
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

8 | P a g e

www.ijacsa.thesai.org

A Keyword Driven Framework for Testing Web

Applications

1Rashmi

Centre for Development of Advanced Computing,

Noida, India.

2Neha Bajpai

Centre for Development of Advanced Computing,

Noida, India.

Abstract—The goal of this paper is to explore the use of Keyword

driven testing for automated testing of web application. In

Keyword driven testing, the functionality of the system-under-

test is documented in a table as well as in step by- step

instructions for each test. It involves the creation of modular,

reusable test components. These components are then assembled

into test scripts. These components can be parameterized to make

them reusable across various test script. These test scripts can

also be divided into various reusable actions. This saves a lot of

recording procedure. The Existing tools for this testing uses

Html, Xml, Spreadsheet, etc. to maintain the test steps. The test

results are analyzed to create test reports.

Keyword-driven testing; test automation; test script;, test results;

Html; test reports; test result; recording.

I. INTRODUCTION

Testing is an integral part of the software development. The
goal of software testing is to find faults from developed
software and to make sure they get fixed. It is important to find
the faults as early as possible because fixing them is more
expensive in the later phases of the development. The purpose
of testing is also to provide information about the current state
of the developed software from the quality perspective.

On a high level, software testing can be divided into
dynamic and static testing. The division to these two categories
can be done based on whether the software is executed or not.
Static testing means testing without executing the code. This
can be done with different kinds of reviews. Reviewed items
can be documents or code. Other static testing methods are
static code analysis methods for example syntax correctness
and code complexity analysis.

Dynamic testing is the opposite of static testing. The system
under test is tested by executing it or parts of it. Dynamic
testing can be divided to functional testing and non-functional
testing

The purpose of functional testing is to verify that software
corresponds to the requirements defined for the system. The
focus on functional testing is to enter inputs to the system under
test and verify the proper output and state. The non-functional
testing means testing quality aspects of software. Benefits of
non-functional testing are performance, security, usability,
portability, reliability, and memory management testing.

Automation testing means execution of test cases in an
automated way without manual intervention. It was originated

from simply record and playback which makes engineers repeat
the work. This can be achieved either by using a third party
tool like RFT, QTP, etc or by developing an in-house tool
suited to the testing need. Test automation includes various
activities like test generation, reporting the test execution
results, and test management. All these test automation
activities can take place on all the different test levels. These
test levels are unit testing, integration testing, system testing,
and acceptance testing. [2]

Automating the testing is not an easy task. There are several
issues that have to be taken into account. These issues are like
unrealistic expectations, poor testing practice, and an
expectation that automated tests will find a lot of new defects, a
false sense of security, maintenance, technical problems, and
organizational issues. [2]

The test automation frameworks have evolved over the
time. They have evolved into three generations. [3] Figure 1
shows evolution of Test Automation. In the beginning, there
was record and playback script creation. In this, there were
only stand-alone test scripts. After this, comes the Functional
Decomposition. It consists of reusable functional; test modules.

Figure 1. Evolution of Test Automation [7]

After that came data-driven testing. In this, test data is taken
out of the scripts. This makes the test data variation easy and
similar test cases can be created quickly.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

9 | P a g e

www.ijacsa.thesai.org

Today, keyword-driven testing is getting more popular. It is
a technique that separates much of the programming work from
the actual test steps so that the test steps can be developed
earlier and can be maintained with only minor updates. It
consists of test scripts, keyword library and data. Table 1 shows
Benefits and shortcomings of Automated Testing Approaches.

II. KEYWORD DRIVEN TESTING

It involves the creation of modular, reusable test
components that are built by test architects and then assembled
into test scripts by test designers. This removes the biggest
limitation of the data-driven testing approach.

Keywords can be divided into base and user keywords.
Base keywords are keywords implemented in the libraries.
User keywords are keywords that are defined in the test data by
combining base keywords or other user keywords [3]. The
ability to create new user keywords in the test data de-creases
the amount of needed base keywords and therefore amount of
programming. The Test scripts can be added, deleted and
modified. The test script modification helps in the
parameterization of the test and in dividing a test into multiple
actions.

TABLE I. BENEFITS AND SHORTCOMINGS OF AUTOMATED TESTING

APPROACHES
[7]

Approach How it works Benefits Shortcomings

Record and

Playback

Users‟ action

are captured,

then played

back on the

application

Ease of

Scripting, not

much technical

expertise

required

Difficult to maintain

test scripts, not

extendable, limited

reusability, even

small changes to the

application require

updates of scripts

Functional

decompositio

n

Re-usable,

repeatable

snippet of

functions are

created

modular

approach

provides some

flexibility,

maintainability,

reduces

redundancy,

larger test cases

can be built in

hierarchical

fashion

Data exists within

scripts, meaning

limited reusability,

ease of

maintenance,

depends largely on

technical expertise,

framework is high

dependent on the

framework.

Data-driven Input/output

data is

maintained in

external files

Size of the test

pack is greatly

reduced,

improved

maintainability

Depends on

technical expertise

of test team,

maintenance and

perpetuation are

issues

Keyword-

driven

Robust,

application

independent re-

usable keyword

libraries are

built

Ease of

maintenance and

highly scalable

reduced

dependence on

application

availability

Requires great deal

of efforts and is

time consuming,

expertise in test tool

scripting language

required by

framework

development

While testing a web application, there may be needed to
check how the web application performs the same operations
with multiple sets of data. For example, how a Web application
responds to ten separate sets of data is to be checked.

Ten separate tests could be recorded, each with its own set
of data. The tool can be test the application with this different
data without the need of recording with these data. The test
must be saved before running.

Actions divide the test into logical sections. When a new
test is created, it contains a call to one action. By dividing the
tests into calls to multiple actions, more modular and efficient
tests can be designed. This is another feature of reusability of
keywords that makes Keyword driven Testing more efficient
and modular than the Data Driven Testing.

Various tools for test automation that support this technique
are also developed in industry, such as Mercury‟s Quick Test
Professional (QTP) and WinRunner, IBM‟s Rational
Functional Tester (RFT) and Robot on functional testing, and
LoadRunner from Mercury, SilkPerformer from Borland,
Grinder and JMeter from open source on performance testing.

There are various kinds of keywords which are handled in
this technique. These are basically item or base level keywords,
utility function and sequence or user keywords. In the
keyword-driven testing also the keywords controlling the test
execution are taken out of the scripts into the test data. This
makes it possible to create new test cases in the test data
without creating a script for every different test case allowing
also the test engineers without coding skills to add new test
cases. This removes the biggest limitation of the data-driven
testing approach.

Table 2 shows an example of keyword-driven test data
containing a simple test case for testing a login web
application. The test cases consist of keywords Runapp,
Username, Password and ok, and the arguments which are
inputs and expected outputs for the test cases. As it can be seen,
it is easy to add logically different test cases with-out
implementing new keywords.

To be able to execute the tabular format test cases shown in
table 3, there have to be mapping from the keywords to the
code interacting with system under test (SUT). The scripts or
code implementing the keywords are called handlers.

In Figure 2 can be seen the handlers for the keywords used
in test data (table 2). In addition to the handlers, test execution
needs a driver script which parses the test data and calls the
keyword handlers according to the parsed data. If there is a
need for creating high level and low level test cases, different
level keywords are needed. Simple keywords like Username
are not enough for high level test cases. There are simple and
more flexible solutions.

Higher level keywords can be created inside the frame-
work by combining the lower level keywords. The limitation of
this approach is the need for coding skills whenever there is a
need for new higher level keywords.

A more flexible solution proposed is to include a possibility
to combine existing keywords in the keyword-driven test
automation framework. This makes it possible to create higher
level keywords by combining existing keywords inside the test
data. These combined keywords as user keywords. [5]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

10 | P a g e

www.ijacsa.thesai.org

TABLE II. KEYWORD-DRIVEN TEST DATA FILE

Figure 2. Handlers for keywords in Table 2

There are various advantages of using keyword driven
testing techniques. These advantages are as follows:

1) Keywords that reflect the business can be chosen

2) Keyword re-use across multiple test cases

3) Not dependent on Tool / Language

4) The keyword list is robust to minor changes in the

software.

5) Division of Labor Test Case

III. BASE REQUIREMENTS

There are various requirements that are known as "base
requirements". These requirements must be fulfilled for success
of keyword driven testing. These include:

1) The process of Test development and automation must

be fully separated. It is very important to separate test

development from test automation. Testers are not and should

not be programmers. So, Testers must be adept at defining test

cases independent of the underlying technology to implement

them. Individuals who are skilled technically, the automation

engineers, will implement the action words and then test them.

2) The test cases must have a clear and differentiated

scope. It is important that test cases have a clearly

differentiated scope and that they not deviate from that scope.

3) The tests must be written at the right level of abstraction

such as the higher business level, lower user interface level, or

both. It is also important that test tools provide this level of

flexibility.

IV. KEYWORDS

The Test Language is based on a dictionary, which is
comprised of words (keywords) and parameters. A Test Case is
a sequence of steps that tests the behavior of a given
functionality or feature in an application. Unlike traditional test
approaches, Test Language uses pre-defined keywords to
describe the steps and expected results. Keywords are the basic

functional sub-procedures for the test cases of the application
under test. A test case is comprised of at least one keyword. [4]

There are three kinds of keywords. These are item or base
level keywords, utility function and sequence or user keywords.

Item is an action that performs a specific operation on a
given GUI component. For example set value “rashmi" in
“User name" control, set value “12345" in “Password control
result" field.

When performing an operation on a GUI item, the
following parameters should be specified: Name of GUI item,
what operation to perform and the values. Table 3 shows Item
operations.

Utility Function is a script that executes a certain functional
operation that is hard or ineffective to implement as a
Sequence. For example: Runapp, closeapp. Table 4 shows
Utility Functions.

Sequence is a set of keywords that produces a business
process, such as “Login”. Sequence keyword is made by
combining various items and utility function. It is
recommended to collect frequently used functional processes
such as login, addition of new records to the system as a
sequence instead of implementing them as items in test cases.
Table 4 shows Sequence keywords.

Parameters are additional information required in order to
generate the test conditions. In most cases, parameters should
be defined for the created keywords. For example: failed
authentication by passing username with illegal password,
number for mathematical calculation, etc. Table 6 shows
Keywords & their associated parameters

Examples for sequence parameters: When the user wants to
create a new user, the following syntax is used: create_user (
rashmi, 6/12/2000,rashmi.1306@yahoo.com)

Some of the keywords may contain dozens of parameters.
In order to simplify the test creation, all parameters should
contain default values. The tester should be able to change each
one of the default parameters according to the context of the
test. For example, if the tester would like to create new user
that is older the 100 years, only the birth date will be changed
and all other parameters will remain the same. Obviously, a
specific change will not affect the default parameters being
used for other tests.

TABLE III. ITEM OPERATION

TABLE IV. UTILITY FUNCTION

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

11 | P a g e

www.ijacsa.thesai.org

V. OBJECT REPOSITORY

Object Repository is a centralized place for storing
Properties of objects available in Application under Test
(AUT). All software applications and websites are getting
developed using many different components or small units like
textbox control, input tag, web browser control etc. These
components or small unit are known as Objects. [10]

Each object will be identified based on the object type.
Each object will also have its own properties like name, title,
caption, color, size. These properties help in the identification
of these objects uniquely. There are also specified set of
methods for each object. There are various properties that can
be changed during run-time. These properties are known as
Runtime Object (RO) properties. There are also some other
properties that can‟t be changed. These properties are known as
Test Object (TO) properties. [10]

 There are some additional properties such as index,
location which are known as ordinal identifiers. Actually these
properties won't be available in the object of Application under
the test. These are created in order to distinguish two objects
which are having exactly same Test Object properties. For
instance, some forms in the web pages will be have two submit
buttons, one at top and another at bottom. These both can be
identified separately on the basis of the location or index.
As Test Object properties are also based on properties of object
of Application under Test, there is no need for all the Test
Object properties to be available in Runtime Object properties
collection also. The object repository must support the editing
of the properties of these Test Object and new properties can
also be added to them. The value for the properties of the Test
Objects in Object Repository need not be a constant. They can
parameterize the values so that the Test Object property can be
dynamically changed for each execution.

These properties are stored in the centralized place in object
repository. This helps in the maintenance and updating of Test
scripts can be easily done whenever there is a change in UI
(User Interface) of the AUT. Assume that Login screen is used
in around 20 Test scripts. If the Page name of login screen in
changed, there is no need to make any change in all these 20
Test scripts. By just changing the property of Test Object in
Object Repository is enough. A clear understanding of Object
Repository is essential to carry out the operation of the
Keyword driven testing successfully.

A framework for testing should be able to recognize any
control or object in any webpage that needs to be testes. For
recognizing the object, it should know the properties of those
objects beforehand. During the execution of the test scripts,
this identification is done. A framework has data tables for
supporting the execution of multiple iterations of same step
with different data.

There can be various methods to manipulate the test object
properties. The Test Object properties of Test Objects can be
accessed by implementing methods such as getTOproperty and
getTOproperties.

TABLE V. SEQUENCE

TABLE VI. KEYWORDS & THEIR ASSOCIATED PARAMETERS

Even, Test Object property of Test Object can be changed

using setTOproperty. It will be valid only till exiting the
execution. After completing the execution it will resume the
actual Test Object property stored in the Object Repository.
During run-time we can get the property of the runtime object
using getROproperty.

VI. KEYWORD DRIVEN MODULE

A framework used for performing keyword driven testing
will consists of various interrelated modules. These modules
are namely core module, scripting language module, support
library module and many more. [1] Figure 3 shows the
Keyword driven module.

Core module takes a major role in analysis the keyword
information of the script, and controls the implementation of
the scripts. It is composed of four parts that are the data parser,
the script parser, the script actuator and the middle layer. The
data parser is responsible for analysis on the keyword, the
script parser responsible for analysis the logic keyword in the
script, the script actuator is responsible for the implementation
of the script, and the middle layer is responsible for calling the
test. [1]

Data Access module is responsible for data storage,
including add scripts, modify scripts, read scripts, enquiry
scripts, delete scripts, and other functions. The script has three
levels, when the high level and low-level script bearing the
script, the layer will maintain this relationship. [1]

Interface module is to enhance the framework's ease of use.
It realize a GUI interface, the graphical interface allows users
to edit, drag and drop the modalities script; provides a user
friendly guide to understand and use; provides view and editor
which make it easily for users to view, modify the existing test
scripts. [1]

Support module consists of two parts: one is the libraries
that all of the tests can be shared, including the log library and
the test supporting library. The log library is responsible for
providing the functions of log records to testers; the test
supporting library provides the functions that all of the tests can
be shared. The second is the testing library for GUI; this part
provides the controls libraries. [1]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

12 | P a g e

www.ijacsa.thesai.org

Figure 3. Keyword driven module [1]

Interpret scripting language module is consisted of three
parts, such as lexical analyzer, parser, and interpreter. Lexical
analyzer will be responsible for the output of the characters in a
flow analysis as a word, parser will be responsible for the
sequence of words with semantic analysis for the phrase and
interpreter will be responsible for the semantic translation. [1]

VII. PPOPOSED APPROACH

First, a web application is taken which is needed to be
tested. A web application can be a login page, online shopping
web application, online reservation web application etc. To
start the process of recording, enter the URL of the desired web
application. The process of authentication in Railway
Reservation web application, in which user passes user ID and
a password, is taken as an example to describe the proposed
approach.

As user navigates the Web application, the Keyword driven
testing framework records the steps. In the User Name and
Password boxes, the name and password are entered and the
Sign-In Button is clicked. The travel planning web page opens
(If both correct username and password are entered). These
operations form the basis of the test. The tool records all the
operations performed in the Web browser until the recording is
stopped.

When the recording is stopped, a test script file is
generated. This generated test script file containing all user
actions, is saved. The user actions will comprise of items
clicked, items selected, value typed etc, during the recording
procedure. The tool will also generate steps in the table format,
representing each operation performed in the form of Keyword,
Value and Operation. For example, User Name text field,
Password text field and Sign-In button are the keywords. The
Value represents values entered by the user in the items. The
Operation includes the click, select, drag or drop, etc. The test
Script will be useful in the play back of a test and reusability of
the test script i.e. parameterization and multiple actions.

When the test is play backed, the tool runs the saved test
script file. The recorded web application opens in the web
browser and all steps are performed automatically, as it was
originally recorded in the test. For example, the recorded test
script for authentication process can be played backed.
Parameterized tests and multiple action tests are also played
back using the play back module.

When the test run is completed, it displays the results of the
run (whether a test is passed or failed) in the test result page.
The Test Results window opens, which contains the result
summary of the test execution. The Test Results window
displays the key elements of the test run for test analysis
purpose. The key elements are composed of two parts. First
element shows the steps (in the tree structure format) that were
performed while the test was running. The second element is
the test result details. The test result contains iteration and
status summary. The iteration summary indicates which
iterations passed and which failed. The status summary
indicates the number of test or reports that passed, failed, and
raised warnings during the test.

Object Repository is a centralized place for storing the
properties of objects available in AUT (Application under
Test). The keywords can be added in the object repository,
either manually or at the time of recording. All software
applications and websites are developed using many different
components or small units (for example textbox control in VB,
input tag in HTML, web browser control in .net) which are
known as Objects. Each object is identified on the basis of the
object type. Each object has properties (for example name, title,
caption, color and size) and specific set of method, which help
in identification of an object. The object repository will support
the modification of Test Object‟s properties, as well as, new
properties can also be added. The values of the properties
stored in Object Repository need not be a constant. The values
can be parameterized by making them variable.

The Test scripts can be added, deleted and modified. The
test script modification helps in the parameterization of the test

Core Module

Scripting language

module

Lexical

analyser

parser

interpreter

Support library module
Middle-level

Interface

module

Data access

module

High-

level

script

low-level

script

Middle-

level script

Data parser

Script actuator

High-level

script

parser

middle-

level script

parser

low-level

script

parser

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

13 | P a g e

www.ijacsa.thesai.org

as well as during the division of a test into multiple actions.
While testing a web application, there may be needed to check
how the web application performs the same operations with
multiple sets of data. For example, how a Web application
responds to twenty separate sets of data is to be checked. There
are two ways to do this. Twenty separate tests are recorded,
each with its own set of data. Here, no reusability of Test
Script. Alternatively, A test is recorded, and the values of the
objects in this test are made variable for parameterization. This
saves the nineteen runs of the recording process. This single
test with the help of parameterization can be played twenty
times using a different set of data each time. Each test run is
called iteration. All iterations are numbered. Later is the better
approach and involves the reusability of Test Script. In the
above example, the authentication page is signed in with
„rashmi.1306‟ as user ID and „dracoXXXXXX‟ as password.
The „rashmi.1306‟ is a constant value, which means that
„rashmi.1306‟ is the user ID each time the test is run. Through
the data table parameter, the user ID can be changed into a
variable, so that a different user id can be used for each test run.
In the parameterized Keyword user ID, two different user ids
can be added for example „ras_gupta‟ and „prati_gupta‟. The
tool can be test the application with this different data without
the need of recording with these data.

Actions divide the test into various logical sections. When a
new test is created, it is represented as a single action. By
dividing the tests into multiple actions, more modular and
efficient tests can be designed. This is another feature of
reusability of keywords that makes Keyword driven Testing
more efficient and modular than the Data Driven Testing. To
explain this we take the whole example of the above railway
reservation web application that books a flight. This can be
divided into several distinct processes or actions which are as
follows:

 The Online railway reservation web application is
logged in.

 The trains are booked.

 Another action for logged out from the web
application.

The above test can also be parameterized for ten different
train booking. This parameterized test now can be run ten times
using ten different sets of data. With the help of Multiple
Action, the test can also be organized so that only the second
procedure runs ten times, simulating a single user logging in,
booking ten trains, and logging out. This can be done by
dividing the test into different actions. This saves the nine runs
of Logged-in and Logged-out process.

The parameterized tests and tests divided into multiple
actions are also play backed simply and their test results are
analyzed. Figure 4 shows the above proposed approach in a
flow chart.

VIII. CONCLUSION

In this paper, the different types of keywords, base
requirement, methodology, object repository and various
keyword driven modules are investigated. These all are
required to carry out a successful and efficient operation of

Keyword driven testing. It is important to understand that
keywords are not magic, but they can serve well. It is essential
to do test design in a right and efficient way. The process of the
test automation should be done but it should not dominate the
process. It should flow from the overall strategy, methodology,
and architecture. Moreover, the existing tools available for this
approach make use of the HTML, Xml, spreadsheets to
maintain test cases in object repository which are not very
scalable.

Figure 4. Proposed Approach

REFERENCES

[1] Jie Hui, Lan Yuqing, Luo Pei, Gao Jing, Guo Shuhang, “LKDT: A
Keyword-Driven Based Distributed Test Framework”, International
Conference on Computer Science and Software Engineering, 2008, pp.
719-722

[2] Pekka Laukkanen, “Data-Driven and Keyword-Driven Test Automation
Frameworks”, Helsinki University of Technology, Department of
Computer Science and Engineering Software Business and Engineering
Institute. 2007, pp. 1-102

[3] Juha Rantanen,”Acceptance Test-Driven Development with Keyword-
Driven Test Automation Framework in an Agile Software Project”
Helsinki University of Technology, Department of Computer Science
and Engineering, Software Business and Engineering Institute. 2007, pp.
1-102

[4] Ayal Zylberman and Aviram Shotten, “Test Language: Introduction to
Keyword Driven Testing”. 2010, pp 1-7

[5] Tommi Takala, Mika Maunumaa, and Mika Katara. ”An Adapter
Framework for Keyword-Driven Testing”, Department of Software
Systems, Tampere University of Technology, Finland. Ninth
International Conference on Quality Software. 2009, pp. 201-210

[6] http://en.wikipedia.org/wiki/Keyword-driven_testing

[7] Bharath Anand R., Harish Krishnankutty, kaushik Ramakrishnan,
Venkatesh V.C.,” Business Rules- Based Test Automation- A novel
Approach for accelerated testing”. 2007, pp. 1-12

[8] Liu Xing, Li Yan, Cai Mian, Guo Ying, “The Testing and Evaluation
System for the Secure Operating System Based on the Mechanism of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 3, 2012

14 | P a g e

www.ijacsa.thesai.org

keyword-driven”. Ninth International Conference on Information
Assurance and security. 2009, pp. 471-474

[9] http://en.wikipedia.org/wiki/Test_automation

[10] http://www.automatedqa.com/products/testcomplete/ manager-overview/

[11] Bennett, “J.P. Introduction to Compiling Techniques – A First Course
Using ANSI C”, Lex and Yacc [M]. McGraw Hill Book Co, 1990.

[12] Nancy S. Eickelmann, “An evaluation of software test environment
architectures”. International Conference on Software Engineering, 1996,
pp. 353-364.

[13] Terence Parr,” The Definitive ANTLR Reference: Building Domain-
Specific Languages”, Pragmatic Bookshelf, 2007, pp 14-85.

[14] Sheng Liang. Java(TM) Native Interface, “Programmer's Guide and
Specification”, Prentice Hall PTR, 1999, pp 1-35.

[15] Mercury QuickTest Professional Tutorial, Version 8.0

[16] Kaner, “Pitfalls and strategies in automated testing”, IEEE Computer,
30(4): April 1997, pp 114–116,

[17] Kaner, J. Bach, and B. Pettichord, “Lessons Learned in Software
Testing: A Content-Driven Approach”, John Wiley & Sons, Inc., 2001.

[18] Kelly, “ Choosing a test automation framework, July
2003”,URLhttp://www106.ibm.com/developerworks/rational/library/591
.html. April 30, 2005.

[19] Kit, “Integrated, effective test design and automation”. Software
Development, February 1999, pp 27–41.

AUTHORS PROFILE

Rashmi, done B.Tech (Computer Science) in 2010 with 79%

from M.D.U. (Rohtak), Currently pursuing M.Tech

(Computer Science) from Centre for Development of

Advanced Computing, Noida, I.P. University and doing a

project on “A Keyword driven framework for testing web

applications”.

 Mrs. NEHA BAJPAI received M.Tech in Information

Technology from the Vinayaka Mission University of

Tamilnadu in the year 2005. She has ten years of teaching

and one year of IT implementation experience. Presently, she

is working as a Senior Faculty in School of IT at Centre for

Development of Advanced Computing (CDAC), Noida. Her

present interests are in the subjects related to Object Oriented Technologies,

Oriented Analysis & Design, UML, Software Testing and Object Oriented

Database Management System. She has over 15 research papers in various

international and national Journals, Conferences & Seminars. She also served,

coordinated and taught various International Training Programs under Indo-

Vietnam bi-lateral Cooperation and ITEC/SCAAP Scheme of MEA.

