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I.  INTRODUCTION 

The topics of supply chain model, analysis, computation, 
and management are of great interests, both from practical and 
research perspectives. Research in this area is interdisciplinary 
by nature since it involves manufacturing, transportation, 
logistics, and retailing/marketing. A lot of literatures have paid 
much attention to this area. The interested readers may consult 
the recent survey papers by Stadtler and Kilger, Poirier, 
Giannessi and Maugeri (Refs.[1-4]) and references therein. For 
example, Nagurney et al. ([5]) developed a variational 
inequality based supply chain network equilibrium model 
consisting of three tiers of decision-makers in the network. 
They established some governing equilibrium conditions based 
on the optimality conditions of the decision-makers along with 
the market equilibrium conditions in 2002. In 2004, Dong et 
al.([6]) establish the finite-dimensional variational inequality 
formulation for a supply chain network model consisting of 
manufacturers and retailers in which the demands associated 
with the retail outlets are random.  

In 2005, Nagurney et al. ([7]) establish the finite-
dimensional variational inequality formulation for a supply 
chain network model in which both physical and electronic 
transactions are allowed and in which supply side risks as well 
as demand side risk are included in the formulation. The model 
consists of three tiers of decision-makers: the manufacturers, 
the distributors, and the retailers, with the demands associated 
with the retail outlets being random. In recent years, variational 
inequalities have been extended in many directions via 
innovative techniques to study a wide class of problem arising 
in pure and applied sciences. A useful and important 
generalization is called the general variational inequality 
problem (GVIP). This problem was introduced first by 
Noor([8]) in 1988, it and related problems have been studied by 
many researchers(See Refs.[4-15]) 

In this paper, we consider the solution method for GVIP on 

supply chain network equilibrium model of finding 
*x  in 

nR  
such that  

* *
( ) ( ), ( ) 0, ( ) , ,

n
F x F x G x F x x R           (1) 

where 
nR be a real Euclidean space, whose inner product and 

the Euclidean 2-norm are denoted by ,   and ·‖‖ , 

respectively.  Let   be a nonempty closed convex set in
nR  . 

Given nonlinear mappings : n mG R R , ( )F x Mx p 

, 
m nM R  ，

mp R , and F  is onto  .The solution set 

of the GVIP is denoted by
*X  which is always assumed to be 

nonempty. 

In recent years, many methods have been proposed to solve 
the GVIP, among various of efficient methods for solving 
GVIP, projection method is the simplest one([10-15]). Solodov 
and Svaiter ([11]), He ([10]), Wang ([15]) applied a new class 
of projection-contraction (PC) methods to monotone GVIP. 
Different from the algorithm above, we proposed a new 
method for solving the GVIP under milder conditions, a strictly 
convex quadratic programming only need to be solved at each 
iteration. 

II. ALGORITHM AND CONVERGENCE 

In this section, we give a new-type method to solve the 
GVIP under milder conditions. We first need the definition of 
projection operator and some relate properties ([16]). 

For nonempty closed convex set 
nR and any vector

nx R , the orthogonal projection of x  onto  , i.e., 

{ | }argmin y x y ‖ ‖ , is denoted by ( )P x . For (1),

0   is given a constant, 

( ) : ( ) [ ( ) ( )]e x F x P F x G x    

 is called projection-type residual function, and let 

( ) : ( )r x e x‖ ‖. The following conclusion provides the 

relationship between the solution set of (1) and that of 
projection-type residual function which is due to Noor([8]). 
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Lemma 2.1 x is a solution of (1) if and only if ( ) 0r x  . 

To establish the following algorithm, we also need the 
following conclusion in [17]. 

Lemma 2.2 Suppose that the non-homogeneous linear 

equation system Hy b  is consistent. Then y H b  is the 

solution with the minimum 2-norm, where H 
 is the pesudo-

inverse of H . 

In this following, we give a description of our proposed 
algorithm.  

Algorithm 2.1 

Step1. Take 0,   parameters 0 2   , and initial 

point 
0 .nx R  Set 0k 

V

; 

Step2. Compute 
1( )kF x 

by solving the following 

problem 

min ( ( ) ( )) ( ( ) ( ))

2 ( ( ) ( )) ( )

s.t. ( ) ;

k k

k k

F x F x F x F x

F x F x G x

F x



 

 



•

•
        (2) 

Step3. If 
1( ) ( )k kF x F x   ‖ ‖  go to Step 4, 

otherwise, go to Step 2 with 1k k 
V

; 

Step4. Let
1 1( ( ) )k kx M F x p    , where M 

 is the 

pseudo inverse of M . Stop.  

By the definition of projection operator, we can easily get 

that 
1( )kF x 

 is a solution of problem (2) if and only if  

1( ) ( ( ) ( )).k k kF x P F x G x

                       (3) 

To establish the global convergence of Algorithm 2.1, we 
will state the following some well-known definitions ([18]). 

Definition 2.1 The mapping : n mG R R  is said to be 

strongly pseudo monotone with respect to F  if there is 

constant 0   such that 

2

( ), ( ) ( ) 0

( ), ( ) ( ) || ( ) ( ) || ,

, .n

G y F x F y

G x F x F y G x G y

x y R



   

     

 

     (4) 

Obviously, If the mapping G  is strongly monotone with 

respect to F  ([18]), then The mapping G  is strongly pseudo 

monotone with respect to F , but the converse is not true in 

general. For example ， ( ) 2 , ( )G x x F x x   , the 

mapping G  is strongly pseudo monotone with respect to F  

with constant 1  in interval [0,1] , but it is not strongly 

monotone and even not monotone. 

Theorem 2.1 Suppose that the mapping G  is strongly 

pseudo monotone with respect to F , then the sequence{ }kx  

globally converges to a solution of the GVIP. 

Proof: Since 0  , (2) has an unique solution, denoted 

by 
1( )kF x 

. Obviously, if 
1( ) ( )k kF x F x  , i.e.,  

( ) ( ) ( ( ) ( )) 0,
k k k k

r x F x P F x G x     

using Lemma 2.1, then 
kx  is a solution of GVIP. 

In the following analysis, we assume that Algorithm 2.1 
generates an infinite sequence. Suppose that 

1( ) ( )k kF x F x   holds, and the objective function of (2) is 

denoted by ( )H x  with
* * *( )kx x x X  . We would prove 

that the sequence { ( )}
k

H x  is monotone decreasing. To this 

end, we set 

1( , 1) ( ) ( )k kk k H x H x      

* *

* *

1 * 1 *

* 1 *

( ( ) ( )) ( ( ) ( ))

2 ( ), ( ) ( )

( ( ) ( )) ( ( ) ( ))

  2 ( ), ( ) ( )

k k

k

k k

k

F x F x F x F x

G x F x F x

F x F x F x F x

G x F x F x





 



  

   

  

   

•

•
 

* *

* *

1 1 * *

* 1 *

* 1

( ( )) ( ) ( ( )) ( )

2 ( ), ( ) ( )

( ( )) ( ) ( ( )) ( )

2 ( ), ( ) ( )

2 ( ), ( ) ( )

k k

k

k k

k

k k

F x F x F x F x

F x F x F x

F x F x F x F x

F x F x F x

G x F x F x

 





 

   

 

   

   

• •

• •
 

1 1

* 1

* 1

( ( )) ( ) ( ( )) ( ) 

2 ( ), ( ) ( )

2 ( ), ( ) ( )

k k k k

k k

k k

F x F x F x F x

F x F x F x

G x F x F x

 





 

   

   

• •

  

1 1

1 1

1 * 1

* 1

( ( )) ( ) ( ( )) ( ) 

2 ( ), ( ) ( )

  2 ( ) ( ), ( ) ( )

  2 ( ), ( ) ( )

k k k k

k k k

k k k

k k

F x F x F x F x

F x F x F x

F x F x F x F x

G x F x F x

 

 

 



 

   

    

   

• •

 

1 1

1 * 1

* 1

( ( ) ( )) ( ( ) ( ))

  2 ( ) ( ), ( ) ( )

2 ( ), ( ) ( )

k k k k

k k k

k k

F x F x F x F x

F x F x F x F x

G x F x F x

 

 



  

    

   

•
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1 1

* 1

* 1

( ( ) ( )) ( ( ) ( ))

2 ( ), ( ) ( )

2 ( ), ( ) ( )

k k k k

k k

k k

F x F x F x F x

G x F x F x

G x F x F x





 





  

   

   

•

 

1 1

*

1

* 1

( ( ) ( )) ( ( ) ( ))

  2 ( ), ( ) ( )

  2 ( ), ( ) ( )

   2 ( ), ( ) ( )

k k k k

k k

k k k

k k

F x F x F x F x

G x F x F x

G x F x F x

G x F x F x







 





  

   

   

   

•

 

1 1

* 2

* 1

( ( ) ( )) ( ( ) ( ))

  2 ( ) ( )

  2 ( ) ( ), ( ) ( )

k k k k

k

k k k

F x F x F x F x

G x G x

G x G x F x F x





 



  

 

    

‖ ‖

•

 

1 2 * 2

* 1

( ) ( ) 2 ( ) ( )

2 ( ) ( ) ( ) ( )

k k k

k k k

F x F x G x G x

G x G x F x F x









   

  

‖ ‖ ‖ ‖

‖ ‖‖ ‖
 

1 2 * 2

* 2 1 2

( ) ( ) 2 ( ) ( )

  2 ( ) ( ) ( ) ( )
2

k k k

k k k

F x F x G x G x

G x G x F x F x












   

   

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
 

1 2 1 2( ) ( ) ( ) ( ) .
2

k k k kF x F x F x F x




    ‖ ‖ ‖ ‖  

1 2(1 ) ( ) ( ) .
2

k kF x F x




  ‖ ‖  

Since (2) can be equivalently reformulated as the following 
variational inequalities 

1 1

1

   2( ( ) ( )), ( ) ( )
 

2 ( ), ( ) ( ) 0

    

,

, ( )

k k k

k k

F x F x F x F x

G x F x F x

F x



 



   

    

 

               (5) 

let 
*( ) ( )F x F x in (5), we have that the first inequality 

holds. Let 
*y x  

* *( )x X  in (4), and 

* *( ), ( ) ( ) 0kG x F x F x    , 

Combining this with Definition 2.1, we get  

* * 2( ), ( ) ( ) ( ) ( ) ,k k kG x F x F x G x G x    ‖ ‖         (6) 

by (6), we have that the second inequality holds. The third 
inequality is based on Cauchy-Schwarz inequality. By 

0 2   , we have ( , 1) 0k k   , the nonnegative 

sequence { ( )}kH x  is strictly decreasing. 

Combining the definition of ( )H x , we have  

* 2

* *

* 2

( ) ( ) ( )

           ( ) ( ( ) ( ))

           ( ) ( ) 0.

k k

k

k

H x F x F x

G x F x F x

F x F x

 

 

  

‖ ‖

‖ ‖

•
                     (7) 

 So { ( )}
k

H x  converges, and we get ( , 1) 0k k    as 

k  , and 

1
lim ( ) ( ) 0.

k k

k

F x F x




 ‖ ‖                                 (8) 

Moreover, { ( )}
k

H x  is bounded since it is convergent, and so 

is { ( )}kF x  according to (7). Let { ( )}ik
F x  be a subsequence 

of { ( )}kF x  and converges toward ( )F x , by (5), we obtain  

( ), ( ) ( ) 0, ( ) ,G x F x F x F x                   (9) 

by (9), we have x  is a solution of (1). The x  can be used as 
*x  to define the function ( )H x : denoted ( )H x , we have  

2

2

( ) ( ( )

   ( ) (

    ( ) ( ) ( ) .

F x F x H x

F x F x

G x F x F x

 

 

 

‖ ‖

‖ ‖

‖ ‖‖ ‖

                         (10) 

and we know that { ( )}kH x  also converges, Substituting 

( )F x  in (10) with ( )ik
F x , we get ( ) 0ik

H x  as i 

. Thus, we have { ( )} 0kH x   as k  . By using (7) 

again, we know that the sequence { ( )}kF x  converges 

globally toward ( )F x . Since F  is onto , we have 

1( ( ) ) ( ( ) )

( ) ( ) 0( ).

k

k

k

x x

M F x p M F x p

M F x F x k

  





   

   

‖ ‖

‖ ‖

‖ ‖‖ ‖

 

Then the desired result is followed. 

III. CONCLUSION AND PROSPECT 

In this paper, we present an auxiliary problem method for 
solving GVIP, and we also have showed that method has a 
global convergence, and we needn't the conditions which the 

mapping G  is continuously differentiable and monotone on 
n

R , and the conditions which the mapping G  is Lipschitz 
continuous is also moved, it is a new result for GVIP. It is 

uncertain whether the algorithm is global and R  linear 
convergence, this is a topic for further research. 
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