
(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 3, No.2, 2012 

111 | P a g e  
www.ijacsa.thesai.org 

An Improved Squaring Circuit for Binary Numbers 
 

Kabiraj Sethi 

Department of Electronics and  

Telecommunication Engineering,  

VSS University of Technology, Burla  

Formerly UCE, Burla-768018. (India)  

Rutuparna Panda 

Department of Electronics and 

Telecommunication Engineering, 

VSS University of Technology, Burla 

Formerly UCE, Burla-768018. (India) 
 

 

Abstract—In this paper, a high speed squaring circuit for binary 

numbers is proposed. High speed Vedic multiplier is used for 

design of the proposed squaring circuit. The key to our success is 

that only one Vedic multiplier is used instead of four multipliers 

reported in the literature. In addition, one squaring circuit is 

used twice. Our proposed Squaring Circuit seems to have better 
performance in terms of speed. 
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I. INTRODUCTION 

Multiplication and squaring are most common and 
important arithmetic operations having wide applications in 
different areas of engineering and technology. The 
performance of any circuit is evaluated mainly by estimating 
the silicon area and speed (delay). Hence, continuous efforts 
are being made to achieve the same. In order to calculate the 
square of a binary number, fast multipliers such as Braun 
Array, Baugh-Wooley methods of two’s compliment, Booth’s 
algorithm using recorded multiplier and Wallace trees are in 
use. Recursive decomposition and Booth’s algorithm are the 
most successful algorithms used for multiplication. Other 
methods include Vedic multipliers based on ‘Urdhva 
Tiryagbhyam’ and the “Duplex” properties of ‘Urdhva 
Tiryagbhyam’. Therefore, the main motivation behind this 
work is to investigate the VLSI Design and Implementation of 
Squaring Circuit architecture with reduced delay. Interestingly, 
only one multiplier is used here instead of four multipliers 
reported in the literature.  Here, one squaring circuit is used 
twice to reduce delay. 

 Vedic mathematics was reconstructed from Vedas by Sri 
Bharati Krisna Tirthaji (1884-1960) after his eight years of 
research on Vedas [1-3]. According to him, Vedic mathematics 
is mainly focused on sixteen very important principles or word-
formulae, which are otherwise known as Sutras. Note that the 
most important feature of the Vedic mathematics is its 
coherence. The entire system is wisely interrelated and unified. 
The general multiplication scheme can easily be reversed to 
achieve one-line divisions. Similarly, the simple Squaring 
Scheme can easily be reversed to produce one-line Square 
Roots. These methods are very easy to understand. This paper 
discusses a possible application of Vedic mathematics to 
design multipliers and squaring circuits. General idea for 
design of digital multipliers is described in [4, 5]. 

The idea of using Vedic mathematics for design of 
multipliers has been discussed in [6-13]. In [14], ‘Urdhva 

Tiryagbhyam’ Sutra is shown to be an efficient multiplication 
algorithm as compared to the conventional counterparts. 
Authors of [15] have also shown the effectiveness of this Sutra 
to reduce N×N multiplier structure into an efficient 4×4 
multiplier structure. However, they have mentioned that 4×4 
multiplier section can be implemented using any efficient 
multiplication algorithm. In [16], authors have presented an 
array multiplier architecture using Vedic Sutra. More or less 
the coding is done in VHDL and synthesis is done in Xilinx 
ISE series [17,18].  

Recently, a squaring circuit has been reported in the 
literature [19]. This may be noted that designing Vedic 
multipliers using array multiplier structures as discussed in 
above references provide us less delay and, thus, they are 
treated as high speed multipliers as compared to Booth’s 
algorithm using recorded multipliers and Wallace trees. 
However, we can reduce delay further using carry save adders 
(CSA). The idea of using CSA for design of digital multipliers 
is explained in [3,4]. This has motivated us to design Vedic 
multipliers based on CSA [20]. One more crucial issue with the 
earlier proposed methods is that they use four numbers of such 
Vedic multipliers to evaluate squaring of a n-bit binary 
number. Here, we have more focus on the issue and tried to use 
only one Vedic multiplier instead of four for evaluating square 
of a n-bit binary number. 

We apply Vedic Sutras to binary multipliers using carry 
save adders. In particular, we develop an efficient binary 
multiplier architecture that performs partial product generations 
and additions in parallel. With proper modification of the 
Vedic multiplier algorithm, the squaring circuit is developed. 
Here, the computation time involved is less. The combinational 
delay and the device utilizations obtained after synthesis is 
compared. Our proposed Vedic multiplier based Squaring 
Circuit seems to have better performance in terms of speed. 
The hardware architecture of the squaring circuit is presented. 

II. THE MULTIPLIER ARCHITECTURE 

    Booth’s multipliers [5] are normally used for squaring of 
binary numbers. The modified Booth multiplier considered 
uses four components. Booth Encoder, Partial Product 
Generator, Wallace Tree and Binary Adders are used for Booth 
multiplier architecture. Booth multiplier uses two main ideas to 
increase the speed of the multiplication process. First attempt is 
to reduce the number of partial products.  

Then the second attempt is to increase the speed at which 
the partial products are added. The partial products are reduced 
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using Booth encoder. Time for partial product additions is 
reduced using Wallace Tree. Further, Binary adder is used for 
addition of final sum vector and carry vector.  

In this section, we propose an efficient multiplier 
architecture using Vedic mathematics. The ‘Urdhva 
Tiryagbhyam’ (Vertically and Crosswise) sutra [2] has been 
traditionally used for the multiplication of two numbers in the 
decimal number system. In this paper, we apply this Sutra to 
the binary number system. The motivation behind the 
extension to binary number system is to make it compatible 
with the digital hardware circuits. This Sutra is illustrated with 
the help of a numerical example, where two decimal numbers 
are multiplied.  

 
Figure 1. Line diagram for multiplication. 

For more clarity, line diagram for the multiplication of two 
decimal numbers (123×456) is displayed in Fig. 1. Note that 
the digits on two ends of the line are multiplied and then results 
are added with the previous carry, as shown in the figure. 
When we find more lines in one step as shown in steps 2 to 4, 
all results are added to the previous carry. Interestingly enough, 
the least significant digit of the number, thus, obtained acts as 
one of the result digits. The rest digit acts as the carry for the 
next step. Note that here the initial carry is zero. 

We now extend the above idea (for multiplication) to 
binary number system.  Computer arithmetic [3,4] usually 
deals with binary number systems. Thus, there is a strong need 
to develop efficient schemes for multiplication of binary 
numbers. This may be noted that multiplication of two bits A0 
and B0 is nothing but an AND operation.    

Interestingly, this operation can easily be implemented 
using a two input AND gate used in digital circuits. Such types 
of multipliers using digital circuits similar to array multipliers 
are discussed in [21,22]. In order to illustrate this coveted 
multiplication scheme in binary number system, here we 
consider the multiplication of two binary numbers ( 4 bits) 
A3A2A1A0 and B3B2B1B0. As the result of this 
multiplication would be more than 4 bits, we express it as 
……R3R2R1R0. As an illustration, line diagram for 

multiplication of two 4-bit binary numbers is shown in Fig. 2. 
The same idea can be extended to higher bits. It is noteworthy 
to mention here that Fig.2 is simply the mapping of Fig.1 in 
binary system. For the sake of simplicity, each bit is 
represented by a cross enclosed by a circle. Least Significant 
Bit (LSB) R0 is obtained by multiplying the LSBs of the 
multiplicand and the multiplier. Here, the multiplication 
process is carried out according to steps displayed in Fig. 2. 
Further, digits on both sides of the line are multiplied and 
added with the carry from the previous step. All seven steps 
shown in Fig.2 are important. This generates one of the bits of 
the result (Rn) and a carry (Cn). This carry is added in the next 
step and, hence, the process goes on. If more than one line are 
there in one step, all results are added to the previous carry. In 
each step, least significant bit acts as the result bit and other 
bits act as carry. To be more specific, if in some intermediate 
step, the sum is ‘110’, then ‘0’  acts as the result bit and ‘11’ as 
the carry (which is denoted as Cn in this paper). It is 
noteworthy to mention here that Cn may be a multi-bit number. 
Thus, we get the following expressions: 

R0 = A0B0      (1) 

C1R1 = A1B0 + A0B1     (2) 

C2R2 = C1 + A2B0 + A1B1 + A0B2    (3) 

C3R3 = C2 + A3B0 + A2B1 + A1B2 + A0B3  (4) 

C4R4 = C3 + A3B1 + A2B2 + A1B3   (5) 

C5R5 = C4 + A3B2 + A2B3    (6) 

C6R6 = C5 + A3B3     (7) 
with C6R6R5R4R3R2R1R0 being the final product. Partial 

products are calculated in parallel and, hence, the delay 
involved is just the time it takes for the signal to propagate 
through the gates [8]. 

    The multiplier architecture is explained below.  Both 
2X2 Vedic multiplier module and 4X4 Vedic multiplier 
architecture are displayed below. The motivation is to reduce 
delay. Multiplier design ideas are well explained in [3,4]. Here, 
‘Urdhva Tiryagbhyam’ (Vertically and Crosswise) sutra [2] is 
used to propose such an architecture for the multiplication of 
two binary numbers.  

 
Figure 2. Line Diagram for multiplication of two 4-bit binary numbers. 

A. 2x2 Vedic Multiplier Module For   Binary Numbers 

Here, an efficient Vedic multiplier using carry save adder is 
presented. The 2X2 Vedic multiplier module is implemented 
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using two half-adder modules and is displayed in Fig. 3. Very 
precisely we can state that the total delay is only 2-half adder 
delays, after final bit products are generated. 

It is wise to write Implementation Equations of 2X2 Vedic 
multiplier module for simulation. The implementation 
equations are written as: 

R0 (1-bit) = A0.B0    (8) 

R1 (1-bit) = A1.B0 + A0.B1   (9) 

R2 (2-bits) = A1.B1 + R1 (1)   (10) 

Product = R2 & R1 & R0   (11) 
where ‘&’ denotes concatenation operation. Note that final 

result (product) is obtained using Eq.(11). 

 
Figure 3. Architecture of 2X2 multiplier. 

B. 4x4 Vedic Multiplier Module 

The 4X4 Vedic multiplier architecture is displayed in Fig.4. 
This is implemented using four 2X2 Vedic multiplier modules 
as discussed in Fig. 3. The beauty of Vedic multiplier is that 
here partial product generation and additions are done 
concurrently. Hence, it is well adapted to parallel processing. 
The feature makes it more attractive for binary multiplications. 
This, in turn, reduces delay.  

 
Figure 4. Architecture of 4X4 multiplier 

In this section, we describe the architecture of 4X4 
multiplier using Vedic method discussed above (Eqns.8-11). 
To get final product (P7P6P5P4P3P2P1P0), one 4-bit carry 
save adder, one 5-bit binary adder and one 4-bit binary adder 
are used.  In this proposal, the 4-bit carry save adder (CSA) is 
used to add three 4-bit operands, i.e. concatenated 4-bit (“00” 
& most significant two output bits of right hand most of 2X2 

multiplier module as shown in Fig.3) and two 4-bit operands 
we get from the output of two middle 2X2 multiplier modules. 
It may be noted that the outputs of the CSA (sum and carry) are 
fed into a 5-bit binary adder to generate 5-bit sum, as desired. 
Many more interesting ideas can be revoked here.  

It may be reiterated the fact that the middle part (P3P2) 
denotes the least significant two bits of 5-bit sum obtained 
from the 5-bit binary adder. Finally, as shown in Fig.4, the 4-
bit output of the left most 2X2 multiplier module and 
concatenated 4-bits (‘0’ & the most significant three bits of 5-
bit sum) are fed into a 4-bit binary adder. In this architecture, 
the P7P6P5P4 express the sum.  

The proposed Vedic multiplier can be used to reduce delay. 
Early literature speaks about Vedic multipliers based on array 
multiplier structures. On the other hand, we proposed a new 
architecture, which is efficient in terms of speed. The 
arrangements of CSA and binary adders shown help us to 
reduce dely. Interestingly, 8X8 and 16X16 Vedic multiplier 
modules are implemented easily by using four 4X4 and four 
8X8 multiplier modules, respectively. Further, the proposed 
4X4 Vedic multiplier can also be used for squaring of a 4-bit 
binary number.  

C. 2-Bit Squaring Circuit  

The 2X2 Vedic multiplier architecture is modified as shown 
in Fig. 5 to realise the 2-bit squaring circuit. Here, one half 
adder and one AND gate are utilized instead of two half-adders 
as shown in Fig. 3. 

 
Figure 5. Block Diagram of 2-bit Squaring Circuit. 

This is the basic module. Note that a 4-bit squaring circuit 
is implemented using two 2-bit squaring circuits (as shown in 
Fig.5) and one 2X2 Vedic Multiplier (as displayed in Fig.3) 
instead of four 2X2 Vedic Multiplier modules used in Fig.4.  

In the same manner, 8-bit squaring circuit and 16-bit 
squaring circuits are implemented using Vedic multiplier 
module and squaring circuits of 4-bit and 8-bit, respectively. 
Likewise, n-bit squaring circuit can be implemented taking one 
(n/2)-bit Vedic multiplier module and two (n/2)-bit squaring 
circuits. 

D. n-Bit Squaring Circuit 

Taking the architectural concept of 4X4 Vedic multiplier 
module, general block diagram of the newly proposed n-bit 
squaring circuit is shown in Fig. 6. 
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Figure 6. Architecture of n-bit Squaring Circuit. 

   Let us describe the proposed architecture of n-bit 
Squaring Circuit in a tabular form. Table-I explains the idea.  

TABLE I.  N-BIT SQUARING CIRCUIT DESCRIPTION 

Bit 
size 

Description Numbers 
used 

2 bit AND Gate 
XOR Gate 

2 
1 

4 bit 2X2 Vedic Multiplier 
2 bit squaring circuit 
CSA 
Binary Adder 

1 
2 
1 
2 

8 bit 4X4 Vedic Multiplier 
4 bit squaring circuit 
CSA 
Binary Adder 

1 
2 
1 
2 

16 bit 8X8 Vedic Multiplier 
8 bit squaring circuit 
CSA 
Binary Adder 

1 
2 
1 
2 

32 bit 16X16 Vedic Multiplier 
16 bit squaring circuit 
CSA 
Binary Adder 

1 
2 
1 
2 

64 bit 32X32 Vedic Multiplier 
32 bit squaring circuit 
CSA 

Binary Adder 

1 
2 
1 

2 
 

III. VERIFICATION AND IMPLEMENTATION 

In this work, 4-bit, 8-bit, 16-bit, 32-bit and 64-bit squaring 
circuits are implemented in VHDL [17]. Logic synthesis and 
simulation are done in Xilinx - Project Navigator and 
Modelsim simulator [18]. 

We compare our synthesis results with the method recently 
presented by Prabha et al [19]. The results are displayed in 
Table 2 and Table 3 for squaring circuits of different bit size. 

These Tables show the difference in combinational delays and 
the device utilization.  Squaring circuits of different bit size are 
considered for simulation. Comparison of combinational delay 
in nano seconds (ns) is displayed in Table-II. 

TABLE II. COMPARISON OF COMBINATIONAL DELAY (NS) 

Device: 

Vertex4vlx

15sf363-12 

Modified 

Booth 

Multiplier 

[19] 

Prabha et 

al [19] 
Ours 

4 bit 8.154 4.993 4.993 

8 bit 15.718 14.256 12.781 

16 bit 36.657 33.391 15.994 

32 bit 74.432 68.125 18.272 

64 bit 141.982 129.867 22.905 

TABLE III. 

COMPARISON OF DEVICE UTILISATION (4 INPUT LUTS) 

Device: 

Vertex4vlx

15sf363-12 

Modified 

Booth 

Multiplier 

[19] 

Prabha et 

al [19] 
Ours 

4 bit 32 6 6 

8 bit 186 35 64 

16 bit 880 294 366 

32 bit 2760 1034 1267 

64 bit 6854 4535 5361 

Comparison of device utilization (4 input LUTs) is shown 
in Table-III. The performance of all squaring circuits are 
evaluated  on the same device Vertex4vlx15sf363 with a speed 
grade of -12.The results suggest that the proposed architecture 
is faster than  “Modified Booth Multiplier” and “the method 
recently presented by Prabha et al”  [19]. Here, we see 
significant speed improvement though there is a small increase 
in area. Simulation results obtained are shown in figures 7-9 for 
verification. Simulation results for 32-bit and 64-bit are not 
presented here to avoid consuming space. However, they are 
also verified and found correct.  

 
Figure 7. 4-bit Squaring Circuit. 

 
Figure 8. 8-bit Squaring Circuit. 

 
Figure 9. 16-bit Squaring Circuit. 
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It is worthy to mention here that the results displayed in 
Table-II are quite expected. The delay is about 2.5 times when 
we go from 4-bit to 8-bit, in our case. However, the increase in 
combinational delay is less for higher bits, which is due to 
inherent parallelism.  

To be very precise, the implementation equations (Eqs.8-
11) are well adapted to parallel processing. For 8-bit squaring, 
we are using two 4-bit squaring circuits and one 4X4 Vedic 
multiplier followed by one CSA and two binary adders as 
shown in Table-I. Hence, increase in delay is more when we 
move from 4-bit to 8-bit. But we could exploit the benefit of 
parallelism while implementing squaring circuits of higher bit 
size, i.e. 16-bit, 32-bit and 64-bit as displayed in Table-II.  

Thus, our method outperforms other methods in terms of 
speed.  The proposed squaring circuit may be useful for the 
design of hardware for computer arithmetic.  

 
Figure 10. Comparison of Combinational Delay (ns). 

 

Figure 11. Comparison of Device Utilisation (4 Input LUTs). 

To make things explicitly clear, delays for different bit size 
are displayed in Fig.10. It is observed that the delay is 
significantly less in our method, particularly for bit size more 
than or equal to 16. Therefor there is a significant speed 
improvement in our case.  

The reason may be due to the fact that only one multiplier 
is used instead of four multipliers reported in [19]. However, 
an engineering tradeoff is observed between Fig.10 and Fig.11. 
Device utilisation curves are displayed in Fig.11 for a 
comparison. Space requirement is slightly more in our case as 
compared to the scheme proposed by Prabha et al [19]. The 
reason may be due to the fact that we use two squaring circuits 
of size (n/2)-bits and one CSA.  

IV. CONCLUSION 

The performance of the proposed squaring circuit using 
Vedic Mathematics proved to be efficient in terms of speed. 
Due to its regular and parallel structure, it can be realised easily 
on silicon as well. Squaring of binary numbers of bit size other 
than powers of 2 can also be realized easily. For example, 
squaring of a 24-bit binary number can be found by using 32-
bit squaring circuit with 8 MSBs (of inputs) as zero. The idea 
proposed here may set path for future research in this direction. 
Future scope of research is to reduce area requirements.  
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