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Abstract—This paper studies the difference in computational 

power between the mesh-connected parallel computers equipped 

with dynamically reconfigurable bus systems and those with 

static ones. The mesh with separable buses (MSB) is the mesh-

connected parallel computer with dynamically reconfigurable 

row/column buses. The broadcast buses of the MSB can be 

dynamically sectioned into smaller bus segments by program 

control. We show that the MSB of size     can work with 

 (     )  step even if its dynamic reconfigurable function is 

disabled. Here, we assume the word-model broadcast buses, and 

use the relation between the word-model bus and the bit-model 
bus. 
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I.INTRODUCTION 

The mesh-connected parallel computers equipped with 
dynamically reconfigurable bus systems gained much attention 
due to their strong computational powers [3, 11, 12, 13, 14]. 
The dynamic reconfigurable function enables the models to 
make efficient use of broadcast buses, and to solve many 
important, fundamental problems efficiently, mostly in a 
constant or polylogarithmic time [13]. Such reconfigurability, 
however, makes the bus systems complex and causes negative 
effects on the communication latency of global buses [2]. 
Hence, it is practically important to study the trade-off between 
such points quantitatively.  

In this paper, we investigate the impact of reconfigurable 
capability on the computational power of mesh-connected 
computers with global buses. Here, we deal with the meshes 
with separable buses (MSB) [3, 12] and a variant of the meshes 
with partitioned buses called the meshes with multiple 
partitioned buses (MMPB) [4]. The MSB and the MMPB are 
the mesh-connected computers enhanced by the addition of 
broadcast buses along every row and column.  

The broadcast buses of the MSB, called separable buses, 
can be dynamically sectioned into smaller bus segments by 
program control, while those of the MMPB, called partitioned 
buses, are statically partitioned in advance and cannot be 
dynamically reconfigurable. In the MSB model, each 

row/column has only one separable bus, while in the MMPB 
model, each row/column has   partitioned buses (   ). By 
comparing the relative power between these models, we clarify 
the difference in computational power between the parallel 
models equipped with reconfigurable bus systems and those 
with static ones.   In this paper, we assume that the size of MSB 
and that of MMPB are of     . The case of different sizes 
was investigated in [8]. 

Here, we study how much slowdown is necessary when we 
deprive the MSB of its reconfigurable function. In [5, 6], we 
have shown that the MSB of size     can be simulated time-

optimally in  (        ⁄ ) steps using the MMPB of size   
 , where L is constant and the global buses are of word-model, 
i.e., the bus-width is the same as the number of bits in one 
word. From this result, it is natural to think that the slowdown 
may be at least of polynomial time. However, here we show 
that we can suppress the slowdown to polylogarithmic time, by 
making use of the relation between the word-model bus and the 
bit-model bus.  

In this paper, we show that the     MSB can work 
with          step slowdown even if its reconfigurable 
function is disabled. Here, we assume that the broadcast buses 
are of word-model, and use the relation between the word-
model bus and the bit-model bus. As a corollary, since we have 
shown that the MSB of size     can simulate the 
reconfigurable mesh [1, 11, 14] (or PARBS, the processor 
array with reconfigurable bus systems) of size     in 
         steps [10], we can say that the reconfigurable mesh 
of size     can also work with          step slowdown 
even if its reconfigurable function is unused. In [7], we have 
proposed more efficient algorithm, which exploits the pipeline 
technique heavily. Although the algorithm presented here is 
slower than the one in [7] by the factor of log n, the key ideas 
and explanations are much simpler than those in [7].  

This paper is organized as follows: Section II describes the 
MSB and the MMPB models, and briefly explains how to solve 
the simulation problem of the MSB by using the MMPB. 
Section III shows that the     MSB can work with          
step slowdown even if its reconfigurable function is disabled. 
Lastly, Section IV offers concluding remarks.  
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II.PRELIMINARIES 

A. Models 

An     mesh consists of n identical processors or 
processing elements (PEs) arranged in a two-dimensional grid 
with n rows and n columns. We assume that all the meshes are 
synchronous. The PE located at the grid point (i, j), denoted as 
PE[i,j], is connected via bi-directional unit time communication 
links to those PEs at (     ) and (     ), provided they exist 
(       ). PE[0,0] is located in the top-left corner of the 
mesh. Each PE[i, j] is assumed to know its coordinates (i, j).  

An     mesh with separable buses (MSB) and an     
mesh with multiple partitioned buses (MMPB) are the     
meshes enhanced with the addition of broadcast buses along 
every row and column. The broadcast buses of the MSB, called 
separable buses, can be dynamically sectioned through the PE-
controlled switches during the execution of programs, while 
those of the MMPB are statically partitioned in advance by a 
fixed length. In the MSB model, each row/column has only one 
separable bus (Fig. 1), while in the MMPB model each 
row/column has L partitioned buses (Fig. 2). The MSB is 
essentially the same model as the horizontal-vertical 
reconfigurable mesh (HV-RM) described in [1, 13]. Those L 
partitioned buses of the MMPB are indexed as level-1, level-2, 
..., level-L, respectively. We assume that the partitioned buses 
of the MMPB are equally partitioned by the same length if they 
belong to the same level. For each level-k, the value    denotes 
the length of a bus segment of the partitioned bus in level-k. 
Without loss of generality, we assume        . 

We assume that the word size of processor is ⌈     ⌉ for a 
mesh of size    . As for the bus-width, we consider two 
types of bus-models: word-model and bit-model [13]. In the 
word-model, a broadcast bus consists of ⌈     ⌉  wires and 

conveys one word of data in one step; in the bit-model, a 
broadcast bus consists of a single wire and conveys only one 
bit of data in a step. We call the MSB (resp. MMPB) with 
word-model global bus by the word-model MSB (resp. 
MMPB). The bit-model MSB and MMPB are termed similarly. 
(Strictly speaking, the bit-model defined in [13] assumes that 
both the processor word-size and bus-width are constant. Here, 
we assume that only bus-width is constant, and that processor 
word-size is of ⌈     ⌉ for the mesh of size    .) 

A single time step of the MSB and the MMPB is composed 
of the following three sub-steps:  

1) Local communication sub-step: 

Every PE communicates with its adjacent PEs via local 

links.  

2) Broadcast sub-step: 

Every PE changes its switch configurations by local 

decision (this operation is only for the MSB). Then, along 

each broadcast bus segment, several of the PEs connected 

to the bus send data to the bus, and several of the PEs on 

the bus receive the data transmitted on the bus.  

3) Compute sub-step: 

Every PE executes some local computation.  
Here, we assume that a PE writes to only one bus at a time 

in the MMPB model. The bus accessing capability is similar to 
that of the Common-CRCW PRAM model. If there is a write-
conflict on a bus, the PEs on the bus receive a special value   
(i.e., PEs can detect whether there is a write-conflict on a bus 
or not). If there is no data transmitted on a bus, the PEs on the 
bus receive a special value   (i.e., PEs can know whether there 
is data transmitted on a bus or not). 

B. Port-Connectivity-Graph 

 

Figure 1. A separable bus along a row of the n  n MSB. Each PE has access to the bus via the two read/write-ports beside the sectioning switch. 

                                

Figure 2. Partitioned buses along a row of the n  n MMPB. Here, L = 2,  １=n, and  2 = n / . 
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To simulate operations of the MSB by using the MMPB, 
we focus on how to mimic the broadcast sub-step of the MSB 
by using the MMPB, because the local communication and the 
compute sub-steps of the MSB can be easily simulated in a 
constant number of steps by the MMPB.  

The simulation of broadcast sub-step can be achieved by 
connected-component labeling (CC-labeling) of a port-
connectivity graph (pc-graph). See Fig. 3 (a) and (b) for an 
example. Vertices of the pc-graph correspond to read/write-
ports of PEs, and edges stand for the port-to-port connections. 
Each vertex is initially labeled by the value that is sent through 
the corresponding port by the PE at the broadcast sub-step. If 
there is no data sent through the port, the vertex is labeled by . 
The CC-labeling is done in such a way that vertices in each 
component C is labeled by the smallest initial label of all the 
vertices in C, with regarding   as the greatest value (Fig. 3 (c)). 
These labels are called component labels. Obviously, the 
broadcast sub-step of the MSB can be simulated in      steps 
on the MMPB if the CC-labeling of the corresponding pc-graph 
can be solved in      steps by the MMPB. If there occurs 
collision on a bus segment, at least one of the senders can 
detect it by comparing its sending data with the component 
label obtained by the CC-labeling algorithm (e.g.,     in Fig. 3 
senses the collision). Then, by distributing such collision 
information using the CC-labeling algorithm, PEs can resolve 
the collision.  

In Section III, we solve the CC-labeling problem by the 
divide-and-conquer strategy composed of the following three 
phases: 

Phase 1: {local labeling} 

Divide the pc-graph into sub-graphs, and label vertices 
locally within each sub-graph. These labels are called 
local component labels. In each sub-graph, also check 
whether the two vertices located at the boundary of the 
sub-graph are connected to each other or not (this 
connectivity information is used in Phase 2).  

Phase 2: {global labeling of boundary vertices} 

Label those vertices located at the boundary of each sub-
graph with component labels.  

Phase 3: {local labeling for adjustment} 

Update vertex labels with component labels within each 
of the sub-graph for the consistency with Phase 2.  

In the next section, we implement the above algorithm on the 
MMPB model. 

III.SIMULATION ALGORITHM 

In this section, we show that the     MSB can work 
with          step slowdown even if its reconfigurable 
function is disabled. For clarity, let MMPB<L> denote the 
MMPB that has L partitioned buses per row/column.  

First, we prove that any step of the word-model MSB of 
size     can be simulated by the word-model MMPB<L> of 

size     in  (         ⁄ ) steps even when L is non-constant. 

Next, we show that any step of the word-model MSB of size 
    can work with          step slowdown even if we 
deprive the MSB of its reconfigurability, by considering the 
relation between the word-model bus and the bit-model one.  

 
Figure 3. Broadcasts on a separable bus along a row of the  6   6 MSB are simulated by connected-component labeling of the port-

connectivity graph. 
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A. Simulation of the word-model MSB by the word-model 

MMPB  

In [5, 6], we have proved the following lemma, assuming 
that L is a fixed constant.  

Lemma 1 [5, 6] Any step of the word-model MSB of size     
can be simulated by the word-model MMPB<L> of size     in 

 (√   ∑ √      ⁄   
       ⁄ )  steps where L is a fixed 

constant.                                                                                       

In this section, we show that we obtain the almost same result 
as Lemma 1, even if we assume that L is non-constant.  

In what follows, we mainly focus on how to simulate the 
broadcasts along a row of the simulated MSB by using the 
corresponding row of the simulating MMPB. The simulation 
for columns can be achieved similarly.  

To begin with, we introduce two fundamental results.  

Lemma 2 [9] The broadcasts taken on the separable bus in the 
row i of the word-model MSB of size     can be simulated in 

 (√      ⁄ ) steps by the word-model MMPB<1> of size  

   .                                                                                         

    

Corollary 1 [9] The broadcasts taken on the separable bus in 
the row i of the word-model MSB of size     can be 

simulated in  (√ ) steps by the word-model MMPB<1> of size 

    when   =  .                                                                           
   

Then, we can prove the following lemma even if L is non-
constant. 

Lemma 3 The broadcasts taken on the separable bus in the 
row i of the word-model MSB of size     can be simulated in 
the row i of the word-model MMPB<L> of size     in 

 (√   ∑ √      ⁄   
       ⁄   ) steps. 

Proof: Let define   (n), U(n), and V(n) as follows: 

  (n): the time cost for simulating the broadcasts taken 
along the separable bus in row i of the word-model MSB of 
size     using row i of the word-model MMPB<k>of size 
   .  

U(n): the time cost for simulating the broadcasts taken 
along the separable bus in row i of the word-model MSB of 
size     by using row i of the word-model MMPB<1>of 
size    . 

V(n): the time cost for simulating the broadcasts taken 
along the row i of the word-model MSB of size     by 
using row i of the word-model MMPB<1> of size     
when   =  . 

From Lemma 2 and Corollary 1, there exist some constants    
and    such that the following two inequalities hold: 

        (√   
 

  
),                            (1) 

       (√ ).                              (2) 

In what follows, we prove that the following equation holds 
for some constant c. The proof is done by mathematical 
induction on k (   ).  

       ( √    ∑ √
  

    

   
    

 

  
  )           (3) 

Here, without loss of generality, we assume     ,   . 

For the base case where   =   , from Eq. (1) and     , 
we have  

     =        (√   
 

  

)   ( √   
 

  

  ) 

and thus Eq. (3) holds.  

For the inductive case where     , we prove Eq. (3), 
assuming that the following inductive hypothesis holds.  

         ( √      ∑ √
  

    

   
    

 

  
    )   (4) 

Let    and     respectively denote PE[    ] of the     

MSB and PE[   ] of the     MMPB<k> (     ). Now, 
we explain how to implement the algorithm defined in Section 
II B. We divide the pc-graph corresponding to the broadcasts 
on the row separable bus into  /  disjoint sub-graphs 
  ,   ,...,    /      of width    . Here, we say that a sub-graph 

of pc-graph is of width w if it contains 2w vertices 
corresponding to the read/write-ports of w consecutive PEs. 
The CC-labeling of such defined pc-graph is carried out on the 
MMPB<k> as follows. We divide the row of the simulating 

MMPB<k> into  /   disjoint blocks  ,    ,...,     /      in a 

way that each    consists of      (                   ). 

Note that each sub-graph    is processed by block    alone. 

Then, for each block   , since the PEs in    and a bus segment 

of the level-k partitioned bus can be seen as a linear processor 
array of     PEs with a single broadcast bus of length    , 
Phase 1 can be executed in V(  ) steps. As for Phase 2, the 
number of active PEs is  n/  , and each of those PEs can 
communicate in a constant time with next such PEs via either a 
local communication link or a bus segment of the level-k 
partitioned bus. Hence, by conveying the information of 

boundary vertices of each    to the leftmost PE in   , and 

letting the information be processed by the leftmost PE in    

alone, Phase 2 is essentially the same problem as simulating the 
broadcast operation of the    /   MSB using the    /   
MMPB<k-1> where each level-j partitioned buses are segmented 
by the length     =     ⁄  (     ). Here, It should be noted 

that         holds for each l (     ). The operations 
required for such adjustment (data transmission to/from the 

leftmost PE of each   , etc.) can be completed in a constant 

number of steps, and let    be the time cost for them. Without 
violating the argument here, we assume that      holds. (We 

can chose the constant c appropriately in advance so that c ≧
   holds.) Then, from Eq. (4), Phase 2 can be completed in  

    (
 

  

)     

                where level-j bus is segmented by    =      ⁄  
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   〈               〉 

 ( √       ∑√
   

     

   

   

 
 

  

   ⁄   ) 
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 ( √
    

  

  ∑√
  
  

    

  

⁄

   

   

 
 

  

  

  

⁄   ) 
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 ( ∑√
  

    

   

   

 
 

  

  ) 

steps. Phase 3 can be done in       steps similarly to Phase 1. 
As a whole, the algorithm can be executed in 

         ( ∑ √
  

    

   
    

 

  
  ) 

   〈          〉 

   √    ( ∑√
  

    

   

   

 
 

  

  ) 

   〈       〉 

 ( √    ∑√
  

    

   

   

 
 

  

  ) 

steps, and thus Eq. (3) holds for k >1 as well. The conclusion 
follows.                                                                                        

The local communication and the compute sub-steps of the 
MSB can be easily simulated in a constant number of steps by 

the MMPB. Hence, by letting each    =        where 

  =         /      , we have the following lemma 

from Lemma 3.  

Lemma 4 Any step of the word-model MSB of size     can 
be simulated by the word-model MMPB<L> of size     in 

 (         ⁄ ) steps.                                                                   

B. Simulation of the word-model MSB by the bit-model 

MMPB  

In this section, we show that any step of the word-model 
MSB of size     can work with          step slowdown 
even if we deprive the MSB of its reconfigurable function, by 
considering the relation between the word-model bus and the 
bit-model one.  

First, we prove the following lemma.  

Lemma 5 Any step of the word-model MMPB<L> of size     
can be simulated by the bit-model MMPB<L> of size     in 
        steps.  

Proof: The ⌈     ⌉  bits of one word data can be conveyed 
sequentially in ⌈     ⌉ steps, one bit per step, in the bit-model 
MMPB<L>.                                                                                    

We illustrate the results of Lemma 4 and 5 in Fig. 4. 
Obviously, Fig. 4 implies the following lemma:  

Lemma 6 Any step of the word-model MSB of size     can 
be simulated by the bit-model MMPB<L> of size     in 

 (         ⁄       ) steps.                                                          

By letting L = log n, we obtain the following corollary.  

 
Figure 4. The simulation costs among the MSB and MMPBs. 

  

Figure 5. A word-model bus is decomposed to w bit-model buses where w is the word-length of processor. 
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Corollary 2 Any step of the word-model MSB of size     can 
be simulated by the bit-model MMPB<log n> of size     in 
         steps.  

Proof: By letting L=      , we can calculate the time-
complexity as follows:  

 (         ⁄      ) 

=  〈   =       〉 

 (           ⁄       ) 

=  〈             ⁄                 n   n     〉 

          

Thus, the conclusion follows.                                                      

Since the word-model MSB of size     has       wires 
for each row/column, we can view a word-model bus as log n 
bit-model buses (Fig. 5). Hence, without increasing any circuit-
complexity, we obtain the bit-model MMPB

<log n>
 of size     

from the word-model MSB of size    . With this observation 
and Corollary 2, we can state the main theorem of this paper as 
follows: 

Theorem 1 Any step of the word-model MSB of size n × n can 
work with          step slowdown even if its reconfigurable 
capability is unused.                                                                    

IV.CONCLUDING REMARKS 

In this paper, we showed that the word-model MSB of size 
    can work with          step slowdown even if its 
reconfigurable capability is unused. We obtain the result from 
these two facts: 1) every global bus of the word-model MSB of 
size     consists of ⌈     ⌉ wires, and 2) we can obtain the 
bit-model MMPB of size     with L=⌈     ⌉ from the word- 
model MSB of size     without increasing circuit-
complexity. In [7], we have proposed more efficeint algorithm 
that exploits the pipeline technique heavily. Although the 
simulation algorithm presented here is slower than the one in 
[7] by the factor of       , the key ideas and explanations are 
much simpler than those in [7].   

From a practical viewpoint, we expect that the 
communication latency of the broadcast buses of the MMPB is 
much smaller than that of the MSB. Each broadcast bus of the 
MSB of size     can form the broadcast bus whose length is 
n, and such a bus contains      sectioning switch elements in 
it. As for the MMPB of size    , though the bus length is 
also at most n, but no switch element is inserted to the bus 
because it has no sectioning switch. Hence, compared to the 
MSB, the MMPB model has an advantage that each broadcast 

bus has smaller propagation delay introduced by the switch 
elements inserted into the bus (i.e., device propagation delay), 
and thus our simulation algorithm is practically useful when the 
mesh size becomes so large that we cannot neglect the delay.  
In future work, we will study the effectiveness of our 
simulation algorithm, by taking into account the propagation 
delay. 
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