
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

65 | P a g e
www.ijacsa.thesai.org

Improving Seek Time for Column Store Using MMH

Algorithm

Tejaswini Apte

Sinhgad Institute of Business

Administration and Research

Kondhwa(BK),Pune-411048

Dr. Maya Ingle

Devi Ahilya VishwaVidyalay

Indore

Dr. A.K.Goyal

Devi Ahilya VishwaVidyalay

Indore

Abstract—Hash based search has, proven excellence on large

data warehouses stored in column store. Data distribution has

significant impact on hash based search. To reduce impact of

data distribution, we have proposed Memory Managed Hash

(MMH) algorithm that uses shift XOR group for Queries and

Transactions in column store. Our experiments show that MMH

improves read and write throughput by 22% for TPC-H
distribution.

Keywords- Load; Selectivity; Seek; TPC-H; Algorithms; Hash.

I. INTRODUCTION

Searching in Column Store (CS) is greatly influenced by
the address lookup process. Hashing algorithms have been
widely adopted to provide fast address look-up process [2, 3,
8]. Bob Jenkins’ hashing algorithm processes the key twelve
octets at a time; the post processing step is slightly more
complex because of handling of partial final block [14] in CS.
However, it is possible to improve the throughput rate for fast
address lookup in CS.

For various data warehouse applications, address lookup
performs major role in performance measurement. The related
and existing techniques of hashing and lookup are discussed in
Section 2. Hash scan participates in performance of CS;
Section 3 summarizes the hash scan for simple and complex
queries. The proposed algorithm is an improved version of
Jenkins' algorithm named as MMH. The informal and formal
description of algorithm is discussed in Section 4. Case study
was presented to show the effectiveness of our algorithm
MMH with the help of implementation details in Section 5.
Result analysis of MMH over Jenkins' is discussed in Section
6. Finally, we conclude with future work in Section 7.

I.RELATED WORK

Hashing has been used most successfully to avoid block
conflicts in interleaved parallel memory systems used in
multiprocessors and vector processors. Linear skewing
functions, computes the block number using integer arithmetic
[2, 3]. Stride patterns are mapped conflict-free when the stride
and the number of memory blocks are relative primes [4].

To minimize the latency in computing per-block address,
fragmentation was introduced in the Burroughs Scientific
Processor, however it wastes 1/17th of the memory [5].
Fragmentation and complex block number computations are

not necessary to obtain conflict free access to stride patterns. It
has been observed that some particular types of XOR-based
hash functions that are based on the division of binary
polynomials, can simultaneously map a large number of stride-
based patterns conflict-free [6]. XOR-based interleaving
functions mainly focused on constructing a conflict-free hash
function for several patterns complete with success [15, 8].
Bob Jenkins' hash produces uniformly distributed values for the
hash tables [14]. However, literature reveals that there is a
scope to improve the seek time of Jenkins algorithm for
Column Store.

II. COLUMN STORE HASH SCAN

This section describes Hash Scan for simple and complex
queries both for column store.

A. Hash Scan for Simple Queries

The complexity of hash scan is highly influenced by the
size of data warehouse. Hash function may use partial or entire
record as key to generate hash value. The parameters for hash
based search are selectivity and cardinality for the given query.
For shift XOR, with uniform distribution, if the key is having n
values, probability density function (pdf) is:

Selectivity = n/ (number of distinct values)

Pdf (n)=1/ selectivity

B. Hash Scan for Complex Queries

Assume the given relation has multiple attributes stored in
CS architecture. Let AK is the length of attribute, LID is the
length of the tuple identifier or primary key and MROW is the
matched row of second segment.

The number of seeks for given query is expressed as:

 Number of seeks required to retrieve tuples from the
scanned segment.

Number of seeks = ((numberOfRows) *AK + LID)*

blocksize

 Number of seeks required to retrieve the remainder of
the original tuples for those transactions which require
it.

Number of seeks = ((numberOfRows) *AK + LID)*
blocksize + ((MROW)*AK+LID)*blocksize

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

66 | P a g e
www.ijacsa.thesai.org

III. PROPOSED ALGORITHM - MMH

MMH algorithm is designed and tested with varying
selectivity and cardinality of TPC-H distribution. The
performance improvements could be demonstrated by
executing following query on TPC-H schema with & without
MMH algorithm.

select

 s_acctbal,

 s_name,

 n_name,

 p_partkey,

 p_mfgr,

 s_address,

 s_phone,

 s_comment

from

 part,

 supplier,

 partsupp,

 nation,

 region

where

 p_partkey = ps_partkey

 and s_suppkey = ps_suppkey

 and p_size = 29

 and p_type like '% BURNISHED TIN'

 and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey

 and r_name = 'MIDDLE EAST'

 and ps_supplycost = (

 select

 min(ps_supplycost)

 from

 partsupp,

 supplier,

 nation,

 region

 where

 p_partkey = ps_partkey

 and s_suppkey = ps_suppkey

 and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey

 and r_name = 'MIDDLE EAST'

)

order by

 s_acctbal desc,

 n_name,

 s_name,

 p_partkey;

A. Informal Description

The proposed algorithm MMH is broadly designed with
four functions:

 query(TPC-H-Q) Input parameter is a TPC-H query
and return a valid sql query as output. This function is
necessary to provide query for generation of hash value
to improve search time.

 strHash(q) Input parameter is a valid sql query, this
function uses CSXOR function to change the query to
appropriate hash value. Primitive operations on
database points to BUN heap, contains the atomic
values inside the two columns. Fixed-sized atoms,
reside directly in the BUN heap.

 HEAPalloc(d, size, 1) Input parameters are the
memory heap and size. This function carries out
checks for allocation of memory.

 CSXOR (h,s) Input parameters are memory heap and
query. Execution generates hash value and is placed in
passed heap.

B. Formal Description - MMH

/* Memory Managed Hash (MMH) Algorithm stores hash

values in memory location for TPC-H schema query

processing */

/* Main program begins */

main()

{

 s=query(TPC-H);

 strHash (char *s)

 {

 /* Declaration of variables */

 Heap d, size = 1<<10 * sizeof(stridx);

 /* Checking allocation size */
 if HEAPalloc(d, size, 1) >= 0)

 {

 d->free = 1<<10* sizeof(stridx);

 /* Declare and initialize Binary UNits (BUN)*/

 BUN res=1<<10-1;

 /* Call a function with string s and store in BUN */

 res=CSXOR(d,s);

 /* stores hash values in heap d with its base

 value, base position and free space*/

 memset(res->base, 0, res->free);

 }
 }

}

end.

/* End of main */
CSXOR(Heap h, const char v)
/* This function performs string search with shift XOR operation;
with input parameters h as memory space and v as constant string; It

outputs generated hash values */
begin
{
 /* Declaration of variables */
 stridx_t *ref, *next;
/*Extend memory allocation by allocating more binary units BUN */
EXLEN=BUN size+1<<3-1;
size_t exlen=h->hashash?EXLEN:0;
/* Initializing binary units*/

 BUN off;
 off=1<<10-1;
/* Shift XOR operation for generating hash values and to search

string */
 hkeyvalues=0;
 for i = h to v do
 {

 hkeyvalues ^= (hkeyvalues << 10) +

 (hkeyvalues >> 7) +v;

 h.base=hkeyvalues;

 }

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

67 | P a g e
www.ijacsa.thesai.org

 /* Searching for string in heap */
 for ref = h.base+off to h.length do
 {
 ref=next;
 next=(h.base+ref);

 if STRCMP(v, (str) (next + 1) + exlen) == 0)
 return ((sizeof(stridx_t) + *ref + exlen) >>3);
 }
 }
end.

IV. CASE STUDY

MMH is designed from the shift-XOR class of hashing
function. To support the hypothesis, we experimentally
evaluate the MMH on real data sets i.e. TPC-H schema. In our
experiments, we have focused on certain table sizes and load
factors, to allow comparisons with original algorithm. We first
investigated average search lengths for successful and
unsuccessful search. The MMH results are compared to
Jenkins' algorithm (Table 1 and Table 2). As can be seen,
proposed algorithm performs better for TPC-H schema.

TABLE I. RESPONSE OF EXECUTION OF QUERIES

TPC-H

Queries

 Jenkins'

time

(in ms)

MMH

 time

(in ms)

2 196.959 92.73

3 1100 900

4 611.088 541.846

5 929.93 900

6 601.881 540.692

7 1000 900

8 227.257 196.401

9 855.851 672.403

10 4200 3000

12 850.772 727.156

16 423.415 305.074

17 396.955 258.854

19 3400 2500

21 1000 772

TABLE II. COMPARISON OF TRANSACTION LOAD TIME

Relation Jenkins' (in ms)

MMH

(in ms)

Region 179.696 140

Nation 136.036 102.321

Supplier 272.617 202.886

Customer 1600 1000

Part 1600 1200

PartSupp 25300 18200

Orders 30000 17700

LineItem 140000 100000

II.RESULT ANALYSIS

The proposed algorithm performs uniformly and efficiently
independently of data size. From experiments with large sets of
keys we have observed that with poorly chosen hashing
function, performance can deteriorate markedly as the number
of keys increases (Figure 1). Experimental results for the
expected length of the load search time (LST) values vary
significantly between runs. We chose a random set of TPC-H
schema keys, the distribution of LST values is even narrower.

MMH improvement to average LST is 30% on Red Hat Linux
2.4 GHz Intel processor and 1GB of RAM. (Figure 2). To our
knowledge these are the first experiments testing these
predictions.

Figure 1. Result Analysis for Transaction Query Time

Figure 2. Figure 2: Result Analysis for Transaction Load Time

V. CONCLUSION AND FUTURE WORK

The proposed algorithm is a generic search algorithm for
CS data storage. The algorithm is designed specifically for use
in query intensive environment. A key design principle of
MMH to improve the throughput by minimizing the disk seeks.
To achieve we used the hash function of shift-XOR class. We
experimentally demonstrated gain in performance by MMH.
The continued evolution of hard disk technology should make
such performance advantages clearer in the future. The most
obvious avenue for future work is an extension of MMH
algorithm for multiple instances of CS. The most significant
question that must be addressed when extending the MMH to a
multi-instance environment is handling synchronization for
various disks seeks.

REFERENCES

[1] H. Vandierendonck and K. De Bosschere, “Randomized Caches for

Power-Efficiency,” IEICE Trans. Electronics, vol. E86-C, no. 10, pp.
2137-2144, 2003.

[2] D.J. Kuck, “ILLIAC IV Software and Application Programming,” IEEE

Trans. Computers, vol. 17, no. 8, pp. 758-770, Aug. 1968.

[3] G.S. Sohi, “High-Bandwidth Interleaved Memories for Vector
Processors—A Simulation Study,” IEEE Trans. Computers, vol. 42, no.

1, pp. 34-44, Jan. 1993.

[4] D.J. Kuck and R.A. Stokes, “The Burroughs Scientific Processor
(BSP),” IEEE Trans. Computers, vol. 31, no. 5, pp. 363-376, May 1982.

[5] D.H. Lawrie and C.R. Vora, “The Prime Memory System for Array

Access,” IEEE Trans. Computers, vol. 31, no. 5, pp. 435-442, May
1982.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 3 4 5 6 7 8 9 10 12 16 17 19 21

Jenkins(ms)

MMH(ms)

0
20000
40000
60000
80000

100000
120000
140000
160000

C
u
st
o
m
er

Li
n
e
It
e
m

N
at
io
n

O
rd
e
rs

P
ar
t

P
ar
tS
u
p
p

R
e
gi
o
n

Su
p
p
lie
r

Jenkins(ms)

MMH(ms)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

68 | P a g e
www.ijacsa.thesai.org

[6] B.R. Rau, “Pseudo-Randomly Interleaved Memory,” Proc. 18
th
 Ann.

Int’l Symp. Computer Architecture, pp. 74-83, May 1991.

[7] R. Raghavan and J.P. Hayes, “On Randomly Interleaved Memories,”

SC90: Proc. Supercomputing ’90, pp. 49-58, Nov. 1990.

[8] J.M. Frailong, W. Jalby, and J. Lenfant, “XOR-Schemes: A Flexible
Data Organization in Parallel Memories,” Proc. 1985 Int’l Conf. Parallel

Processing, pp. 276-283, Aug. 1985.

[9] N. Topham and A. Gonza´lez, “Randomized Cache Placement for
Eliminating Conflicts,” IEEE Trans. Computers, vol. 48, no. 2, pp. 185-

192, Feb. 1999.

[10] Jenkins Bob "A hash function for hash Table lookup".

[11] A. Gonza´ lez, M. Valero, N. Topham, and J.M. Parcerisa, “Eliminating
Cache Conflict Misses through XOR-Based Placement Functions,” Proc.

1997 Int’l Conf. Supercomputing, pp. 76-83, July 1997.

[12] Expected worst-case performance of hash files. Copmuter journal,
Volume 25,Number 3, pages 347-352,1982

[13] VY. Lum. General performance analysis of key-to address

transformations method using an abstract file concept. communication of
the ACM, volume 16, Number10, pages 603-612,1973

