer
rate. Line 14 checks whether data can be transferred to vehicle
before it goes out coverage of RSU, if yes, line 15 puts this
request in Queue else line 17 rejects the request.

Service Ratio Based Adaptive Queuing System (SRBAQS)

Traffic density varies on road during day and night, on
working days and holidays also if there is jam on other routes.
If size of service queue is kept static then, there can be
following problems:

1. If service queue size at RSU is very large then it will

take very long time to start the scheduling process,

because RSU will wait for service queue to become

full. Even when there is limit on waiting time, it will

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2012

195 | P a g e

www.ijacsa.thesai.org

affect the service ratio significantly as smaller

deadlines are major constraint in VANETs.

2. If service queue size is very small it will start the

scheduling process too early. It can reduce the service

ratio e.g. let size of service queue is two and first two

requests arrived are of very large size. Then it can

block subsequent smaller size requests.

SRBAQS algorithm avoids this scenario by making service
queue size dynamic depending on the service ratio. It uses
following inputs:

λ: Service ratio of past x requests

x: number of requests processed in past

n: Service queue size

s: Number of requests successfully served, initially s=0

SC: Service ratio for current service cycle

λn: New service ratio after completion of current service
cycle

SIZE(Q): Number of requests in queue

Success (requesti): Returns true if requesti has been
completed successfully

1. SRBAQS (λ, x, n)

2. while(true)

3. while(SIZE(Q)!=n)

4. if new request has arrived put request in

service queue Q

5. for i←0 to n do

6. process requesti according to scheduling

criteria

7. if Success(requesti)=true

8. then s=s+1

9. SC=s/n

10. λn= (λx + SCn)/(x+n)

11. x=x+n

12. If (SC>λ)

13. then n=n+ n/2

14. else

15. n=n-n/2

16. λ=λn

NOTE: loops in SRBAQS are nested according to
indentation.

Line 1of this algorithm shows that algorithm SRBAQS
takes service ratio in past, number of requests processed in
past and initial service queue size as input. Initial service
queue size can be 1 or 2 whereas other two parameters are
computed in past for very first service cycle these two can be
any appropriate values. Line 2 of this algorithm shows that
RSU will repeat same set of activities. Line 3 and 4 make
service queue full before starting scheduling process. Lines
from 5 to 8 process the service queue according to scheduling

criteria and variable s counts the number of successful
requests. Scheduling criteria in Line 6 can be

FCFS (First Come First Serve): Requests in service queue
are served in sequence of their arrival.

EDF (Earliest Deadline First): Requests are served in
increasing sequence of their deadline. Request having earliest
deadline will be served first.

SDF (Smallest Data size First): Request having smallest
data size will be served first and so on.

Lines 7 and 8 counts number of requests successfully
served in current service cycle. Line 9 computes the service
ratio of last service cycle. Line 10 computes the new service
ratio. Line 11 computes total number of requests served
including requests served in past. Lines 11 to 14 check if
service ratio in last service cycle is greater than previous
service ratio then increases service queue size by fifty percent
else reduces the size of service queue by fifty per cent. Line 14
assigns new service ratio to current service ratio. After each
iteration of while loop in line 2 s is initialized to zero.

Theorem: the proposed algorithm PROCESS_REQUEST
computes the minimum distance to be travelled by the vehicle.
Proof: Let the vehicle is moving on LWE and has requested
some data then there can be two cases:

Case 1: vehicle is at some position from which it can take
either a turn or move straight as shown in Fig. 3(a).

Case 2: vehicle cannot take any turn i.e. it moves only
straight as shown in Fig. 3(b).

Figure 3(a). Case 1 when vehicle can take turn.

Figure 3(b). Case 2 when vehicle cannot take turn.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 10, 2012

196 | P a g e

www.ijacsa.thesai.org

Figure 3(c). Path of d2.

In case 1, PROCESS_REQUEST computes distances d1,
d2, d3 where:d1 is distance to be travelled by vehicle if it
moves straight, d2 is distance to be travelled by vehicle if
ittakes a turn to north, d3 is distance to be travelled by vehicle
if it takes turn to south.

Proposed algorithm choses minimum of d1, d2 and d3.
Hence distance to be travelled by vehicle is minimum
distance.

In case 2, the proposed algorithm computes d1, d2, d3
although vehicle can move only straight.

d2 = √((XI-XN)2 + (YI-YN)2)+ √((XI-XV)2+(YI-YV)2)

where √((XI-XV)2+(YI-YV)2) is distance from vehicle to
point of intersection. Let it is Y. See Fig. 3(c).

And √ ((XI-XN)2+(YI-YN)2) is distance from point of
intersection to north direction let it is X. See Fig. 3(c).

So, d2=X+Y

even for very small value of Y

d2< d1 (1)

d2 can be greater than d1 iff RSU is placed at some place
other than intersection.

Similarly, d3<d1 (2)

From Equation (1) and (2), we can say that d1 is minimum
distance to be travelled by vehicle.

V. SIMULATIONENVIRONMENT AND RESULTS

We have simulated the proposed algorithms i.e.
PROCESS_REQUEST and SRBAQS using Dev-C++ 4.9.9.2.
The system model has been implemented by appropriately and
randomly generating request ids, data ids, operation codes,
data size, deadlines and other parameters. We have tested the
performance of both algorithms over three data scheduling
algorithms discussed earlier i.e. FCFS (First Come First
Serve), EDF(Earliest Deadline First), SDF(Smallest Data size
First). For evaluation of these algorithms, we have used
Service ratio as performance metric i.e. ratio of number of
requests served successfully to total number of requests. In
each graph Y axis denotes the service ratio and X axis number
of times window i.e. service queue processed.

Fig.4 show the performance of FCFS before and after
implementing PROCESS REQUEST. Fig.5 and 6 show the
performance of EDF and SDF respectively before and after
implementing PROCESS_REQUEST.

Figure 4. Performance of FCFS before and before and after implementing

PROCESS_REQUEST.

Figure 5. Performance of EDF before and after implementing

PROCESS_REQUEST.

Figure 6. Performance of SDF before and after implementing

PROCESS_REQUEST.

Fig. 4, 5 and 6 show that the PROCESS_REQUEST
algorithm improves the performance of scheduling algorithms
significantly. This improvement is achieved because the
PROCESS_REQUEST eliminates the data access requests
which cannot be completed within their deadline therefore
avoiding the wastage of time on unnecessary processing time
of these requests.

Fig. 7 shows the performance of FCFS before and after
implementing both PROCESS_REQUEST and SRBAQS.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2012

197 | P a g e

www.ijacsa.thesai.org

Figure 7. Performance of FCFS before and after implementing both

PROCESS_REQUEST and SRBAQS.

Fig. 8 and 9 show the performance of EDF and SDF before
and after implementing both PROCESS_REQUEST and
SRBAQS.

Figure 8. Performance of EDF before and after implementing both.

Figure 9.Performance of SDF before and after implementing both

PROCESS_REQUEST and SRBAQS.

Fig. 7, 8 and 9 show that implementation of both
PROCESS_REQUEST and SRBAQSfurther improve the
performance. This performance gain is because
PROCESS_REQUEST avoid the processing of unnecessary
requests and SRBAQS make the queue size dynamic. Hence
simulation results show that PROCESS_REQUEST and
SRBAQS significantly improve the performance of data
scheduling algorithms.

VI. CONCLUSION

In this paper we have proposed two algorithms
PROCESS_REQUEST and SRBAQS. PROCESS_REQUEST

checks whether the incoming request can be served before its
deadline or not. If request cannot be completed within its
deadline then it is not inserted in service queue hence rejected.
It improves the processing time of other requests and service
ratio. Static queue size causes various problems such as long
waiting time if traffic density is very low and poor
performance of scheduling algorithm if traffic density is very
high. SRBAQS solves both the problems by providing
dynamic queue size i.e. queue size varies depending upon
service ratio. Simulation results show that both algorithms
improve the performance of data scheduling algorithms FCFS,
EDF and SDF.

In future, we will take other issues into consideration on
scheduling such as different types of data items, multiple
queues, etc. Further, other unique challenges in VANETs such
as routing, clustering, data caching will motivate further
research in this area.

REFERENCES

[1] IEEE Standard for Information Technology-Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications
Amendment 8: Medium Access Control (MAC) Quality of Service
Enhancements,” IEEE Std. 802.11e-2005(Amendment to IEEE Std.
802.11, 1999 Edition (Reaff 2003), 2005.

[2] “IEEE 802.11p D3.0,” in IEEE StandardActivitiesDepartment, July
2007.

[3] J. Yin, T. Eibatt, G. Yeung, B. Ryu, S. Habermas, H. Krishnan, and T.
Talty, “Performance Evaluation of Safety Applications over DSRC
Vehicular Ad hoc Networks,”in Proc. of the 1st ACM int. workshop on
Vehicular ad hoc network, Oct. 1-1, 2004, pp.1-9.

[4] X. Yang, J. Liu, F. Zhao, and N. Vaidya, “A Vehicle-to-Vehicle
Communication Protocol for Cooperative CollisionWarning,” in Proc. of
1st Int. Conf. on Mobile and Ubiquitous Systems: Networking and
Services, Aug. 22-26, 2004, pp. 114-123.

[5] T.Mak, K. Laberteaux, and R. Sengupta, “Multi ChannelVANET
providing concurrent Safety and Commercial Services,” in Proc. of
the 2nd ACM int. workshop on Vehicular ad hoc networks, Sep. 02-02,
2005, pp. 1-9.

[6] S. B. Lee, G. Pan, J.S. Park, M. Gerla, and S. Lu,“Secure Incentives for
Commercial Ad Dissemination in Vehicular Networks,” inProc. of the
8th ACM int. symp. on Mobile ad hoc networking and computing, Sept.
9-14, 2007, pp. 150-159.

[7] K. Daniel, Wong, K. Tepe, W. Chen and M. Gerla, “Inter-Vehicular
Communications,”in IEEE Wireless Communications, Vol.13, No. 5, pp.
6-7, Oct. 2006.

[8] R. A. Santos, A. Edwards and O. Alvarez, “Towards an Inter vehicle
Communication Algorithm,” The 3rd International Conference on
Electrical and Electronics Engineering, September 6-8, 2006, pp. 1-4.

[9] M. Durresi, A. Durresi and L. Barolli, “Adaptive Inter Vehicle
Communications,” International Journal of Wireless Information
Networks,Vol. 13, No. 2, pp. 151-160, April 2006.

[10] C. Su and L. Tassiulas, “Broadcast scheduling for information
distribution,” in Proc. of 16TH International Conference on Computer
Communications, April 7-12, 1997, Vol. 1, pp. 109-117.

[11] D. Aksoy and M. Franklin, “R*w: a scheduling approach for large scale
on-demand data broadcast,” IEEE/ACM Transactions on Networking,
Vol. 7, No. 6, pp. 846–860, Dec. 1999.

[12] R .Gandhi, S. Khuller, Y. Kim and Y. Wan, “Algorithms for minimizing
response time in broadcast Scheduling,” ALGORITHMICA, Vol. 38,
No.4, pp. 597–608, 2004.

[13] S. Acharya and S. Muthukrishnan, “Scheduling On DemandBroadcasts:
New Metrics and Algorithms,”in Proc. of the 4th annual ACM/IEEE
int.conf. on Mobile computing and networking, Oct. 25-30, 1998, pp.
43-54.

 (IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No. 10, 2012

198 | P a g e

www.ijacsa.thesai.org

[14] J. Xu, X. Tang and W. Lee, “Time-critical On-demand Data Broadcast:
Algorithms, Analysis, and Performance evaluation,” IEEE
Transaction on Parallel Distributed Systems, Vol. 17, No. 1, pp. 3–14,
2006.

[15] S. Jiang and N. Vaidya, “Scheduling data broadcast to impatientusers,”
inProc. of the 1st ACM int. workshop on Data engineering for wireless
and mobile access, Aug. 20-20, 1999, pp. 52–59.

[16] Y. Zhang and G. Cao, “V-PADA: Vehicle Platoon Aware Data Access
in VANETs,” IEEE transactions on vehicular technology, Vol.60, No.
5, pp. 2326-2339, June 2011.

[17] Y. Zhang, J. Zhao and G. Cao, “Service Scheduling of Vehicle-Roadside
Data Access,” in international journal of Mobile Networks and
Application.,Vol. 15, No. 1, pp. 83-96, Feb. 2010.

