
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

123 | P a g e
www.ijacsa.thesai.org

Web Anomaly Misuse Intrusion Detection

Framework for SQL Injection Detection

Shaimaa Ezzat Salama, Mohamed I. Marie, Laila M. El-Fangary & Yehia K. Helmy

Information System Department,

Faculty of Computers and Information

Helwan University, Cairo, Egypt

Abstract—Databases at the background of e-commerce

applications are vulnerable to SQL injection attack which is

considered as one of the most dangerous web attacks. In this

paper we propose a framework based on misuse and anomaly

detection techniques to detect SQL injection attack. The main

idea of this framework is to create a profile for legitimate

database behavior extracted from applying association rules on

XML file containing queries submitted from application to the

database. As a second step in the detection process, the structure

of the query under observation will be compared against the

legitimate queries stored in the XML file thus minimizing false

positive alarms.

Keywords-SQL injection; association rule; anomaly detection;

intrusion detection.

I. INTRODUCTION

Database-driven web applications have become widely
deployed on the Internet, and organizations use them to provide
a broad range of services to their customers. These
applications, and their underlying databases, often contain
confidential, or even sensitive, information, such as customer
and financial records. However, as the availability of these
applications has increased, there has been a corresponding
increase in the number and sophistication of attacks that target
them. One of the most serious types of attack against web
applications is SQL injection. In fact, the Open Web
Application Security Project (OWASP), an international
organization of web developers, has placed SQL injection
attack (SQLIA) at the top of the top ten vulnerabilities that a
web application can have [1]. Similarly, software companies
such as Microsoft have cited SQLIAs as one of the most
critical vulnerabilities that software developers must address
[2]. As the name implies, this type of attack is directed toward
database layer of the web applications. Most web applications
are typically constructed in a two- or three-tiered architecture
as illustrated in Fig.1 [3].

Figure 1. three-tiered architecture

SQLIA is a type of code-injection attack in which an
attacker uses specially crafted inputs to trick the database into
executing attacker-specified database commands. SQLIAs can
give attackers direct access to the underlying databases of a
web application and, with that, the power to leak, modify, or
even delete information that is stored on them. The root cause
of SQLIAs is insufficient input validation [4, 5]. SQLIAs occur
when data provided by a user is not properly validated and is
included directly in a SQL query [6]. We will provide a simple
example of SQLIA to illustrate the problem.

Select * from users where user_name=’” & name & “’ and

password=’” & pass & “’
The previous example works well if the user supplies valid

user name and password. But the problem arises when
malicious user exploits the invalidated input and changes the
structure of the query to achieve one or more of the different
attack intents [4, 7]. The structure of the query will be altered if
the user_name attribute have the following value: ‘ or 1=1 --.
The full text of the previous query becomes:

Select * from users where user_name=’’ or 1=1
The injected code will delete the password constraint

through the use of SQL comment - - and makes the condition
of the query always evaluate to true.

One mechanism to defend against web attacks is to use
intrusion detection systems (IDS) and especially network
intrusion detection systems (NIDS). IDS use misuse or
anomaly or both techniques to defend against attacks [8]. IDS
that use anomaly detection technique establish a baseline of
normal usage patterns, and anything that widely deviates from
it gets flagged as a possible intrusion. Misuse detection
technique uses specifically known patterns of unauthorized
behavior to predict and detect subsequent similar attempts.
These specific patterns are called signatures [8,9].

Unfortunately, NIDS are not efficient or even useful in web
intrusion detection. Since many web attacks focus on
applications that have no evidence on the underlying network
or system activities, they are seen as normal traffic to the
general NIDS and pass through them successfully [7, 10, 11].

NIDS are mostly sitting on the lower (network/transport)
level of network model while web services are running on the
higher (application) level as illustrated in Fig. 2 [11].

Web Browser Internet Web

 Server

Application

 Server

Database

 Server

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

124 | P a g e
www.ijacsa.thesai.org

In this paper, we propose a framework that combines the
two IDS techniques, misuse and anomaly detection techniques,
to defend against SQLIA. The main idea of Web Anomaly
Misuse Intrusion Detection (WAMID) framework is to create a
profile for web application that can represent the normal
behavior of application users in terms of SQL queries they
submit to the database. Database logs can be used to collect
these legitimate queries provided that these logs are free of
intrusions. We then use an anomaly detection model based on
data mining techniques to detect queries that deviates from the
profile of normal behavior. The queries retrieved from database
log are stored in XML file with predefined structure. We
choose XML format because it is more structured than flat
files, more flexible than matrices, simpler and consume less
storage than databases.

Association rules will be applied to this XML file to
retrieve relation between each table in the query with each
condition in the selection part. These rules represent the profile
of normal behavior and any deviation from this profile will be
considered attack. In order to better detect SQLIA and to
minimize false positive alerts, WAMID framework as a second
step uses misuse technique to detect any change in the structure
of the query. Malicious users sometimes don’t change the
selection clause but add another SQL statement or add specific
keywords to the initial query to check the vulnerability of the
site to SQLIA or to perform inference attack. Such types of
attack are detected in the second step of the detection process.
By comparing the structure of the query under test with the
corresponding queries in the XML file the previous malicious
actions will be detected.

The rest of the paper will be organized as follows: in
section II discusses previous work, section III

Figure 2. Scope of NIDS

provides a detailed description about the framework and its
components. Anomaly and misuse algorithms and a working
example will be presented in section IV. Section V concludes
the paper and outlines future work.

II. LITERATURE REVIEW

Different researches and approaches have been presented to
address the problem of web attacks against databases.
Considering SQLIA as top most dangerous attacks, as stated in
section I, there has been intense research in detection and
prevention mechanisms against this attack [4, 5, 12]. We can
classify these approaches into two broad categories: a) one
approach is trying to detect SQLIA through checking

anomalous SQL query structure. b) another approach uses data
dependencies among data items which are less likely to change
for identifying malicious database activities. In either of two
categories, different researchers take advantage of the benefit
of integrating data mining with database intrusion detection in
order to minimize false positive alerts, minimizing human
intervention and better detect attacks [13]. Moreover, Different
intrusion detection techniques are used either separately or
together. Different work used misuse technique others used
anomaly or mixes the two techniques.

Under the first category and without using data mining
technique, Lee et al. in [10] and Low et al. in [14] developed a
framework based on fingerprinting transactions for detecting
malicious transactions. They explored the various issues that
arise in the collation, representation and summarization of this
potentially huge set of legitimate transaction fingerprints.
Another work that applies anomaly detection technique to
identify anomalous database application behavior is presented
by Valeur et al. in [15]. It builds a number of different
statistical query models using a set of typical application
queries, and then intercepts the new queries submitted to the
database to check for anomalous behavior.

A general framework for detecting malicious database
transaction patterns using data mining was proposed by Bertino
et al. in [16, 17] to mine database logs to form user profiles that
can model normal behaviors and identify anomalous
transactions in databases with role based access control
mechanisms. The system is able to identify intruders by
detecting behaviors that differ from the normal behavior of a
role in a database. Kamra et al. in [18] illustrated an enhanced
model that can also identify intruders in databases where there
are no roles associated with each user. It employs clustering
techniques to form concise profiles representing normal user
behaviors for identifying suspicious database activities.
Another approach that checks for the structure of the query to
detect malicious database behavior is the work of Bertino et al.
in [19]. They proposed a framework based on anomaly
detection technique and association rule mining to identify the
query that deviates from normal database application behavior.

The problem with this framework is that it produces a lot of
rules and represents the queries in very huge matrices which
may affect tremendously on the performance of rule extraction.
Misuse detection technique have been used by Bandhakavi et
al. in [20] to detect SQLIA by discovering the intent of a query
dynamically and then comparing the structure of the identified
query with normal queries based on the user input with the
discovered intent. The problem with this approach is that it has
to access the source code of the application and make some
modifications to the java virtual machine.

Halfond et al. in [21] developed a technique that uses a
model-based approach to detect illegal queries before they are
executed on the database. In its static part, the technique uses
program analysis to automatically build a model of the
legitimate queries that could be generated by the application. In
its dynamic part, the technique uses runtime monitoring to
inspect the dynamically-generated queries and check them
against the statically-built model. The system WASP proposed
by Wiliam et al. in [22] tries to prevent SQL Injection Attacks

 Scope of

NIDS

Web attacks

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

125 | P a g e
www.ijacsa.thesai.org

by a method called positive tainting. In positive tainting, the
trusted part of the query (static string) is not considered for
execution and masked as tainted, while all other inputs are
considered. The difficulty in this case is the propagation of
taints in a query across function calls especially for the user
defined functions which call some other external functions
leading to the execution of a tainted query. Different other
researches followed the same approach in detection of
anomalous SQL query structure in [23, 24].

Researches that belong to the second category of detection
which depends on data dependencies are [25, 26, 27, 28]. The
work that is based on mining sequential data access patterns for
database intrusion detection was proposed by Hu et al. in [25,
26]. Transactions that do not comply with rules generated from
read and write sequence sets are identified as malicious
transactions. Srivastava et al. offered a weighted sequence
mining approach [27] for detecting database attacks. The
advantage of the work presented by YiHu et al. in [28] is the
automatic discovery and use of essential data dependencies,
namely, multi-dimensional and multi-level data dependencies,
for identifying anomalous database transactions.

The contribution of this paper is a framework that combines
anomaly and misuse detection technique in order to better
detect SQLIA. This framework uses association rules with
anomaly technique to build the normal behavior of application
users and detecting anomalous queries. Moreover, misuse
technique is used to check the structure of the query to detect
any malicious actions that cannot be detected using anomaly
detection technique.

III. THEORETICAL FRAMEWORK

WAMID framework is a database intrusion detection that
aims to detect SQLIA at real-time, before queries execution at
the database. This is why this framework should run at the
database or application server depending on the architecture of
web application as depicted in fig. 1. In order to detect all
possible attempts of SQL injection, WAMID framework
combines the two detection techniques: anomaly and misuse. It
depends in the detection of SQLIA on determining the
malicious changes that occurred in the SQL query structure.
The key idea of our framework is as follows. We build a
repository containing set of legitimate queries submitted from
the application user to the database. This repository is a set of
training records. We then use an anomaly detection approach
based on data mining technique to build a profile of normal
application behavior and indicate queries that deviates from
this normal behavior.

In a second step in the detection process, the framework
checks for the presence of dangerous keywords in the query if
the latter passes the test of anomaly detection step. We need
this step because sometimes the intent of the attacker is to
identify the security holes in the site or to infer the structure of
the database through the error message returned from the
application and this type of SQLIA is called inference [4, 29].
This type of attack cannot be detected through anomaly
technique because it doesn’t require change in the conditions of
the original query but it will be discovered if the structure of
the query is compared against its corresponding query in the
repository file.

Based on what previously stated we learn that the
framework act in two phases: training phase and detection
phase. In the training phase the repository file will be created
and normal behavior of the application is built. In the detection
phase, the framework uses the anomaly and misuse techniques
to discover any SQLIA. In the following subsections we will
provide a detailed explanation of the framework, its
components and how it works.

A. Training Phase

During the training phase the training records are collected
from the queries the application send to the database. The
source for obtaining these query traces is the database log
provided that the latter is free of intrusions. The training phase
flow is illustrated in Fig. 3. The challenge here is that to
efficiently encode these queries in order to extract useful
features from them and accordingly build the application
fingerprint. Unlike approach provided in [19], we choose to
encode the queries in XML file. The encoding scheme
provided by Bertino et al. in [19] result in a large, dense, sparse
matrices which may effect on the mining algorithm. XML is
more structured than flat files, is supported by query tools like
XQuery and XPath to extract data [30]. It is simpler and
consumes less space than relational databases and more
flexible than matrices.

It is important to identify accurately the structure of the
XML file that will represent the features extracted from the
query that will contribute in building the application
fingerprint. Consider the following query:

Select SSN, last_name from employee where

first_name=’Suzan’ and salary>5000

The encoding scheme of the previous query in XML file is
illustrated in Fig. 4. The main advantage of XML format is that
nodes may be duplicated upon need. For example the number
of project_attribute” node may differ from one “Query” node to
another depending on the query itself. This is why it is more
suitable to store queries than databases while maintaining
flexibility and simplicity.

The XML file illustrated in fig. 4 stores the projection
attributes, the from clause and the predicate clause in a more
detailed way. It is not important to identify the value of the
integer or string literal it is important to determine that there is
an integer or string literal or there is another attribute in the
right hand side. Another file that should be created during the
training phase is the signature file that will be used during the
misuse detection phase. As stated before this file contains
suspicious keywords that may be considered a sign of SQLIA.

Keywords like for example single quote, semicolon, double
dash, union, exec, order by and their hexadecimal
representation in order to prevent the different evasion
techniques [31]. The important step in the training phase is to
build the profile representing the application normal behavior.
We will apply association rules [32] on the XML file to extract
rules that represent the normal behavior of application users.
Different approaches have been proposed to apply association
rules on XML data. We direct the reader to [33-35] for an in-
depth survey of these approaches. The rules extracted represent

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

126 | P a g e
www.ijacsa.thesai.org

relationship between each table in the query with each
predicate in the selection clause.

Figure 3. training phase flow

Figure 4. representation of query in XML file

This is based on an observation that the static part of the
query is the projection attribute and the part that is constructed
during execution is the selection part [19]. We here add another
item to the static part which are the tables in the from clause.
We try to make relation between the static part and the
dynamic part and extract rule with support and confidence of
such relation. Any query that will not match rules extracted and
stored in the rules profile will be considered attack. More
details about how the rules are extracted are provided in the
following subsection.

B. Anomaly Detection Phase

In the previous subsection, we illustrated how the benign
queries are collected and captured in XML file in a form
enabling the framework from creating the database behavior
profile. We apply association rules on the XML file containing
legitimate queries and extract rules that can describe the normal
behavior of application users. The idea behind building the
profile rule is to apply one of association rules algorithms on

previously created XML file to extract relation between each
table in the query with each selection attribute excluding the
literals. Thus the rules extracted have the following format:

From LHS

 From RHS

Recall the example of employee first name and salary so
the rules extracted from this query are:

employee first_name

employee salary

The rules that exceed the minimum support and confidence
will be stored in rules profile. These rules represent the profile
of how the application behaves normally. Fig. 4 illustrates the
flow of detection phase of the framework in general including
the anomaly technique. In a typical database application, the
input supplied by the user construct the where clause of the
query. Meanwhile, the projection clause and the from clause
remain static at the run time. So we create a relation between
the static and the dynamic part of the query and any change in
the where clause by attackers that cannot be derived from the
rules profile will be announced as SQLIA. We decided to
choose the tables in the from clause from the static part of the
query instead of the projection attributes because the former is
more general and contain the latter and thus generating less
rules and make it easier in comparison. Lets return to our query
in the previous subsection and change it a little bit: select SSN,
last_name from employee where first_name=’ “& fname &” ‘
and salary> “ & empsal. If the attacker needs to retrieve all
values from employee table then the following code will be
injected to form this new query:

Select SSN, last_name from employee where first_name=’’ or

1=1 - -
Before executing this query, rules should be extracted first

and compared to the rules in the rules profile. The relation
between tables and attributes will be compared against rules
stored in the profile rules file. The two relations under test from
the previous example are:

employee first_name

employee 1

The first relation exists in the rules profile but no such rule
match the second relation. So the query is announced as
anomaly query.

C. Misuse Detection Phase

In a second step in the detection process and after the
anomaly detection phase, comes the role of misuse detection.
The need to this step comes from the fact that SQLIA doesn’t
only change the conditions in the query but it also may provide
information about the database schema or check the
vulnerability of the application to SQL injection. This is done
through adding to the query some keywords that may change
the behavior of the query or return information about the
database through database errors without changing the
predicates of the query. In such case, the anomaly detection
phase will not be able to discover such attack. For example
consider the following query:

<Queries>

<Query id=1>

<command> select </command>

<project_attribute> SSN </project_attribute>

<project_attribute> last_name </project_attribute>

<From> employee </From>

<LHS_condition> first_name </LHS_condition>

<RHS_condition> string Literal </RHS_condition>

<logical_operator> and </logical_operator>

<LHS_condition> salary </LHS_condition>

<RHS_condition> Integer Literal </RHS_condition>

</Query>

</Queries>

Database log file

Transform queries to XML file

Apply Association Rule

Store retrieved rules

Rules profile

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

127 | P a g e
www.ijacsa.thesai.org

Select * from employee where SSN=10

If the attacker just adds a single quote at the end of the
query, this will result in error message that may inform the
attacker that the site is vulnerable to SQLIA. Another example
of attack is just adding the keyword “order by” to the query
without changing the selection attributes like:

Select * from employee where SSN=10 order by 1

Trying to execute this query several times will give attacker
information about the number of attributes in the table. This is
why this step is needed in the detection process. Moreover, the
framework doesn’t announce the query as anomaly just by
finding these keywords in the query because it may be part of
the legitimate query itself resulting in false positive alarm. This
is why the framework checks for the structure of the query
under test with the corresponding query stored in XML file.
The detection phase flow of the framework in Fig. 4 illustrates
this process. These suspicious keywords are stored in file called
“forbidden keywords”. This file contains SQL keywords like
single quote,

Figure 5. anomaly misuse detection flow phase

semicolon, union, order by, exec and their hexadecimal
representation to avoid the different evasion techniques. After
confirming the existence of one or more of these keywords, we
use XQuery to retrieve queries from XML file with the same
projection attributes and same from clause. Then comparison is

done between query under test and the queries retrieved by
XQuery from XML file. If there is no match then the query is
announced anomaly.

IV. ALGORITHM AND WORKING EXAMPLE

In this section we present algorithms for anomaly and
misuse detection. In addition, we provide a working example
illustrating how the WAMID framework performs the
detection.

A. Anomaly detection algorithm

Algorithm anomaly_detection()
Input: rules profile, query under test
Output: True if query is intrusion, false otherwise
Begin

Extract relation between tables and selection attributes
Store extracted relations in query_relation
/* query_relation is array to store relations*/
For each relation r in query_relation
If (r is found in rule profile)
Score=score+1

If score=length (query_relation)

Return false

Else
return true
End

B. Misuse detection algorithm

Algorithm misuse_detection()
Input: forbidden keywords file, query under test, XML file
Output: True if query is intrusion, false otherwise
Begin
For each keywords k in forbidden keywords
If k not exists in query
Return false
Else
Use XQuery language to extract relevant queries from XML
file
If query structure doesn’t match any retrieved queries
Return True
Else
Return false
End

C. Working example

In order to provide better understanding of the anomaly and
misuse detection in WAMID framework, we provide in this
subsection example of the flow of detection either anomaly or
misuse in this framework. The following represents example of
queries submitted from application to database:

 Select product_name, description from product where
product_id=?

 Select product_name, description from product where
salary<?

 Select * from product where product_name=? order by
product_name

Y

e

If

different

Y

e

N

o

N

o

Y

e

N

o

SQL

Queries

Check query with

rules profile

Rules

profile

If

query

does

match

rule

Check for

suspicious

Forbid

den

keywor

If

exists

Check query

structure

Benign

query

Prevent

query

executi

Report

anomaly

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

128 | P a g e
www.ijacsa.thesai.org

 Select product_name, description from product where
salary<? and category_id=?

The representation of the previous queries in XML file is
illustrated in Fig. 5.

Figure 6. XML file representing queries

After applying association rule algorithm like for example
Apriori on this XML file, the resulting rules will stored in rules
profile file in Fig. 6.

In the following we will provide sample of malicious and
legitimate queries.

 Select product_name, description from product where
product_id=5’

The first step in the framework is to identify relation
between tables and selection attributes in the query.

Product product_id
Second, the framework searches in the rules profile for this

relation. It already exists. But this is not the end of the
detection flow. The second step is to check for suspicious
keywords in the query. The query already contains one of the
suspicious keywords which is single quote.

So XQuery language is used to extract queries from the
XML file with same projection attributes and same from
clause. By comparing the structure of the query under test and
query returned from the XML file we will find that query

shouldn’t contain the single quote and thus it is announced as
anomaly.

 Select product_name, description from product where
product_id=1 or 1=1- -

The value 1 for the product_id may be right or maybe
wrong anyway we have here an injected code to retrieve data of
all products. First we extract relations.

Product product_id relation 1
Product 1 relation 2

By searching in the rules profile we find a rule for the first
relation but no rule for the second relation so the query is
announced immediately anomaly.

 Select product_name, description from product where
product_id=1 order by 1- -

As we previously stated there is a rule matching the relation
1 in the previous example.

By examining the query against the forbidden keywords file
we find two keywords: order by and double dash. By
examining the original query in the XML file we find that this
query is anomaly because it doesn’t contain order by or double
dash.

Figure 7. Extracted rules from XML file

 Select * from product where product_name=’food’
order by product_name

The extracted relation from this query is:

Product product_name
This relation exists in the rules profile. And also one of the

forbidden keywords exists so the structure of the query should
be examined. After examining the structure of the query the
framework identifies that the query is legitimate.

V. CONCLUSION AND FUTURE WORK

Database intrusion is a major threat to any organization
storing valuable and confidential data in databases. This is
increasingly more so as the number of database servers
connected to the Internet increases rapidly. Existing network-
based and host-based intrusion detection systems are not
sufficient for detecting database intrusions. We have
introduced a framework based on anomaly and misuse
detection for discovering SQLIA. We have presented a new
encoding technique for SQL queries in XML file in a way
enabling the extraction of normal behavior of database
application. We then used data mining technique for
fingerprinting SQL statements and use them to identify SQLIA.
This set of fingerprints is then used to match incoming

<Queries>

<Query id=1>

<command> select </command>

<project_attribute > product_name </project_attribute>

<project_attribute > description </project_attribute>

<from> product </from>

<LHS>product_id </LHS>

<RHS> Integer_literal </RHS>

</Query>

<Query id=2>

<command> select </command>

<project_attribute > product_name </project_attribute>

<project_attribute > description </project_attribute>

<from> product </from>

<LHS> salary </LHS>

<RHS> Integer_literal </RHS>

</Query>

<Query id=3>

<command> select </command>

<project_attribute > * </project_attribute>

<from> product </from>

<LHS> product_name </LHS>

<RHS> string_literal </RHS>

<order by> product_name</order by>

</Query>

<Query id=4>

<command> select </command>

<project_attribute > product_name </project_attribute>

<project_attribute > description </project_attribute>

<from> product </from>

<LHS> salary </LHS>

<RHS> Integer_literal </RHS>

<logical_operator> and </logical_operator>

<LHS> category_id </LHS>

<RHS> Integer_literal </RHS>

</Query>

Product product_id

Product salary

Product product_name

Product category_id

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 3, 2012

129 | P a g e
www.ijacsa.thesai.org

database transactions. If the set of fingerprints in the legitimate
set is complete, any incoming transaction whose fingerprint
does not match any of those in the legitimate set is very likely
to be an intrusion. A second step in the framework is the
misuse technique in which XQuery is used to match the
incoming query with queries stored in XML file after ensuring
that one or more of the suspicious keywords exist in the query.

We plan to perform experiments to apply this framework to
identify its performance in detecting attacks and include
comparisons to other approaches. This work may be extended
to include detection against other attacks like cross site
scripting.

REFERENCES

[1] [1] http://www.owasp.org/index.php, OWASP Top 10-2010 document

[2] M. Howard and D. LeBlanc, “Writing Secure Code”, Microsoft Press,

2002

[3] Amit Kumar Pandey, “SECURING WEB APPLICATIONS FROM
APPLICATION-LEVEL ATTACK”, master thesis, 2007

[4] W.G.Halfond, J.Viegas, and A.Orso, “A classification of SQL-Injection

Attacks and Countermeasures”, in proceeding of the International
Symposium on Secure Software Engineering (ISSSE), 2006

[5] Kindy, D.A.; Pathan, A.K, “A survey on SQL injection:

Vulnerabilities, attacks, and prevention techniques”, in proceedings of
IEEE 15th International Symposium on Consumer Electronics (ISCE),

2011

[6] G. Wassermann and Z. Su, “An Analysis Framework for Security in
Web Applications”, In Proceedings of the FSE Workshop on

Specification and Verification of Component-Based Systems (SAVCBS
2004), pages 70–78, 2004.

[7] San-Tsai Sun, Ting Han Wei and Stephen Liu, “Classification of SQL
Injection Attacks”, University of British Columbia : Sheung Lau

Electrical and Computer Engineering, 2007

[8] S.Axelsson, “Intrusion detection systems: A survey and taxonomy”,
Technical Report, Chalmers Univ., 2000

[9] Marhusin, M.F.; Cornforth, D.; Larkin, H., “An overview of recent

advances in intrusion detection”, in proceeding of IEEE 8th International
conference on computer and information technology CIT, 2008

[10] Lee, S. Y., Low, W. L., and Wong, P. y.: Learning Fingerprints for a

Database Intrusion Detection System. In the Proceedings of the 7th
European Symposium on Research in Computer Security, 2002

[11] C.J. Ezeife, J. Dong, A.K. Aggarwal, “SensorWebIDS: A Web Mining

Intrusion Detection System”, International Journal of Web Information
Systems, volume 4, pp. 97-120, 2007

[12] N. Khochare, S. Chalurkar ,S. Kakade, B.B. Meshramm, “Survey on

SQL Injection attacks and their countermeasures”, International Journal
of Computational Engineering & Management (IJCEM), Vol. 14,

October 2011

[13] S. F. Yusufovna., “Integrating Intrusion Detection System and Data

Mining”, International Symposium on Ubiquitous Multimedia
Computing, 2008

[14] Low, W. L., Lee, S. Y., Teoh, P., “DIDAFIT: Detecting Intrusions in

Databases Through Fingerprinting Transactions”, in Proceedings of the
4th International Conference on Enterprise Information Systems

(ICEIS), 2002

[15] F. Valeur, D. Mutz, and G.Vigna, “A learning-based approach to the
detection of sql injection attacks”, in proceedings of the conference on

detection of intrusions and Malware and vulnerability assessment
(DIMVA), 2005

[16] Bertino, E., Kamra, A, Terzi, E., and Vakali, A, “Intrusion detection in

RBAC-administered databases”, in the Proceedings of the 21st Annual

Computer Security Applications Conference, 2005

[17] Kamra A, Bertino, E., and Lebanon, G.,”Mechanisms for Database
Intrusion Detection and Response”, in the Proceedings of the 2nd

SIGMOD PhD Workshop on Innovative Database Research, 2008

[18] Kamra A, Terzi E., and Bertino, E.,“Detecting anomalous access
patterns in relational databases”, the VLDB Journal VoU7, No. 5, pp.

1063-1077, 2009

[19] Bertino, E., Kamra, A, and Early, J., “Profiling Database Application to
Detect SQL Injection Attacks”, In the Proceedings of 2007 IEEE

International Performance, Computing, and Communications
Conference, 2007

[20] Bandhakavi, S., Bisht, P., Madhusudan, P., and Venkatakrishnan V.,

“CANDID: Preventing sql injection attacks using dynamic candidate
evaluations”, in the Proceedings of the 14th ACM Conference on

Computer and Communications Security, 2007

[21] Halfond, W. G. and Orso, A , “AMNESIA: Analysis and Monitoring for

Neutralizing SQL-Injection Attacks”, in Proceedings of the 20th
IEEE/ACM international Conference on Automated Software

Engineering, 2005

[22] William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios,
“WASP: Protecting Web Applications Using Positive Tainting and

Syntax-Aware Evaluation”, IEEE Transactions on Software
Engineering, Vol. 34, No. 1, pp 65-81, 2008

[23] Buehrer, G., Weide, B. w., and Sivilotti, P. A, “Using Parse Tree

Validation to Prevent SQL Injection Attacks”, in Proceedings of the 5th
international Workshop on Software Engineering and Middleware, 2005

[24] Liu, A, Yuan, Y., Wijesekera, D., and Stavrou, A, “SQLProb:A Proxy-

based Architecture towards Preventing SQL Injection Attacks”, in
Proceedings of the 2009 ACM Symposium on Applied Computing, 2009

[25] Hu, Y., and Panda, B., “A Data Mining Approach for Database Intrusion

Detection”, In Proceedings of the 19th ACM Symposium on Applied
Computing, Nicosia, Cyprus ,2004

[26] Hu, Y., and Panda, B., “Design and Analysis of Techniques for

Detection of Malicious Activities in Database Systems”, Journal of
Network and Systems Management, Vol. 13, NO. 3,2005

[27] Srivastava, A, Sural S., and Majumdar, AK., “Database Intrusion
Detection Using Weighted Sequence Mining”, Journal of Computers,

vol.1, no. 4 ,2006

[28] Yi Hu; Campan, A.; Walden, J.; Vorobyeva, I.; Shelton, J, “An
effective log mining approach for database intrusion detection”, in

proceedings of IEEE international conference on systems man and
cybernetics (SMC), 2010

[29] David Litchfield, “Data-mining with SQL Injection and Inference”,An

NGSSoftware Insight Security Research, September 2005

[30] World Wide Web Consortium. XQuery 1.0: An XML Query Language
(W3C Working Draft). http://www.w3.org/TR/2002/WDxquery-

20020816, Aug. 2002.

[31] O. Maor and A. Shulman, “SQL Injection Signatures Evasion”, White
paper, Imperva, April 2004. http://www.imperva.com/application

defense center/white papers/sql injection signatures evasion.html

[32] Han J., Kamber M., “Data Mining: Concepts and Techniques”, Maurgan
Kaufmann, 2nd edition, 2006

[33] Jacky W.W.Wan, Gillian Dobbie, “Mining Association Rules from
XML Data using XQuery”, in proceeding of ACM 2nd workshop on

Australasian information security, Data Mining and Web Intelligence,
and Software Internationalization, 2004

[34] Qin Ding, "Data Mining on XML Data", in Encyclopedia of Data

Warehousing and Mining, 2nd edition, Vol. 1, ed. John Wang, IGI
Global, 2008, pp. 506-510

[35] Qin Ding and Gnanasekaran Sundarraj, "Mining Association Rules from

XML Data", in Data Mining and Knowledge Discovery Technologies,
ed. David Taniar, IGI Global, 2008. pp. 59-71

http://www.owasp.org/index.php
http://www.w3.org/TR/2002/WDxquery-
http://www.imperva.com/application%20defense%20center/white%20papers/sql%20injection%20signatures%20evasion.html
http://www.imperva.com/application%20defense%20center/white%20papers/sql%20injection%20signatures%20evasion.html

