
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

111 | P a g e
www.ijacsa.thesai.org

An Improved Squaring Circuit for Binary Numbers

Kabiraj Sethi

Department of Electronics and

Telecommunication Engineering,

VSS University of Technology, Burla

Formerly UCE, Burla-768018. (India)

Rutuparna Panda

Department of Electronics and

Telecommunication Engineering,

VSS University of Technology, Burla

Formerly UCE, Burla-768018. (India)

Abstract—In this paper, a high speed squaring circuit for binary

numbers is proposed. High speed Vedic multiplier is used for

design of the proposed squaring circuit. The key to our success is

that only one Vedic multiplier is used instead of four multipliers

reported in the literature. In addition, one squaring circuit is

used twice. Our proposed Squaring Circuit seems to have better
performance in terms of speed.

Keywords-Vedic mathematics; VLSI; binary multiplication;

hardware design; VHDL.

I. INTRODUCTION

Multiplication and squaring are most common and
important arithmetic operations having wide applications in
different areas of engineering and technology. The
performance of any circuit is evaluated mainly by estimating
the silicon area and speed (delay). Hence, continuous efforts
are being made to achieve the same. In order to calculate the
square of a binary number, fast multipliers such as Braun
Array, Baugh-Wooley methods of two’s compliment, Booth’s
algorithm using recorded multiplier and Wallace trees are in
use. Recursive decomposition and Booth’s algorithm are the
most successful algorithms used for multiplication. Other
methods include Vedic multipliers based on ‘Urdhva
Tiryagbhyam’ and the “Duplex” properties of ‘Urdhva
Tiryagbhyam’. Therefore, the main motivation behind this
work is to investigate the VLSI Design and Implementation of
Squaring Circuit architecture with reduced delay. Interestingly,
only one multiplier is used here instead of four multipliers
reported in the literature. Here, one squaring circuit is used
twice to reduce delay.

 Vedic mathematics was reconstructed from Vedas by Sri
Bharati Krisna Tirthaji (1884-1960) after his eight years of
research on Vedas [1-3]. According to him, Vedic mathematics
is mainly focused on sixteen very important principles or word-
formulae, which are otherwise known as Sutras. Note that the
most important feature of the Vedic mathematics is its
coherence. The entire system is wisely interrelated and unified.
The general multiplication scheme can easily be reversed to
achieve one-line divisions. Similarly, the simple Squaring
Scheme can easily be reversed to produce one-line Square
Roots. These methods are very easy to understand. This paper
discusses a possible application of Vedic mathematics to
design multipliers and squaring circuits. General idea for
design of digital multipliers is described in [4, 5].

The idea of using Vedic mathematics for design of
multipliers has been discussed in [6-13]. In [14], ‘Urdhva

Tiryagbhyam’ Sutra is shown to be an efficient multiplication
algorithm as compared to the conventional counterparts.
Authors of [15] have also shown the effectiveness of this Sutra
to reduce N×N multiplier structure into an efficient 4×4
multiplier structure. However, they have mentioned that 4×4
multiplier section can be implemented using any efficient
multiplication algorithm. In [16], authors have presented an
array multiplier architecture using Vedic Sutra. More or less
the coding is done in VHDL and synthesis is done in Xilinx
ISE series [17,18].

Recently, a squaring circuit has been reported in the
literature [19]. This may be noted that designing Vedic
multipliers using array multiplier structures as discussed in
above references provide us less delay and, thus, they are
treated as high speed multipliers as compared to Booth’s
algorithm using recorded multipliers and Wallace trees.
However, we can reduce delay further using carry save adders
(CSA). The idea of using CSA for design of digital multipliers
is explained in [3,4]. This has motivated us to design Vedic
multipliers based on CSA [20]. One more crucial issue with the
earlier proposed methods is that they use four numbers of such
Vedic multipliers to evaluate squaring of a n-bit binary
number. Here, we have more focus on the issue and tried to use
only one Vedic multiplier instead of four for evaluating square
of a n-bit binary number.

We apply Vedic Sutras to binary multipliers using carry
save adders. In particular, we develop an efficient binary
multiplier architecture that performs partial product generations
and additions in parallel. With proper modification of the
Vedic multiplier algorithm, the squaring circuit is developed.
Here, the computation time involved is less. The combinational
delay and the device utilizations obtained after synthesis is
compared. Our proposed Vedic multiplier based Squaring
Circuit seems to have better performance in terms of speed.
The hardware architecture of the squaring circuit is presented.

II. THE MULTIPLIER ARCHITECTURE

 Booth’s multipliers [5] are normally used for squaring of
binary numbers. The modified Booth multiplier considered
uses four components. Booth Encoder, Partial Product
Generator, Wallace Tree and Binary Adders are used for Booth
multiplier architecture. Booth multiplier uses two main ideas to
increase the speed of the multiplication process. First attempt is
to reduce the number of partial products.

Then the second attempt is to increase the speed at which
the partial products are added. The partial products are reduced

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

112 | P a g e
www.ijacsa.thesai.org

using Booth encoder. Time for partial product additions is
reduced using Wallace Tree. Further, Binary adder is used for
addition of final sum vector and carry vector.

In this section, we propose an efficient multiplier
architecture using Vedic mathematics. The ‘Urdhva
Tiryagbhyam’ (Vertically and Crosswise) sutra [2] has been
traditionally used for the multiplication of two numbers in the
decimal number system. In this paper, we apply this Sutra to
the binary number system. The motivation behind the
extension to binary number system is to make it compatible
with the digital hardware circuits. This Sutra is illustrated with
the help of a numerical example, where two decimal numbers
are multiplied.

Figure 1. Line diagram for multiplication.

For more clarity, line diagram for the multiplication of two
decimal numbers (123×456) is displayed in Fig. 1. Note that
the digits on two ends of the line are multiplied and then results
are added with the previous carry, as shown in the figure.
When we find more lines in one step as shown in steps 2 to 4,
all results are added to the previous carry. Interestingly enough,
the least significant digit of the number, thus, obtained acts as
one of the result digits. The rest digit acts as the carry for the
next step. Note that here the initial carry is zero.

We now extend the above idea (for multiplication) to
binary number system. Computer arithmetic [3,4] usually
deals with binary number systems. Thus, there is a strong need
to develop efficient schemes for multiplication of binary
numbers. This may be noted that multiplication of two bits A0
and B0 is nothing but an AND operation.

Interestingly, this operation can easily be implemented
using a two input AND gate used in digital circuits. Such types
of multipliers using digital circuits similar to array multipliers
are discussed in [21,22]. In order to illustrate this coveted
multiplication scheme in binary number system, here we
consider the multiplication of two binary numbers (4 bits)
A3A2A1A0 and B3B2B1B0. As the result of this
multiplication would be more than 4 bits, we express it as
……R3R2R1R0. As an illustration, line diagram for

multiplication of two 4-bit binary numbers is shown in Fig. 2.
The same idea can be extended to higher bits. It is noteworthy
to mention here that Fig.2 is simply the mapping of Fig.1 in
binary system. For the sake of simplicity, each bit is
represented by a cross enclosed by a circle. Least Significant
Bit (LSB) R0 is obtained by multiplying the LSBs of the
multiplicand and the multiplier. Here, the multiplication
process is carried out according to steps displayed in Fig. 2.
Further, digits on both sides of the line are multiplied and
added with the carry from the previous step. All seven steps
shown in Fig.2 are important. This generates one of the bits of
the result (Rn) and a carry (Cn). This carry is added in the next
step and, hence, the process goes on. If more than one line are
there in one step, all results are added to the previous carry. In
each step, least significant bit acts as the result bit and other
bits act as carry. To be more specific, if in some intermediate
step, the sum is ‘110’, then ‘0’ acts as the result bit and ‘11’ as
the carry (which is denoted as Cn in this paper). It is
noteworthy to mention here that Cn may be a multi-bit number.
Thus, we get the following expressions:

R0 = A0B0 (1)

C1R1 = A1B0 + A0B1 (2)

C2R2 = C1 + A2B0 + A1B1 + A0B2 (3)

C3R3 = C2 + A3B0 + A2B1 + A1B2 + A0B3 (4)

C4R4 = C3 + A3B1 + A2B2 + A1B3 (5)

C5R5 = C4 + A3B2 + A2B3 (6)

C6R6 = C5 + A3B3 (7)
with C6R6R5R4R3R2R1R0 being the final product. Partial

products are calculated in parallel and, hence, the delay
involved is just the time it takes for the signal to propagate
through the gates [8].

 The multiplier architecture is explained below. Both
2X2 Vedic multiplier module and 4X4 Vedic multiplier
architecture are displayed below. The motivation is to reduce
delay. Multiplier design ideas are well explained in [3,4]. Here,
‘Urdhva Tiryagbhyam’ (Vertically and Crosswise) sutra [2] is
used to propose such an architecture for the multiplication of
two binary numbers.

Figure 2. Line Diagram for multiplication of two 4-bit binary numbers.

A. 2x2 Vedic Multiplier Module For Binary Numbers

Here, an efficient Vedic multiplier using carry save adder is
presented. The 2X2 Vedic multiplier module is implemented

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

113 | P a g e
www.ijacsa.thesai.org

using two half-adder modules and is displayed in Fig. 3. Very
precisely we can state that the total delay is only 2-half adder
delays, after final bit products are generated.

It is wise to write Implementation Equations of 2X2 Vedic
multiplier module for simulation. The implementation
equations are written as:

R0 (1-bit) = A0.B0 (8)

R1 (1-bit) = A1.B0 + A0.B1 (9)

R2 (2-bits) = A1.B1 + R1 (1) (10)

Product = R2 & R1 & R0 (11)
where ‘&’ denotes concatenation operation. Note that final

result (product) is obtained using Eq.(11).

Figure 3. Architecture of 2X2 multiplier.

B. 4x4 Vedic Multiplier Module

The 4X4 Vedic multiplier architecture is displayed in Fig.4.
This is implemented using four 2X2 Vedic multiplier modules
as discussed in Fig. 3. The beauty of Vedic multiplier is that
here partial product generation and additions are done
concurrently. Hence, it is well adapted to parallel processing.
The feature makes it more attractive for binary multiplications.
This, in turn, reduces delay.

Figure 4. Architecture of 4X4 multiplier

In this section, we describe the architecture of 4X4
multiplier using Vedic method discussed above (Eqns.8-11).
To get final product (P7P6P5P4P3P2P1P0), one 4-bit carry
save adder, one 5-bit binary adder and one 4-bit binary adder
are used. In this proposal, the 4-bit carry save adder (CSA) is
used to add three 4-bit operands, i.e. concatenated 4-bit (“00”
& most significant two output bits of right hand most of 2X2

multiplier module as shown in Fig.3) and two 4-bit operands
we get from the output of two middle 2X2 multiplier modules.
It may be noted that the outputs of the CSA (sum and carry) are
fed into a 5-bit binary adder to generate 5-bit sum, as desired.
Many more interesting ideas can be revoked here.

It may be reiterated the fact that the middle part (P3P2)
denotes the least significant two bits of 5-bit sum obtained
from the 5-bit binary adder. Finally, as shown in Fig.4, the 4-
bit output of the left most 2X2 multiplier module and
concatenated 4-bits (‘0’ & the most significant three bits of 5-
bit sum) are fed into a 4-bit binary adder. In this architecture,
the P7P6P5P4 express the sum.

The proposed Vedic multiplier can be used to reduce delay.
Early literature speaks about Vedic multipliers based on array
multiplier structures. On the other hand, we proposed a new
architecture, which is efficient in terms of speed. The
arrangements of CSA and binary adders shown help us to
reduce dely. Interestingly, 8X8 and 16X16 Vedic multiplier
modules are implemented easily by using four 4X4 and four
8X8 multiplier modules, respectively. Further, the proposed
4X4 Vedic multiplier can also be used for squaring of a 4-bit
binary number.

C. 2-Bit Squaring Circuit

The 2X2 Vedic multiplier architecture is modified as shown
in Fig. 5 to realise the 2-bit squaring circuit. Here, one half
adder and one AND gate are utilized instead of two half-adders
as shown in Fig. 3.

Figure 5. Block Diagram of 2-bit Squaring Circuit.

This is the basic module. Note that a 4-bit squaring circuit
is implemented using two 2-bit squaring circuits (as shown in
Fig.5) and one 2X2 Vedic Multiplier (as displayed in Fig.3)
instead of four 2X2 Vedic Multiplier modules used in Fig.4.

In the same manner, 8-bit squaring circuit and 16-bit
squaring circuits are implemented using Vedic multiplier
module and squaring circuits of 4-bit and 8-bit, respectively.
Likewise, n-bit squaring circuit can be implemented taking one
(n/2)-bit Vedic multiplier module and two (n/2)-bit squaring
circuits.

D. n-Bit Squaring Circuit

Taking the architectural concept of 4X4 Vedic multiplier
module, general block diagram of the newly proposed n-bit
squaring circuit is shown in Fig. 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

114 | P a g e
www.ijacsa.thesai.org

Figure 6. Architecture of n-bit Squaring Circuit.

 Let us describe the proposed architecture of n-bit
Squaring Circuit in a tabular form. Table-I explains the idea.

TABLE I. N-BIT SQUARING CIRCUIT DESCRIPTION

Bit
size

Description Numbers
used

2 bit AND Gate
XOR Gate

2
1

4 bit 2X2 Vedic Multiplier
2 bit squaring circuit
CSA
Binary Adder

1
2
1
2

8 bit 4X4 Vedic Multiplier
4 bit squaring circuit
CSA
Binary Adder

1
2
1
2

16 bit 8X8 Vedic Multiplier
8 bit squaring circuit
CSA
Binary Adder

1
2
1
2

32 bit 16X16 Vedic Multiplier
16 bit squaring circuit
CSA
Binary Adder

1
2
1
2

64 bit 32X32 Vedic Multiplier
32 bit squaring circuit
CSA

Binary Adder

1
2
1

2

III. VERIFICATION AND IMPLEMENTATION

In this work, 4-bit, 8-bit, 16-bit, 32-bit and 64-bit squaring
circuits are implemented in VHDL [17]. Logic synthesis and
simulation are done in Xilinx - Project Navigator and
Modelsim simulator [18].

We compare our synthesis results with the method recently
presented by Prabha et al [19]. The results are displayed in
Table 2 and Table 3 for squaring circuits of different bit size.

These Tables show the difference in combinational delays and
the device utilization. Squaring circuits of different bit size are
considered for simulation. Comparison of combinational delay
in nano seconds (ns) is displayed in Table-II.

TABLE II. COMPARISON OF COMBINATIONAL DELAY (NS)

Device:

Vertex4vlx

15sf363-12

Modified

Booth

Multiplier

[19]

Prabha et

al [19]
Ours

4 bit 8.154 4.993 4.993

8 bit 15.718 14.256 12.781

16 bit 36.657 33.391 15.994

32 bit 74.432 68.125 18.272

64 bit 141.982 129.867 22.905

TABLE III.

COMPARISON OF DEVICE UTILISATION (4 INPUT LUTS)

Device:

Vertex4vlx

15sf363-12

Modified

Booth

Multiplier

[19]

Prabha et

al [19]
Ours

4 bit 32 6 6

8 bit 186 35 64

16 bit 880 294 366

32 bit 2760 1034 1267

64 bit 6854 4535 5361

Comparison of device utilization (4 input LUTs) is shown
in Table-III. The performance of all squaring circuits are
evaluated on the same device Vertex4vlx15sf363 with a speed
grade of -12.The results suggest that the proposed architecture
is faster than “Modified Booth Multiplier” and “the method
recently presented by Prabha et al” [19]. Here, we see
significant speed improvement though there is a small increase
in area. Simulation results obtained are shown in figures 7-9 for
verification. Simulation results for 32-bit and 64-bit are not
presented here to avoid consuming space. However, they are
also verified and found correct.

Figure 7. 4-bit Squaring Circuit.

Figure 8. 8-bit Squaring Circuit.

Figure 9. 16-bit Squaring Circuit.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

115 | P a g e
www.ijacsa.thesai.org

It is worthy to mention here that the results displayed in
Table-II are quite expected. The delay is about 2.5 times when
we go from 4-bit to 8-bit, in our case. However, the increase in
combinational delay is less for higher bits, which is due to
inherent parallelism.

To be very precise, the implementation equations (Eqs.8-
11) are well adapted to parallel processing. For 8-bit squaring,
we are using two 4-bit squaring circuits and one 4X4 Vedic
multiplier followed by one CSA and two binary adders as
shown in Table-I. Hence, increase in delay is more when we
move from 4-bit to 8-bit. But we could exploit the benefit of
parallelism while implementing squaring circuits of higher bit
size, i.e. 16-bit, 32-bit and 64-bit as displayed in Table-II.

Thus, our method outperforms other methods in terms of
speed. The proposed squaring circuit may be useful for the
design of hardware for computer arithmetic.

Figure 10. Comparison of Combinational Delay (ns).

Figure 11. Comparison of Device Utilisation (4 Input LUTs).

To make things explicitly clear, delays for different bit size
are displayed in Fig.10. It is observed that the delay is
significantly less in our method, particularly for bit size more
than or equal to 16. Therefor there is a significant speed
improvement in our case.

The reason may be due to the fact that only one multiplier
is used instead of four multipliers reported in [19]. However,
an engineering tradeoff is observed between Fig.10 and Fig.11.
Device utilisation curves are displayed in Fig.11 for a
comparison. Space requirement is slightly more in our case as
compared to the scheme proposed by Prabha et al [19]. The
reason may be due to the fact that we use two squaring circuits
of size (n/2)-bits and one CSA.

IV. CONCLUSION

The performance of the proposed squaring circuit using
Vedic Mathematics proved to be efficient in terms of speed.
Due to its regular and parallel structure, it can be realised easily
on silicon as well. Squaring of binary numbers of bit size other
than powers of 2 can also be realized easily. For example,
squaring of a 24-bit binary number can be found by using 32-
bit squaring circuit with 8 MSBs (of inputs) as zero. The idea
proposed here may set path for future research in this direction.
Future scope of research is to reduce area requirements.

REFERENCES

[1] Maharaja, J.S.S.B.K.T., “Vedic mathematics,” Motilal Banarsidass
Publishers Pvt. Ltd, Delhi, 2009.

[2] Swami Bharati Krisna Tirtha, “Vedic Mathematics,” Motilal Banarsidass

Publishers, Delhi, 1965.

[3] Vedic Mathematics [Online]. Available: http://www.hinduism.co.za/

vedic.htm.

[4] B. Parhami, “Computer Arithmetic Algorithms and Hardware
Architectures,” 2nd ed, Oxford University Press, New York, 2010.

[5] Kai Hwang, “Computer Arithmetic: Principles, Architecture and

Design,” New York: John Wiley & Sons, 1979.

[6] S. Akhter,, “VHDL implementation of Fast NxN Multiplier Based on
Vedic Mathematics,” Proc. of IEEE Conference, pp.472-475, 2007.

[7] P.D. Chidgupkar, and M.T. Karad, “The Implementation of Vedic

Algorithms in Digital Signal Processing,” Global Journal of Engng.
Educ., vol.8 , pp.153-158, 2004.

[8] H.S. Dhillon, and A. Mitra, “A Reduced-Bit Multiplication Algorithm

for Digital Arithmetic,” International Journal of Computational and
Mathematical Sciences, pp.64-69, 2008,

[9] P. Mehta, and D. Gawali, “Conventional versus Vedic Mathematical
Method for Hardware Implementation of a Multiplier,” Proc. Int Conf.

on Advances in Computing, Control, and Telecommunication
Technologies, Trivandrum, Kerala, India, pp.640-642, 2009.

[10] P. Nair, D. Paranji, and S.S. Rathod, “VLSI Implementation of Matrix-

Diagonal Method of Binary Multiplication,” Proc. of SPIT-IEEE
Colloquium and Int Conf., Mumbai, India, pp.55-58, 2008.

[11] M. Ramalatha, K.D. Dayalan, P. Dharani, ,and S.D. Priya, “High Speed

Energy Efficient ALU Design using Vedic Multiplication Technique,”
Lebanon , pp. 600-603, 2009.

[12] H. Thapliyal, and M.B. Srinivas, “VLSI Implementation of RSA

Encryption System Using Ancient Indian Vedic Mathematics,” Proc. of
SPIE VLSI Circuits and Systems II, pp.888-892, 2005.

[13] H.D. Tiwari, G. Gankhuyag, C.M. Kim, and Y.B. Cho, “Multiplier

Design Based on Ancient Indian Vedic Mathematics”, Proc. Int SoC
Design Conf., pp.65-68. 2008.

[14] P.D. Chidgupkar, and M.T. Karad, “The Implementation of Vedic

Algorithms in Digital Signal Processing,” Global J. of Engg. Edu., vol.8,
no. 2, 2004.

[15] H. Thapliyal and M. B. Srinivas, “High Speed Efficient N×N Bit
Parallel Hierarchical Overlay Multiplier Architecture Based on Ancient

Indian Vedic Mathematics,” Enformatika Trans., vol. 2, pp. 225–228,
Dec. 2004.

0 10 20 30 40 50 60 70
0

50

100

150

Bit Size

D
e
la

y
(n

s)

COMPARISON OF COMBINATIONAL DELAY (ns)

Booth

Prabha et al

Our method

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

Bit Size

N
o
.
o
f

4
 I

N
P

U
T

 L
U

T
S

DEVICE UTILISATION

Booth

Prabha et al

Our method

http://www.hinduism.co.za/%20vedic.htm
http://www.hinduism.co.za/%20vedic.htm

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.2, 2012

116 | P a g e
www.ijacsa.thesai.org

[16] R. Pushpangadan, V. Sukumaran, R.Innocent, D. Sasikumar, and V.

Sundar, “High Speed Vedic Multiplier for Digital Signal Processors,”
IETE Journal of Research, vol.55, pp.282-286, 2009.

[17] V.A. Pedroni, “Circuit Design with VHDL,” 2008.

[18] ‘Xilinx ISE User Manual’, Xilinx Inc, USA, 2007

[19] Prabha S., Kasliwal, B.P. Patil and D.K. Gautam, “Performance
Evaluation of Squaring Operation by Vedic Mathematics”, IETE Journal

of Research, vol.57, Issue 1, Jan-Feb 2011.

[20] Devika, K. Sethi and R.Panda, “Vedic Mathematics Based Multiply
Accumulate Unit,” 2011 International Conference on Computational

Intelligence and Communication Systems, CICN 2011, pp.754-757,
Nov. 2011.

[21] http://www.scribd.com/doc/29045484/A digital multiplier architecture

using Urdva Tiryagbhyam sutra of Vedic mathematics

[22] http;//webspace.utexas.edu/hd3496/www/Downloads/
DhiMit_IC3_2007.pdf

AUTHORS PROFILE

Mr. Kabiraj Sethi is presently a Senior Faculty in the Department of
Electronics and Telecommunication Engineering, VSS University of

Technology Burla. His area of research interests includes – VLSI and
Digital signal processing.

Dr. Rutuparna Panda was born in 1963. He received B.Sc Engg. and M. Sc.

Engg. degrees from UCE Burla in 1985 and 1988, respectively. He
obtained Ph.D.(Engg) degree from IIT,Kharagpur in 1998. He is

currently a Professor in the Department of Electronics and
Telecommunication Engineering, VSS University of Technology Burla.

He has guided 24 M.Tech Theses and 4 Ph.D. Theses. He has over 70
papers in International/National Journals and conferences. His area of

research interests includes – Bioinformatics, Biomedical Image Fusion,
Digital signal/image processing, VLSI Signal Processing.

http://www.scribd.com/doc/29045484/A

