
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

67 | P a g e

www.ijacsa.thesai.org

Simple and Efficient Contract Signing Protocol

Abdullah M. Alaraj

Information Technology Department

College of Computer, Qassim University

Saudi Arabia

Abstract—In this paper, a new contract signing protocol is

proposed based on the RSA signature scheme. The protocol will

allow two parties to sign the same contract and then exchange

their digital signatures. The protocol ensures fairness in that it

offers parties greater security: either both parties receive each

other's signatures or neither does. The protocol is based on

offline Trusted Third Party (TTP) that will be brought into play

only if one party fails to sign the contract. Otherwise, the TTP

remains inactive. The protocol consists of only three messages

that are exchanged between the two parties.

Keywords-contract signing; fair exchange protocol; digital

signature; protocols; security.

I. INTRODUCTION

Contracts play an important role in many business
transactions. Traditionally, paper-based contracts are signed by
the transacting parties who need to be present at the same
venue and at the same time. Each party signs a copy of the
contract for every contracting party so that every party has a
copy of the signed contract.

If the parties, however, are not able to meet to sign the
paper-based contract, then signing an electronic contract is an
alternative. The problem with signing electronic contracts,
however, is exchanging the signatures of the parties, especially
where there is a lack of trust between parties. One party may
send the other party their signature on the contract but may not
receive the signature of the other party in return. To solve the
problems of exchanging digital signatures, contract signing
protocols are used [3, 4, 5, 9, 10]. Contract Signing Protocols
ensure that either contracting parties receive each other's
signature or none does.

In this paper, a new, efficient contract signing protocol is
proposed. The proposed protocol is based on offline trusted
third party (TTP) that brought into play only if one party fails
to send their signature on the contract. In the normal execution
of the protocol, the two parties will exchange their signatures
directly.

This paper is organized as follows. Related work is
presented in section II. Section III presents the proposed
protocol that comprises the exchange protocol and dispute
resolution protocol. The analysis of the proposed protocol is
discussed in section IV. The comparison of the proposed
protocol with related protocols is presented in section V.

II. RELATED WORK

Early contract signing protocols (as in [7, 16]) allow the
parties to exchange their signatures directly without any
involvement from third party. That is, the parties gradually
exchange their signatures in part until both signatures are
complete. If one party fails to send an additional part of the
signature, the other party works to search for that remaining
part. The gradual exchange protocols are based on the
assumption that the two parties have the same computational
power to ensure fairness. However, in most applications this
assumption is not realistic [5]. The gradual exchange protocols
require a large number of rounds to complete the exchange of
signatures.

To overcome the problems of gradual exchange of
signatures, a trusted third party (TTP) is used in contract
signing protocols. The TTP helps the contracting parties to
exchange their signatures in a reliable and secure manner. The
TTP can be used online or offline.

In the online-based third party contract signing protocols
[as in 6, 8,10] the TTP will be actively involved in the
exchange of the signatures between the parties. The parties will
sign the contract and send their signatures to the TTP who will
verify the signatures and if they are correctly verified the TTP
will forward the signatures to the parties. The main problem
with this approach is that the TTP is involved in every
exchange and this may create a bottleneck. In addition to this,
the fees of the third party make this a costly approach.

In the offline-based third party contract signing protocols
[as in 3, 4, 5, 11, 13 (also called optimistic – 11)], the parties
will directly exchange each other's signatures on a contract. If
one party fails to submit their signature, the third party will be
brought in to resolve any dispute. In the offline-based third
party contract signing protocols, the TTP is rarely involved
which reduces the cost of running TTP. Also, the turnaround
time is eliminated since the parties exchange their signatures
directly.

A category of offline TTP-based contract signing protocols
has been proposed [3, 4, 5]. This category overcomes the
farness problem by using verifiable and recoverable encrypted
signatures. This approach will generally work as described
below. Let‟s say that two contracting parties, Alice and Bob,
want to exchange their signatures on a contract.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

68 | P a g e

www.ijacsa.thesai.org

Alice will sign the contract, encrypt the signature and then
send the encrypted signature to Bob. Bob will then verify the
encrypted signature and if it is correctly verified, send his
signature to Alice. If Alice finds that Bob's signature is correct
then she will send the decryption key to Bob to decrypt her
encrypted signature. If Alice fails to send the decryption key,
Bob will contact the TTP to recover the decryption key.

Nenadic, Zhang and Barton[3] proposed a fair signature
exchange protocol. The protocol is based on the verifiable and
recoverable encryption of signatures on a contract. Alice will
send her partially encrypted signature to Bob who will be able
to verify it. If the encrypted signature is correctly verified then
Bob will send Alice his signature. On receiving Bob's
signature, Alice will verify it and if it is correctly verified then
Alice will send the decryption key to Bob to decrypt the
encrypted signature. If Alice does not send the decryption key,
Bob will contact the TTP to recover Alice's signature.

Ateniese [4] also proposed a fair contract signing protocol.
Ateniese's protocol is based on the verifiable and recoverable
encryption of a signature. If Alice and Bob want to exchange
their signatures on a contract then the protocol will work as
follows. Alice will first sign the contract, then encrypt the
signed contract with the public key of the trusted third party
(TTP). Alice will then send Bob: (1) the encrypted signature,
(2) evidence stating that Alice has correctly encrypted her
signature on the contract. On receiving Alice's message, Bob
will verify the evidence. If the evidence is valid then Bob will
send his signature on the contract to Alice. On receiving Bob's
signature, Alice will verify it and if it is valid then Alice will
send her signature on the contract to Bob. If Alice does not
send her signature to Bob or Alice's signature is invalid then
Bob can contact the TTP to resolve the dispute.

Wang [5] proposed a protocol for signing contracts online.
Their protocol is based on the RSA signature. If Alice and Bob
are planning to exchange their signatures on a contract using
Wang's protocol [5] then Alice will first split her private key
into two parts d1 and d2. Only d2 will be sent to TTP. Alice
will send Bob her partial signature that was signed using d1.
On receiving Alice's partial signature, Bob will initiate an
interactive zero-knowledge protocol with Alice to check
whether Alice's partial signature is correct. If it is correctly
verified then Bob will send his signature to Alice. After Alice
receives Bob's signature, Alice will verify it and if it is
correctly verified then Alice will send Bob the second part of
her signature. If, however, Alice did not send the second part of
the signature, Bob can contact the TTP to resolve the dispute.

In this paper, we propose a new approach that uses
verifiable and recoverable encryption of signatures that will
allow the party who receives the encrypted signature to verify
it. If he / she correctly verifies the encrypted signature, then it
is safe for this party to release his / her signature to the other
party because the TTP can be contacted to recover the signature
if the other party fails to submit his / her signature. The
proposed protocol does not use the interactive zero-knowledge
proofs for verifying the encrypted signature as in [4 & 5].
Rather, the contract certificate that is introduced in this paper
will allow the party who receives the encrypted signature to
verify it.

III. THE PROPOSED CONTRACT SIGNING PROTOCOL

A. Notations

The following represents the notations used in the proposed
protocol:

 Pa, Pb, and Pt: parties a, b, and TTP, respectively.

 C: The contract to be signed by Pa and Pb

 C.at: the certificate for the shared public key between Pa
and Pt. C.at is issued by Pt. A standard X.509 certificate
[12] can be used to implement C.at

 Pkx = (ex, nx): RSA Public Key [14] of the party x,
where nx is a public RSA modulus and ex is a public
exponent

 Skx = (dx, nx): RSA Private Key [14] of the party x,
where nx is a public RSA modulus and dx is a private
exponent

 h(M): a strong-collision-resistant one-way hash
function

 enc.pkx(M): an RSA [14] encryption of message M
using the public key pkx (ex, nx). The encryption of M
is computed as follows: enc.pkx(M) = Mex mod nx

 enc.skx(Z): an RSA [14] decryption of Z using the
private key skx (dx, nx). The decryption of Z is
computed as follows: enc.skx(Z) = Zdx mod nx

 Sig.x(M): the RSA digital signature [14] of the party x
on M. The digital signature of party x on M is
computed by encrypting the hash value of M using the
private key skx(dx, nx).

 C-Cert: the contract certificate. C-Cert is issued by CA.
The contents of C-Cert are:

o heSig: the hash value of the signature of Pa

on the contract encrypted with pkat i.e.

"h(enc.pkat(Sig.a(C)))"

o hC: hash value of the contract

o CA's signature on C-Cert

 Px → Py: M, means party x sends message M to party y

 X + Y: concatenation of X and Y

B. Assumptions

The following represents the assumptions used in the
proposed protocol:

 Channels between Pa, Pb and Pt are resilient i.e. all sent
messages will be received by their intended recipients

 Parties will use the same hashing, encryption,
decryption algorithms.

 Pt is trusted by all parties and will not collude with any
other party

 Parties Pa and Pb will agree on the contract before the
protocol starts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

69 | P a g e

www.ijacsa.thesai.org

 Parties (Pa, Pb and Pt) already have their public keys
and they are certified from CA

C. Registration

In the registration phase, Pa needs to do the following:

 Pa will request from Pt to share an RSA public key with
it. The shared public key is denoted as pkat = (eat, nat)
and its corresponding private key is denoted as skat =
(dat, nat). Pt will certify the shared public key and issue
the shared public key certificate C.at

 Pa will sign the contract "C" using its private key ska as
Sig.a (C) and then send the following to CA to certify
the encrypted signature and issue C-Cert:

 Sig.a (C) + C + C.at
On receiving Pa's request, CA will verify if the received

signature is for the contract C included in Pa's
message. If so, then CA will encrypt Sig.a(C) using the
shared public key pkat that is included in C.at. That is,
CA will compute:

enc.pkat (Sig.a(C))
Then, CA will issue C-Cert that includes the items

mentioned in the "Notations" section.

D. Exchange Protocol

The exchange protocol represents the normal execution of
the protocol. It consists of the following three steps (see Fig. 1):

1. [E-M1]: Pa → Pb: C + C.at + C-Cert +

enc.pkat(Sig.a(C))

2. [E-M2]: Pb → Pa: Sig.b(C)

3. [E-M3]: Pa → Pb: Sig.a(C)

Figure 1. Exchange Protocol

Step [E-M1]: Pa encrypts the signed contract with the
shared public key pkat. Pa then sends the items C, C.at, C-Cert,
enc.pkat(Sig.a(C)) to Pb.

Step [E-M2]: once Pb receives E-M1 then they will do the
following verifications:

1. Pb will verify the correctness of both C.at and C-Cert

by verifying the signatures on these certificates.

2. If the certificates are correctly verified then Pb will

compute the hash value of the contract and then

compare it with "hC" that is included in C-Cert.

3. Pb will also need to verify the correctness of the

encrypted signature of Pa on the contract i.e. Pb will

verify "enc.pkat (Sig.a(C))". To verify the encrypted

signature, Pb will compute the hash value of

"enc.pkat(Sig.a(C))" then compare it with "heSig" that

is included in C-Cert. If they match, it means that Pa

encrypted the correct signature.

If all verifications are correct then Pb will sign the contract
using their private key skb then will send the signed contract
"Sig.b(C)" to Pa.

Step [E-M3]: once Pa receives Sig.b (C), Pa will verify Pb's
signature. That is, Pa will decrypt the signature to get the hash
value of the contract then compare it with "hC" that is included
in C-Cert. If Pb's signature is correctly verified then Pa will send
their signature Sig.a(C) to Pb

Once Pb receives Sig.a(C) then Pb will verify it by
decrypting the signature to get the hash value of the contract
and compare it with "hC" that is included in C-Cert. If the
verification is correct then the received signature is correct.

Now, both Pa and Pb have each other's signatures on the
contract. Therefore, fairness is ensured. If Pa did not send E-M3
or sent incorrect E-M3 then Pb can contact Pt using the dispute
resolution protocol to resolve the dispute.

E. Dispute Resolution Protocol

Figure 2. Dispute Resolution Protocol

If Pb did not receive the step E-M3 or received an incorrect
E-M3, Pb can contact Pt to resolve the dispute. The dispute
resolution protocol consists of the following three steps (see
Fig. 2):

1. [DR-M1]: Pb → Pt: C + C.at + C-Cert +

enc.pkat(Sig.a(C)) + Sig.b(C)

2. [DR-M2]: Pt → Pa: Sig.b(C)

3. [DR-M3]: Pt → Pb: Sig.a(C)

 Step [DR-M1]: if Pb did not receive the correct

signature or did not receive the signature at all then Pb will

send message DR-M1 to Pt to request a resolution.
Step [DR-M2]: once Pt receives DR-M1 then they will do

the following verifications:

 Pt will verify the correctness of C.at and C-Cert by
checking the signatures on these certificates.

 If the certificates are correctly verified then Pt will
verify the correctness of the encrypted signature of Pa

on the contract i.e. enc.pkat(Sig.a(C)). To verify the
encrypted signature, Pt will either (i) compute the hash
value of enc.pkat (Sig.a(C)) then compare it with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

70 | P a g e

www.ijacsa.thesai.org

"heSig" that is included in C-Cert. If they match it
means that Pa encrypted the correct signature, or (ii) Pt
has the private key "skat" corresponding to the shared
public key so it can decrypt the encrypted signature i.e.
enc.pkat (Sig.a (C)) and then decrypt the signature with
pka and compare the decrypted hash with "hC" that is
included in C-Cert.

 Pt will also verify Sig.b (C) by decrypting the signature
with pkb then comparing the decrypted hash with "hC"
that is included in C-Cert.

If all verifications are correct then Pt will send the message
DR-M2 to Pa and DR-M3 to Pb. DR-M2 includes the signature
of Pb on the contract.

The signature of Pb on the contract is sent to Pa to ensure
fairness in the case where Pb contacted Pt after receiving E-M1
i.e. Pb may cheat by contacting Pt before sending E-M2 to Pa.

Step [DR-M3]: Pt will send Sig.a (C) to Pb in DR-M3

Now, both Pa and Pb have each other's signature on the
contract. Fairness is ensured either in the exchange protocol or
in the dispute resolution protocol if Pa acts dishonestly.

IV. ANALYSIS

The fairness property in our protocol will be evaluated by
studying the following four cases: (1) the first case where Pa is
honest and Pb is dishonest, (2) the second case where Pa is
dishonest and Pb is honest, (3) the third case where both Pa and
Pb are dishonest, and (4) the forth case where both Pa and Pb
are honest.

 Case 1: If Pa is honest and Pb is dishonest. Pb acts
dishonestly by sending an incorrect signature to Pa or
by contacting Pt before sending his signature to Pa. In
the first scenario where Pb sends an incorrect signature
to Pa, Pa will check Pb's signature. Then if it is
incorrect, Pa will not send his signature to Pb in E-M3.
In the second scenario where Pb contacted Pt before
sending his signature to Pa, Pt will check Pb's request
and if it is correctly verified then Pt will send the
resolution to both Pa and Pb. Therefore, fairness is
ensured

 Case 2: Pa is dishonest and Pb is honest. Pa can act
dishonestly by sending the incorrect E-M1, sending
the incorrect E-M3 or not sending the E-M3 at all. In
the scenario where Pa sends incorrect E-M1, Pb will
verify E-M1 as described in section III. If Pb finds that
E-M1 is incorrect, they will not send their signature to
Pa in E-M2. In this scenario no one reveals their
signature at this stage. In the scenarios where Pa sends
incorrect E-M3 to Pb or Pa does not send E-M3, Pb can
contact Pt to recover Pa's signature.

 Case 3: both Pa and Pb are dishonest. Pa can act
dishonestly by sending the incorrect E-M1, sending
the E-M3 or not sending the E-M3 at all. Pb can act
dishonestly by sending an incorrect signature to Pa or
by contacting Pt before sending his signature to Pa.

The scenarios of case 3 are discussed in cases 1 and 2
above.

 Case 4: both Pa and Pb are honest. If both Pa and Pb act
honestly then fairness will be ensured in the exchange
protocol and there is no need to contact Pt at all.

Therefore, the above analysis of the four cases shows that
the fairness is ensured either in the exchange protocol or in the
dispute resolution protocol.

It is worth mentioning that Pt does not need to receive any
message from Pa in order to resolve any dispute raised by Pb.
Rather, Pt will receive the dispute request from Pb and then
will decide if Pb's request is valid or not. If the request is valid
then Pt will send the resolution electronically to both Pb and Pa.

The certificate C-Cert is unique for each exchange. That is,
every time Pa and Pb need to exchange their signatures on a
contract then a new certificate will be used. The shared public
key certificate C.at, however, can be used for signing an
unlimited number of contracts.

Pt is passive during the exchange protocol i.e. in the
normal execution of the protocol Pa and Pb will not need to
contact Pt. In case Pa misbehaves then Pt will be contacted by
Pb to resolve the dispute.

V. COMPARISON WITH RELATED WORK

The proposed protocol will be compared against contract
signing protocols that are based on verifiable and recoverable
encryption of signatures, namely, Nenadic, Zhang and Barton
protocol [3], Ateniese's protocol [4] and Wang's protocol [5].

For the comparison, we analyze the number of messages
and the number of modular exponentiations in both the
exchange protocol and dispute resolution protocol. The
exponentiation is the most expensive cryptographic operation
in the finite field [5].

Both the proposed protocol and Ateniese's Protocol [4]
have three messages in the exchange protocol whereas Wang
Protocol [5] has seven messages. All protocols have three
messages in the dispute resolution protocol.

Regarding the modular exponentiations in the exchange
protocol, the proposed protocol has the lowest number of
modular exponentiations, with only six. Nenadic, Zhang and
Barton protocol [3] has the lowest number of modular
exponentiations in the dispute resolution protocol with only
five modular exponentiations. Our protocol has seven modular
exponentiations in the dispute resolution protocol.

Ateniese's Protocol [4] and Wang's protocol [5] require
interactive zero-knowledge proofs to allow one party to verify
the encrypted signature of the other party. Our protocol offers
greater efficiency in that it allows the receiving party to verify
the encrypted signature using the contract certificate (C-Cert).

From Table 1, it is clear that the proposed protocol is more
efficient compared with the related protocols except for the
dispute resolution protocol as Nenadic, Zhang and Barton [3]
protocol has the lowest number of modular exponentiations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

71 | P a g e

www.ijacsa.thesai.org

TABLE I. PROTOCOLS COMPARISONS

 Nenadic

protocol

[3]

Ateniese

Protocol

[4]

Wang

Protocol

[5]

Our

protocol

messages in

exchange protocol

4 3 7 3

messages in

dispute resolution

protocol

3 3 3 3

modular

exponentiations

in exchange

protocol

19 (taken

from [3])

22 (taken

from [3])

10.5 (taken

from [5])

6

modular

exponentiations

in dispute

resolution

protocol

5 (taken

from [3])

≥ 20 (taken

from [3])

 Not

mentioned

7

VI. CONCLUSION

A new offline TTP-based fair contract signing protocol is
proposed in this paper. The proposed protocol ensures the
exchange of signatures of two parties on a contract. At the end
of the execution of the protocol, both parties get each other's
signatures or neither does. The proposed protocol comprises of
only three messages in the exchange protocol as well as only
three messages in the dispute resolution protocol. If one party
evades during the execution of the protocol, the protocol
provides an online resolution for the disputes where the TTP
will be involved. The proposed protocol is efficient as it has the
lowest number of modular exponentiations in the exchange
protocol. In a future study, we plan to investigate how to make
the protocol an abuse-free protocol as Wang did in [5]. We also
intend to implement and integrate the proposed protocol with e-
commerce applications for the exchange of digital signatures
between two parties.

REFERENCES

[1] A. Alaraj, "Optimizing One Fair Document Exchange Protocol"
International Journal of Network Security & Its Applications (IJNSA),
Vol.4, No.1, pp. 1- 12, January 2012

[2] A. Alaraj and M. Munro, “An e-Commerce Fair Exchange Protocol that
Enforces the Customerto be Honest”. International Journal of Product
Lifecycle Management, IJPLM, Vol.3, Nos.2/3, pp. 114-131, 2008

[3] A. Nenadic, N. Zhang, and S. K. Barton, "A Secure and Fair DSA-based
Signature Exchange Protocol ", the 9th IEEE Symposium on Computers
and Communications (ISCC'2004), Alexandria, Egypt June 29-July 1,
2004, pp. 412-417.

[4] G. Ateniese, “Efficient verifiable encryption (and fair exchange) of
digital signature,” in Proc. ACMConf. Computer and Communications
Security (CCS‟99), 1999, pp. 138–146, ACM Press

[5] G. Wang"An Abuse-Free Fair Contract-Signing Protocol Based on the
RSA Signature" by G. Wang, IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 1, pp.
158-168, MARCH 2010

[6] H. Burk and A. Pfitzmann, "Value Exchange Systems Enabling Security
and Unobservability", Computers & Security 9, pp. 715-721, 1990

[7] I. Damgard, "Practical and provably secure release of a secret and
exchange of signatures". In: Proceedings of advances in cryptology –
EUROCRYE‟T „93, vol. 765. Berlin, Germany: LNCS, Springer-Verlag;
1994. pp. 200–17

[8] J. Zhou and D. Gollmann, “A fair non-repudiation protocol,” in Proc.
IEEE Symp. Security Privacy, 1996, pp. 55–61, IEEE Computer Press

[9] L. Harn and C. Lin "Contract signature in e-commerce" Computers and
Electrical Engineering37 (2011), pp. 169-173, 2011

[10] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest, “A Fair Protocol for
Signing Contracts”,IEEE Transactions on Information Theory, vol. 36,
no. 1, pp. 40-46, Jan. 1990

[11] N. Asokan, M. Schunter, and M. Waidner, “Optimistic Protocols for Fair
Exchange”, Proc.Fourth ACM Conf. Computer and Communication
Security, pp. 8-17, Zurich, Switzerland,April 1997

[12] Public-Key Infrastructure (X.509), The PKIX working group, available
athttp://datatracker.ietf.org/wg/pkix/charter/ accessed on 16-02-12

[13] Q. Shi, N. Zhang, M. Merabtia: Fair exchange of valuable information:
A generalised framework. Journal of Computer and System Sciences 77
(2011),pp.348–371

[14] R. Rivest, A. Shamir, L. Adleman “A method for obtaining digital
signatures and public-keycryptosystems”, Commun ACM 1978; pp.
120–126, 1978

[15] S. Micali, “Simple and fast optimistic protocols for fair electronic
exchange,” in Proc. PODC‟03, 2003, pp. 12–19, ACM Press.

[16] T. Okamoto and K. Ohta. "How to simultaneously exchange secrets by
general assumptions". In: Proceedings of ACM conference on computer
and communication security, 1994. pp. 184–92

[17] X. Liang, Z Cao, R. Lu, and L Qin "Efficient and secure protocol in fair
document exchange", Computer Standards & Interfaces, Vol. 30 (2008),
pp. 167–176, 2008

[18] Z. Shao "Security analysis of two RSA-Based fair document exchange
protocol". In: Proceedings of the Second International Workshop on
Computer Science and Engineering, Qingdao, China, pp. 55-59, 2009

AUTHOR PROFILE

Abdullah Alaraj is presently a faculty member in the department of
Information Technology, College of Computer, Qassim University,
Saudi Arabia. He received his BSc in Computer Science from King Saud
University (Saudi Arabia), his MSc in Internet and Distributed Systems
from Durham University(UK), and his PhD from Durham University
(UK). His areas of research interests include: e-commerce security, fair
exchange protocols, fraud, trust, information security

