
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 2, 2012

117 | P a g e
www.ijacsa.thesai.org

Forks impacts and motivations in free and open

source projects

R. Viseur

Teaching Assistant, Department of Economics and

Innovation Management,

Faculty of Engineering, University of Mons, 20, Place du

Parc, 7000 Mons, Belgium.

Senior Research Engineer, Centre of Excellence in

Information and Communication Technologies,

29/3, Rue des Frères Wright,

6041 Charleroi, Belgium.

Abstract— Forking is a mechanism of splitting in a community

and is typically found in the free and open source software field.

As a failure of cooperation in a context of open innovation,

forking is a practical and informative subject of study. In-depth

researches concerning the fork phenomenon are uncommon. We

therefore conducted a detailed study of 26 forks from popular

free and open source projects. We created fact sheets,

highlighting the impact and motivations to fork. We particularly

point to the fact that the desire for greater technical

differentiation and problems of project governance are major
sources of conflict.

Keywords- open source; free software; community, co-creation,

fork.

I. INTRODUCTION

Bar and Fogel define forks as situations occurring when
developers “make a separate copy of the code and start
distributing their own divergent version of the program” [2].
Free and open source software has four freedoms: the freedom
to run, to study, to redistribute copies and modify the software
(gnu.org). The free and open source software licenses
guarantee the four freedoms, which involve the provision of
source code [20]. Forks are usually observed in the field of free
software. Forking is indeed a right that stems from the four
freedoms associated with the software.

Mateos Garcias and Steinmueller distinguish mechanisms
of forking and hijacking. The hijacking occurs when
individuals “depose the project leader who has resisted the
revision, leaving this original leader with no followers” [18]. In
this paper, we will use “fork” for “forking” or “hijacking”.

The title of Rick Moen's essay, “Fear of Forking”, is
characteristic of the fear of forks among entrepreneurs [19].
When he announced the LibreOffice fork (from
OpenOffice.Org), Bruce Guptill, consultant for the analyst firm
Saugatuck (www.saugatech.com), estimated for example that
“the nature of open source leads to fragmentation, itself leads
to uncertainty”. As a failure of cooperation, forks are an
interesting research topic.

The paper is organized as follows.

We will explore the concept of forks. We will then study a
set of forks that occurred within popular free and open source
software projects, and identify their motivations and impacts.

Finally we will discuss the results, and propose ways to better
prevent forks.

II. BACKGROUND

A. Perception of fork

If the fear of forks is visible with companies, Gosain also
points to the sensitivity of the open source community beside
the forks and the fragmentation of projects [10].

Bar and Fogel estimate that forks are often the result of a
management mismatch [2]. They recommend forking only if
necessary and if able to do better job. If the motivation for
forking is the slowness of patches release, they recommend
producing patches instead. Fogel notes, however, the scarcity
of forks and a preference for trying to reach an agreement [8].

Eric Raymond estimates that forking “spawns competing
projects that cannot later exchange code, splitting the potential
developer community” [29]. He also distinguishes the case of
“pseudo-forks”, i.e. distinct projects that share a large common
code base (this is for instance the case of GNU/Linux
distributions). Weber considers that specialization may, in
some cases, be managed through a system of patches, so as to
avoid fragmentation of the project [39].

B. Forks and governance

For Hemetsberger and Reinhardt, management of online
collaboration is less a question of coordinating tasks than
overcoming conflicts arising from the contradictions between
collective strategy and individual actions [13]. The voluntary
nature of contributions often prevents the enforcement of duties
or decisions (principle of consensus). Dahlander and
Magnusson also consider that capture of network externalities
requires specific skills (it has a cost) and that gains associated
with the opening decrease when the number of players
increases [5]. They highlight the difficulty in aligning business
and community strategies. Bowles and Gintis distinguish the
operating logic of a community, and the ones of companies and
states [4]. The tensions that may result do not necessarily cause
a fork. However the example of Netscape illustrates the
difficulty of finding a tradeoff between a company and a
community [36].

Implementation of common rules and effective governance
structures should limit the tensions and especially their
consequences. Eric Raymond distinguishes several structures

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 2, 2012

118 | P a g e
www.ijacsa.thesai.org

for the management of free and open source projects [28]. First,
a single developer can work on the project and take all
decisions alone. He is expected to pass the torch in case of
failure to maintain the project.

Second, multiple developers can work under the direction
of a “benevolent dictator”. This structure is found in the Linux
kernel (Linus Torvalds) or in Emacs (Richard Stallman). The
potential for conflict is higher. Authority comes from
responsibility and some developers become in practice
responsible for one or more parts of the software. Another
principle complements this rule: seniority prevails. The title of
benevolent dictator may be passed on to another developer, as
in the Perl project. Third, the decisions can be made by a panel
of voters. This is for example the case for the Apache project.

The 2000s have seen the increasing involvement of
businesses in the development of free and open source
softwares, by initiating projects, freeing existing projects or
collaborating with well-established communities [34, 38]. The
increasing size of projects and cooperation between sometimes
competing businesses (coopetition) also contributed to the
creation of more complex and formal governance structures.

C. Forks and licenses

In practice, project license modulates the interest in whether
to fork, even if no free and open source license cancels the
risk [32]. Two major types of free licenses exist: permissive
licenses (also named academic or unrestrictive licenses) and
copyleft licenses (also names reciprocal or restrictive licenses)
[1, 16, 20, 35]. A permissive license allows the user to apply a
different license, possibly a proprietary license, to derivative
works (thus also to forks).

A copyleft license “links the rights to the obligation to
redistribute the software and its changes only under the same
license as that by which the licensee has obtained those rights”
[20]. In case of copyleft licensed software, exchanging source
code is still possible between the original software and its
forks. In case of a permissive free software license, the license
can change and forbid the exchange of source code. In
particular, the exchange will be impossible if the new software
is published under a proprietary license, and one-way if it is
published under a copyleft license (due to the fact that copyleft
imposes conservation of the original license) [20]. St. Laurent
considers other legal provisions limiting forkabily (or, if not,
the consequences), such as brand protection in the Apache
license [32]. Incompatibilities between licenses, sometimes due
to apparently innocuous terms in legal texts, also reduce the
opportunities for exchange and combination of source code [9,
32, 35]. Yamamoto, Matsushita, Kamiya and Inoue show,
through a study of source code similarities applied to BSD
(BSD-Lite, FreeBSD and NetBSD), a progressive divergence
of the source code, despite the license compatibility and the
similarity of features [41]. St. Laurent also considers this
divergence as inevitable with time [32].

Finally, a copyleft license would also limit the financial
incentives to fork as it is not possible to create a proprietary
branch from the original development [40].

Elie considers unstable (and subject to a higher risk of fork)
projects characterized by the coexistence of free release of the

software and a second version published under a proprietary
license (dual licensing, delayed publication,...) [7]. Elie names
“hybrid model” this principle of “discrimination between
users”. Dahlander and Magnusson estimate on the contrary that
the detention of copyright (and other controls) hampers forks
initiatives (and allows the return to a proprietary development
in case of insufficient network externalities) [5]. The technical
complexity of the software would also reduce the risk of
fork [33].

Note that the hybrid model suggested by Elie is distinct of
the hybrid model described by Muselli [7, 22, 23, 35]. The later
indicates a strategy of openness, promoting greater distribution
while allowing to retain control over the project. This approach
is supposed to facilitate the capture of value by the company
and nullify the risk of fork. Muselli gives Sun Microsystems
SCSL license as an example.

D. Forks impacts

Wheeler shades the presumed dangerousness of the fork
and associates it with a system of healthy competition [40]. He
compares it to the principle of a censure motion in parliament
or to a strike. The fork would allow the developers community
to attract the leaders' attention on the requests that are not taken
into account. Some authors even see an “invisible hand” that
guarantees the projects sustainability and continuity [26]. The
ability to fork would also keep “the communities vibrant, and
the companies honest” [21]. Elie sees the fork as “a
fundamental right” but also insists on the risk of being cut from
the wealth of the core [7]. He often sees in forks the
consequence of “ill-defined control systems”. Merit in free
software communities would come from charisma and ability
to live in the conflict rather than technical competences.

Wheeler recognizes that too many forks can cause a
weakening of a projects family in the long term [40]. Spinellis
and Szyperski see it as a waste of efforts and a source of
confusion for the community [31]. Wheeler also distinguishes
the forks as variants of software created with a goal of
experimentation. A “winning mutation” can finally be accepted
as constituting the best approach to a problem. Wheeler sees
four possible outcomes to a fork:

 The fork does not convince and disappears.

 The original project and the fork evolve and gradually
diverge.

 The original project and the fork merge after a period
of cohabitation.

 The original project disappears.

III. RELATED WORKS

Nyman and Mikkonen, in a study of 566 projects hosted on
Sourceforge.net and presented by their maintainers as forks,
identify motivations classifiable into four categories: technical
motivations (adding features, specialization, porting,
improving), license changes, local adaptations (language or
regional differences) and revival of abandoned projects [25].
Open source company Smile also mentions disagreements
about technology directions and licensing, but adds
disagreement on trade policy as possible cause of fork [30].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 2, 2012

119 | P a g e
www.ijacsa.thesai.org

Many forks benefit from more or less extensive studies (or
are briefly discussed) in the literature. It includes the family of
BSD operating systems [39, 41], KHTML [11], Roxen [5],
GCC [8], CVS [2], NCSA HTTPd [34, 38] or SPIP [7]. These
results will be used in this study.

IV. METHODOLOGY

We have studied 26 forks of popular free and open source
projects. Popular projects have been found more likely to
provide usable observations. We relied on existing documents:
books, scientific articles, press releases, news on portals about
open source and computer science, or projects pages. We have
not considered forks leading to the creation of proprietary
software, like Kerberos [32].

For each fork we gather relevant information in dedicated
forms (fact sheets). They describe the chronology of each fork,
its actors and their motivations. The results were summarized
in a table, including the initial project name, fork name, fork
motivation(s) and its impact on the original project. The impact
was evaluated according to the possible outcomes identified by
Wheeler [40].

The influence of the license type and the degree of
openness of the project management structure were also
observed. We assigned a score for openness on a scale from 1
to 4:

 the project is under a free and open source license but
centrally managed,

 the project is managed by a team and the rules are
informal,

 the decision-making procedures are planned, but favor
core team,

 the procedures are documented, decisions and
appointments are subject to the votes of active
community members.

Note that the management structure may be difficult to
precisely determine when the fork is old and/or a project has
been completely abandoned.

V. RESULTS

Six motivations to fork have been identified: death of the
original project (19%), technical motivations –e.g. new
specialization, divergent technical views, different technical
objectives,...– (42%), license change (15%), conflict over brand
ownership (12%), problems of project governance (38%),
cultural differences (8%) and searches for new innovation
directions (4%).

In practice, the case studies show that the successful forks
(which are likely to be harmful to the original publisher, if
there is one) usually start for an important reason.

Stopping the support of popular free and open source
software often leads to a fork (see NCSA HTTPd, 386BSD,
Red Hat Linux or Roxen). The open source fork succeeds but
usually can coexist with a closed version of the product (see
Red Hat Linux or Sourceforge).

A fork can occur after the emergence of technical
differences. The BSD systems have thus often adopted
different technical specializations such as portability or
security [31]. This is the most common cause (42%).

Project governance is a source of conflicts for nearly half of
the studied cases (38%). The problem is usually a lack of
openness of development teams: slowness for taking external
contributions into account (see OpenOffice.org), discussion of
project objectives (see Sodipodi), maintainer's reluctance to
switch to a community development process (see
OpenOffice.org, Dokeos, PHP Nuke),... This is therefore the
second most common cause of fork.

Brand ownership also appears as a source of conflict (see
Claroline, Mambo and OpenOffice.org). It may be related to
the issue of governance as the trademark allows the software
editor to keep a check on the progress of the project. The brand
then crystallizes the tensions between an editor and a
community once their objectives diverge.

Figure 1. Motivations to fork.

Licensing problems sometimes cause a fork. It may not
affect the type of license (see Xfree86) but rather increase (see
Ext JS) or reduce (stop the free branch) the software freedom.
Licensing software under the GPL or AGPL can facilitate
exchanges between projects, since the original license can
hardly be changed. The license change is not a dominant
motivation to fork (15%).

Forks that have been raised by Theo de Raadt, leader of
OpenBSD, can be justified, at least in part, by political or
ideological positions. This configuration seems quite marginal
in the free and open source landscape. Culture shocks between
community and company (see KHTML) or community and
administration (see Spip) appear as a possible cause (8%) and
illustrate the difficulty in aligning business and community
strategies.

The case studies show that the majority of forks do not
cause the extinction of the original project (81%). Exception
made of the Apache server, X.Org, Joomla or Inkscape,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 2, 2012

120 | P a g e
www.ijacsa.thesai.org

cohabitation appears in more than half of the cases studied
(54%). In some cases, the exchange of source codes exists (see
FreeBSD, NetBSD, OpenBSD). Subsequent projects fusion
(see GCC and EGCC) is possible. The progressive divergence
may hamper the merger (see Webkit and KHTML). The
complete failure of a fork occurs in less than one case out of
five (19%).

Figure 2. Forks impacts on original projects.

Finally, we find that nearly eight out of ten forks adopt a
governance structure characterized by comparable or greater
openness than in the original project. The formal rules of
processes can give a biased impression of openness, that
complaints made against the source code contribution
mechanisms may moderate. The OpenOffice.org project
(before entering the incubator of the Apache Foundation) is an
example.

VI. DISCUSSION

Compared to the study of Nyman and Mikkonen, our
research groups several motivations under the label of
“technical motivations” and highlights three additional causes:
governance issues, difficulties associated to culture differences
(already mentioned in state of the art) and conflicts over the
ownership of a brand [25]. The changes in technical guidance
also occupy a prominent place in our study, although
proportionally less. The recovery of stopped projects is most
frequent. These differences may be explained by the wider
spectrum of motivations considered in our study but also by the
different nature of considered projects. Nyman and Mikkonen
are based on a set of projects taken on Sourceforge.net, which
hosts many small projects, whereas our study was based on
popular and mature projects. These have already an active
community that plays a role in regulating and empowering the
actors.

Many beliefs are refuted by our study. First, the use of
copyleft licenses does not reduce the risk of forks. More than
six out of ten studied forks were indeed published under a
copyleft license (about 75% of free and open source projects
are released under a copyleft license [16]). Second, hybrid

models do not seem particularly subject to forks (except
Chamilo). Third, the fear of a fork driven by competition (and
perceived as an act of predation) seems exaggerated: only the
case of OpenBravo could possibly be taken as such.

Privatization of popular free and open source software often
results in a free software fork. However, the transition from a
more permissive free license to a less permissive free license
may also lead to a fork. The license change, regardless of its
meaning, very often raised tensions in the community. The
license choice must be well thought out from the beginning.

The risk of fork due to technical divergences is high.
However, it may be limited by adopting a suitable architecture
from the beginning. MacCormak, Rusnak and Baldwin
recommend a modular architecture [17]. They point to the need
for an “architecture for participation” to ease the
comprehensibility of the code and the contribution. Mozilla
project is an good example. The code left by Netscape was
made more modular, and that contributed to attract patches
from community [6].

The “kernel-extension model” is an example of modular
architecture. It allows the improvement of the software without
impacting its core. The editor then guarantees the performance
of a core incorporating common features. Integrators and
advanced users improve the functionality by developing
extensions [3]. This approach can also reduce conflicts with the
development team because the integrators need only
understand the software interfaces for extensions development.
Understanding the specifics of the kernel is not needed.
Conflicts may occur on the other hand between community
extensions and proprietary extensions sold by the editor.

Promotion of such an architecture underpins the creation of
application programming interfaces (APIs), and reminds of the
“user toolkits for innovation” described by Von Hippel [37].
These toolkits permit a form of outsourcing to users for
innovation tasks requiring deep understanding of customers'
needs. The expected benefit is a better satisfaction of customers
and, in a free software project, a lower risk of tensions around
the project orientations.

Samba illustrates the “killer of innovation” side due to the
quality requirement when a large user base exists. This
example highlights the value of incubators, such as Apache
incubator, allowing experimentation next to the main project.
In a way Samba TNG plays an incubator role. A similar effect
can be achieved by creating experimental branches in the
repository (see Linux).

VII. CONCLUSION

The goal of this proposal is to shed some light on the
motivations and impact of the fork mechanism in free and open
source software projects. This paper identified the main
motivations to fork, that are technical divergences and
governance mismatches. Other causes were highlighted: end of
the original project, license change, conflict about trademark
and strong cultural differences.

We discussed some ways to manage tensions and prevent
project splitting, for example by improving software
modularity.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 2, 2012

121 | P a g e
www.ijacsa.thesai.org

VIII. FUTURE WORKS

The governance issues generally relate to a lack of
communication with the community.

However, it seems difficult to conclude definitely on the
choice of a specific governance model. Indeed, some projects
governance structures appear to be open (cf. FreeBSD,
KHTML, OpenOffice.org,...) but are also subject to forks.
Moreover some successful projects are build on main
developers' strong authority. Thus Mozilla community enforces
code ownership (e.g.: module owner) despite the risk of
disputes in the community [15, 24].

A more detailed study of these structures, and in particular
their interactions with developers, should therefore be
considered. The analyze of messages exchanged between
developers before, during and after forks would maybe allow to
identify specific reasons for the schisms. Data could be
extracted (for qualitative or quantitative researches) from
public collaborative tools such as mailing lists and bugtrackers
(e.g.: [6, 14, 15, 27]).

REFERENCES

 T.A. Alspaugh, H.U. Asuncion, and W. Scacchi, “Intellectual Property
Rights Requirements for Heterogeneously-Licensed Systems”, 17th

IEEE International Requirements Engineering Conference (RE '09),
September 2009.

 M. Bar and K. Fogel, Open Source Development with CVS, Paraglyph

Press, 2003.

 P. Bertrand, “Les extensions, arme fatale des solutions Open Source”,
Journal du Net, 28 juin 2010.

 S. Bowles and H. Gintis, “Social Capital and Community Governance”,

Economic Journal, Royal Economic Society, vol. 112 (483), November
2002, pp. 419-436.

 L. Dahlander and M. Magnusson, “How do firms make use of open
source communities?”, Long Range Planning, vol. 41, n°6, December

2008, pp. 629-649.

 J.-M. Dalle and M.L. den Besten, “Voting for Bugs in Firefox”, FLOSS
Workshop 2010, July 1, 2010.

 F. Elie, Économie du logiciel libre, Eyrolles, 2006.

 K. Fogel, How To Run A Successful Free Software Project - Producing

Open Source Software, CreateSpace, 2004.

 D.M. German and A.E. Hassan, “License integration patterns:
Addressing license mismatches in component-based development”,

IEEE 31st International Conference on Software Engineering, ICSE
2009, May 2009, p. 188-198.

 S. Gosain, “Looking through a window on Open Source culture : lessons

for community infrastructure design”, Systèmes d'Information et
Management, 2003, 8:1.

 A. Grosskurth and M.W. Godfrey, “Architecture and evolution of the
modern Web browser”, Preprint submitted to Elsevier Science, June 20,

2006.

 B. Guptill, “OpenOffice Changes Highlight Fragmentary Nature and
Future of Open Source”, Saugatuck Technology, 2010.

 A. Hemetsberger and C. Reinhardt, “Collective Development in

Open-Source Communities: An Activity Theoretical Perspective on
Successful Online Collaboration”, Organization studies, vol. 30 n°9,

September 2009, pp. 987-1008.

 J. Howison, K. Inoue, and K. Crowston, “Social dynamics of free and
open source team communications”, IFIP International Federation for

Information Processing, vol. 203, 2006, pp. 319-330.

 S. Krishnamurthy, “About Closed-door Free/Libre/Open Source
(FLOSS) Projects: Lessons from the Mozilla Firefox Developer

Recruitment Approach”, Libre software as a field of study, Upgrade, vol.
VI, issue n°3, June 2005.

 J. Lerner and J. Tirole, “The Scope of Open Source Licensing”, Journal

of Law, Economics, and Organization, vol. 21, issue 1, 2005, pp. 20-56

 A. MacCormack, J. Rusnak, and C.Y. Baldwin, “Exploring the Structure

of Complex Software Designs: An Empirical Study of Open Source and
Proprietary Code”, Management Science, vol. 52 (7), 2006, pp.

1015-1030.

 J. Mateos Garcia and W.E. Steinmueller, “Applying the Open Source
Development Model to Knowledge Work”, INK Open Source reasearch

working paper n°2, January 2003.

 R. Moen, “Fear of Forking - How the GPL Keeps Linux Unified and
Strong”, Linuxcare, November 17, 1999.

 E. Montero, Y. Cool, F. de Patoul, D. De Roy, H. Haouideg, and P.

Laurent, Les logiciels libres face au droit, Cahier du CRID, n°25,
Bruylant, 2005.

 G. Moody, “Who Owns Commercial Open Source – and Can Forks

Work?”, Linux Journal, April 2, 2009.

 L. Muselli, “Les licences informatiques : un outil de modulation du
régime d’appropriabilité dans les stratégies d’ouverture. Une

interprétation de la licence SCSL de Sun Microsystems”., 12ème
Conférence de l'Association Information et Management, Lausanne, juin

2007.

 L. Muselli, “Le rôle des licences dans les modèles économiques des

éditeurs de logiciels open source”, Revue française de gestion, n° 181,
2008, pp. 199-214.

 M. Nurolahzade, S.M. Nasehi, S.H. Khandkar, and S. Rawal, “The role

of patch review in software evolution: an analysis of the Mozilla
Firefox”, Proceedings of the joint international and annual ERCIM

workshops on Principles of software evolution (IWPSE) and software
evolution (Evol) workshops, 2009.

 L. Nyman, and T. Mikkonen , “To Fork or Not to Fork: Fork

Motivations in SourceForge Projects”, IFIP Advances in Information
and Communication Technology, Vol. 365, 2011, pp. 259-268.

 L. Nyman, T. Mikkonen, J. Lindman, and M. Fougère, “Forking: the

Invisible Hand of Sustainability in Open Source Software”, Proceedings
of SOS 2011: Towards Sustainable Open Source, 2011.

 L. Prechelt and C. Oezbek, “The search for a research method for

studying OSS process innovation”, Empirical Software Engineering, vol.
16 (4), 2011, pp. 514-537.

 E.S. Raymond, “Homesteading the Noosphere”, First Monday 3 (10),

October 1998, pp. 90-91.

 E.S. Raymond, “The Cathedral & the Bazaar (Musings on Linux and

Open Source by an Accidental Revolutionary)”, O'Reilly Media, 2001.

 Smile, Comprendre l'open source et les logiciels libres, Livre blanc,
www.smile.fr.

 D. Spinellis and C. Szyperski, “How is Open Source affecting software

development?”, IEEE Software, January-February 2004, pp. 28-33.

 A.M. St.Laurent, Understanding Open Source and Free Software
Licensing, O'Reilly Media, 2004.

 M. Välimäki, “Dual licensing in open source software industry”,

Systèmes d'Information et Management, vol. 8, n°1, 2003, pp. 63-75.

 R. Viseur, “Gestion de communautés Open Source”, 12ème Conférence
de l'Association Information et Management, Lausanne, juin 2007.

 R. Viseur, “La valorisation des logiciels libres en entreprise”, Jeudis du
Libre, Université de Mons, 15 septembre 2011.

 R. Viseur, “Associer commerce et logiciel libre : étude du couple

Netscape / Mozilla”, 16ème Conférence de l'Association Information et
Management, Saint-Denis (France), 25-27 mai 2011.

 E. Von Hippel, “User toolkits for innovation”, Journal of Product

Innovation Management, vol. 18 (4), July 2001, pp. 247-257.

 E. von Hippel and G. von Krogh, “Open Source Software and the
“Private-Collective” Innovation Model: Issues for Organization

Science”, Organization Science, vol. 14 no. 2, March / April 2003, pp.
209-223.

 S. Weber, The success of open source, Harvard University Press, April

30, 2004.

 D.A. Wheeler, “Why Open Source Software / Free Software (OSS/FS,
FLOSS, or FOSS)? Look at the Numbers !”, www.dwheeler.com, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 2, 2012

122 | P a g e
www.ijacsa.thesai.org

 T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Measuring

similarity of large software systems based on source code
correspondence”, Product Focused Software Process Improvement, vol.

3547, Springer Berlin / Heidelberg, 2005, pp. 530–544.

AUTHORS PROFILE

Robert Viseur was born in Mons, Belgium, in 1977. He graduated from the
Faculty of Engineering of Mons. He earned a Ph.D. in Applied Sciences in
2011.

He is Teaching Assistant at the Department of Economics and Innovation
Management in the Faculty of Engineering (University of Mons, Belgium)
and Senior Research Engineer at the Centre of Excellence in Information and
Communication Technologies (Charleroi, Belgium).

