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Abstract—In this paper, we present a general
schema for defining new update semantics. This
schema takes as input any basic logic programming
semantics, such as the stable semantics, the p-stable
semantics or the MMr semantics, and gives as out-
put a new update semantics. The schema proposed
is based on a concept called minimal generalized S
models, where S is any of the logic programming se-
mantics. Each update semantics is associated to an
update operator. We also present some properties
of these update operators.
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I. Introduction

Updating, by definition means that there is new infor-
mation that must be added to the older, and some infor-
mation could be changed. Intelligent agents use this, in
order to bring new knowledge to their knowledge base. But
there is a main problem that updates can present, and it
is inconsistency. So, it is important to use an approach to
avoid inconsistencies in the knowledge base. For instance,
it could be that in an initial moment we can infer a from a
knowledge base (KB), and later the KB is updated with the
new information −a (where − denotes negation). It is easy
to see, that if we only take the union of the initial KB and
−a, we will have an inconsistency. Then it is useful to ap-
ply an update approach that avoids the inconsistency and
now allows to infer −a since the newer knowledge has pri-
ority over the older. Currently there are several approaches
in non-monotonic reasoning dealing with updates, such as
[10, 16, 5].

As part of the contribution of this paper, we propose
an schema for generating update semantics. This schema
takes as input any basic logic programming semantics, such
as the stable semantics [11], the p-stable semantics [17] or
the MMr semantics [13], and gives as output a new update
semantics.

It is natural to consider the stable semantics since many
approaches to updating have been based on it, see for ex-
ample [10, 16, 5].

On the other hand, the p-stable semantics is another op-
tion to study updating. It has the advantage of providing
models that coincide with classical models in many cases.
We can make this clear with the following example. Let
P1 = {a← ¬b, a← b} and P2 = {b← a}. From a classical

logic point of view and considering that ¬ denotes classical
negation, we would expect that {a, b} corresponds to the re-
sult of updating P1 with P2. However, when we apply the
approach in [10] based on stable semantics to update P1

with P2 there is no model; whereas our schema proposed
with the p-stable semantics gives an update semantics that
returns {a, b} as an update model for the example.

Besides, in [14] it is shown that the p-stable semantics
of normal programs can express any problem that can be
expressed in terms of the stable semantics of disjunctive
programs.

We also consider the MMr semantics for several rea-
sons. First, any normal program always has MMr models.
Second, it agrees with the Revised Stable models seman-
tics defined by Pereira and Pinto for all the examples they
present in their work [18], suggesting that both semantics
may coincide for normal logic programs. The coincidence
is important since the Revised Stable model semantics has
the property of being a relevant semantics. One of the main
implications of relevance is that it allows us to define top-
down algorithms for answering queries from a knowledge
base, this means that relevance allows us to split the orig-
inal program into subprograms such that finding a model
to answer a query can be reduced to finding the models of
subprograms [18, 6, 7]. Third the MMr has been used in
the context of argumentation semantics, since it can iden-
tify the attack-dependencies that exist in an argumentation
framework [13, 3].

Currently there exists a software implementation
of the p-stable semantics and the MMr semantics
at http://aplicacionesia.cs.buap.mx/∼arkerz/ (Win-
dows version) and at
http://sites.google.com/site/

computingpstablesemantics/downloads (Linux version).

The schema proposed is based on a concept called min-
imal generalized S models, where S is any of the mentioned
logic programming semantics. The definition of minimal
generalized S models is inspired by a concept called min-
imal generalized answer sets of abductive programs [12].
The semantics of minimal generalized answer sets is based
on the stable semantics. The minimal generalized answer
sets have been used to restore consistency [12, 2], to obtain
the preferred plans of planning problems [21], to get the
preferred extensions of an argument framework [21], and
to define update operators [20]. Hence, we consider that
minimal generalized S models can also have similar appli-
cations and be an alternative to those applications that use
minimal generalized answer sets.
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Each update semantics is associated to an update oper-
ator. Here we also present some properties of these update
operators. These properties correspond to the properties of
the update operator defined and analized by Eiter et al. [9]
and J. J. Alferes et al. in [1], except for one of them called
independent parts property. This last property refers to the
general principle that asserts that completely independent
parts of a program should not interfere with each other.

In section we summarize some basic concepts and defi-
nitions used to understand this paper. In section we review
the minimal generalized S models. In section we present
our schema for defining new update semantics and some
formal properties. Finally, in section we present some con-
clusions.

II. Background

In this section, we define the syntax of the logic pro-
grams that we will use in this paper. In terms of logic
programming semantics, we present the definition of the
stable model semantics, the p-stable model semantics, and
the MMr semantics.

A. Logic programs

We use the language of propositional logic in the usual way.
We consider propositional symbols: p, q, . . . ; propositional
connectives: ∧,∨,→,¬,−; and auxiliary symbols: ‘(’,‘)’,‘.’.
Well formed propositional formulas are defined as usual. We
consider two types of negation: strong or classical negation
(written as −) and negation-as-failure (written as ¬). Intu-
itively, ¬a is true whenever there is no reason to believe a,
whereas −a requires a proof of the negated atom. An atom
is a propositional symbol. A literal is either an atom a or
the strong negation of an atom −a.

A normal clause is a clause of the form a ← b1 ∧ . . . ∧
bn ∧ ¬bn+1 ∧ . . . ∧ ¬bn+m where a and each of the bi are
atoms for 1 ≤ i ≤ n + m. In a slight abuse of notation
we will denote such a clause by the formula a← B+ ∪¬B−

where the set {b1, . . . , bn} will be denoted by B+, and the set
{bn+1, . . . , bn+m} will be denoted by B−. Given a normal
clause a← B+ ∪ ¬B−, denoted by r, we say that a = H(r)
is the head and B+(r) ∪ ¬B−(r) is the body of the clause.

A clause with an empty body is called a fact ; and a
clause with an empty head is called a constraint. Facts
and constraints are also denoted as a← and ← B+ ∪ ¬B−

respectively. We define a normal logic program P , as a fi-
nite set of normal clauses. The signature of a normal logic
program P , denoted as LP , is the set of atoms that occur
in P . Given a set of atoms M and a signature L, we de-
fine ¬M̃ = {¬a | a ∈ L \M}. Since we shall restrict our
discussion to propositional programs, we take for granted
that programs with predicate symbols are only an abbrevi-
ation of the ground program. From now on, by program we
will mean a normal logic program when ambiguity does not
arise.

In our programs we will manage the strong negation −

as follows: each atom −a is replaced by a new atom symbol
a′ which does not appear in the language of the program
and we add the constraint ← a ∧ a′ to the program.

B. Logic programming semantics

Here, we present the definitions of three logic programming
semantics. Note that we only consider 2-valued logic pro-
gramming semantics.

Definition 1. A logic programming semantics S is a map-
ping from the class of all programs into the power set of the
set of (2-valued) models.

We sometimes refer to logic programming semantics as
semantics, when no ambiguity arises. The semantics that
we consider in this paper are: the MMr semantics [13] that
is based on the the minimal model semantics (denoted by
MM), the stable model semantics [11] (denoted by stable),
and the p-stable model semantics [17] (denoted by p-stable).
We will review these semantics in the next subsections.
From now on, we assume that the reader is familiar with
the notion of an interpretation and validity [19].

When considering any particular semantics of a normal
program with constraints P ∪R (R is the set of constraints),
we will understand the models given by that semantics of
the program P that make the clauses of R valid in the sense
of classical logic.

Stable semantics

The stable semantics was defined in terms of the so called
Gelfond-Lifschitz reduction [11] and it is usually studied
in the context of syntax dependent transformations on pro-
grams. The following definition of a stable model for normal
programs was presented in [11].

Definition 2. Let P be any program. For any set M ⊆ LP ,
let PM be the definite program obtained from P by deleting
each rule that has a literal ¬l in its body with l ∈ M , and
then all literals ¬l in the bodies of the remaining clauses.
Clearly PM does not contain ¬, then M is a stable model of
P if and only if M is a minimal model of PM .

Example 3. Let M = {b} and P be the following program:
{b ← ¬a, c ← ¬b, b ←, c ← a}. Notice that PM has
three models: {b}, {b, c} and {a, b, c}. Since the minimal
model among these models is {b}, we can say that M is a
stable model of P .

p-stable semantics

Before defining the p-stable semantics (introduced in [17]),
we define some basic concepts. Logical inference in classic
logic is denoted by ⊢. Given a set of proposition symbols
S and a theory (a set of well-formed formulas) Γ, Γ ⊢ S if
and only if ∀s ∈ S, Γ ⊢ s. When we treat a program as a
theory, each negative literal ¬a is regarded as the standard
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negation operator in classical logic. Given a normal pro-
gram P, if M ⊆ LP , we write P 
 M when: P ⊢M and M
is a classical 2-valued model of P .

The p-stable semantics is defined in terms of a single
reduction which is defined as follows:

Definition 4. [17] Let P be a program and M be a set of
literals. We define

RED(P,M) = {a← B+∪¬(B−∩M) | a← B+∪¬B− ∈ P}

Example 5. Let us consider the program P1 = {a ←
¬b∧¬c, a← b, b← a} and the set of atoms M1 = {a, b}.
We can see that RED(P,M) is: {a← ¬b, a← b, b← a}.

Next we present the definition of the p-stable semantics
for normal programs.

Definition 6. [17] Let P be a program and M be a set
of atoms. We say that M is a p-stable model of P if
RED(P,M) 
 M . We use p-stable to denote the semantics
operator of p-stable models.

Example 7. Let us consider again P1 and M1 of Exam-
ple 5. Let us verify whether M1 is a p-stable model of P1.
First, we can see that M1 is a model of P1, i.e., for each
clause C of P1, M1 evaluates C to true. We also can ver-
ify that RED(P1,M1) ⊢ M1 . Then we can conclude that
RED(P1,M1) 
 M1. Hence, M1 is a p-stable model of P1.

The following examples illustrate how to obtain the p-
stable models. The first example shows a program with a
single p-stable model, which is also a classical model. The
second example shows a program which has no stable mod-
els and whose p-stable and classical models are the same.

Example 8. Let P = {q ← ¬q}. Let us take M = {q} then
RED(P,M) = {q ← ¬q}. It is clear that M models P in
classical logic and RED(P,M) |= M since (¬q → q) → q
is a theorem in classical logic with the negation ¬, now in-
terpreted as classical negation. Therefore M is a p-stable
model of P .

Example 9. Let P = {a ← ¬b, a ← b, b ← a}. We
can verify that M = {a, b} models the clauses of P in clas-
sical logic. We find that RED(P,M) = P . Now, from the
first and third clause, it follows that (¬b → b) where the
negation ¬ is now interpreted as classical negation. Since
(¬b→ b)→ b is a theorem in classical logic, it follows that
RED(P,M) |= M . Therefore, M is a p-stable model of P .

It is worth mentioning that there exists also a charac-
terization of the p-stable semantics in terms of the paracon-
sistent logic G′

3, interested readers can see [14, 15, 17].

Minimal model semantics

An interpretation M is called a (2-valued) model of P if and
only if for each clause c ∈ P , M(c) = 1. We say that M

is a minimal model of P if and only if there does not exist
a model M ′ of P such that M ′ ⊂ M , M ′ ̸= M [19]. We
will denote by MM(P ) the set of all the minimal models
of a given logic program P . Usually MM is called minimal
model semantics.

Example 10. Let P be the program {a ← ¬b, b ←
¬a, a ← ¬c, c ← ¬a}. As we can see, P has five
models: {a}, {b, c}, {a, c}, {a, b}, {a, b, c}; however, P has
just two minimal models: {b, c}, {a}. Hence MM(P ) =
{ {b, c}, {a} }.

The MMr semantics

A program P induces a notion of dependency between
atoms from LP [13]. We say that a depends immediately
on b, if and only if, b appears in the body of a clause in
P , such that a appears in its head. The two place re-
lation depends on is the transitive closure of depends im-
mediately on [13]. The set of dependencies of an atom
x, denoted by dependencies-of (x), corresponds to the set
{a | x depends on a}.
Example 11. [13] Let us consider the following program,

P = {e ← e, c ← c, a ← ¬b ∧ c, b ←
¬a ∧ ¬e, d← b}.
The dependency relations between the atoms of LP are
as follows: dependencies-of(a) = {a, b, c, e}; dependencies-
of(b) = {a, b, c, e}; dependencies-of(c) = {c}; dependencies-
of(d) = {a, b, c, e}; and dependencies-of(e) = {e}.

We take <P to denote the strict partial order defined
as follows: x <P y, if and only if, y depends-on x and
x does not depend-on y. By considering the relation <P ,
each atom of LP is assigned an order as follows: An atom x
is of order 0, if x is minimal in <P . An atom x is of order
n + 1, if n is the maximal order of the atoms on which x
depends.

We say that a program P is of order n, if n is the max-
imum order of its atoms. We can also break a program P
of order n into the disjointed union of programs Pi with
0 ≤ i ≤ n, such that Pi is the set of clauses for which the
head is of order i (w.r.t. P ). The empty program has order
0. We say that P0, . . . , Pn are the components of P .

Example 12. By considering the program P in Exam-
ple 11, we can see that: d is of order 2, a is of order 1,
b is of order 1, e is of order 0, and c is of order 0. This
means that P is a program of order 2. The following ta-
ble illustrates how the program P can be broken into the
disjointed union of the following relevant modules or com-
ponents P0 = {e ← e, c ← c}, P1 = {a ← ¬b ∧ c, b ←
¬a ∧ ¬e}, P2 = {d← b}.

Next we present a reduction that will be used to define
the MMr semantics.

Let P be a program and A = ⟨T ;F ⟩ be a pair of disjoint
sets of atoms. The reduction R(P,A) is obtained by 2 steps
[13]:
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1. Let R′(P,A) be the program obtained in the following
steps:

(a) We replace every atom x that occurs in the bod-
ies of P by 1 if x ∈ T , and we replace every atom
x that occurs in the bodies of P by 0 if x ∈ F ;

(b) we replace every occurrence of ¬1 by 0 and ¬ 0
by 1;

(c) every clause with a 0 in its body is removed;

(d) finally we remove every occurrence of 1 in the
body of the clauses.

2. Given the set of transformations CS =
{RED+, RED−, Success, Failure, Loop}, in [8] it
is shown that a normal program P can be reduced to
another normal program normCS(P ) after applying
those transformations a finite number of times. The
program normCS(P ) is unique and is called the nor-
mal form of program P with respect to the system
CS. We will denote R(P,A) = normCS(R

′(P,A)).
The definitions of the transformations in CS are:

(a) If r ∈ P and a ∈ B−(r) ̸ ∃r′ ∈ P : H(r′) = a, then

RED+(P ) = (P\{r})∪{H(r)← B+(r)∪¬(B−(r)\{a})}

(b) If r ∈ P and a← ∈ P such that a ∈ B−(r), then

RED−(P ) = P \ {r}

(c) If r ∈ P and a← ∈ P such that a ∈ B+(r), then

Succes(P ) = (P\{r})∪{H(r)← (B+(r)\{a})∪¬B−(r)}

(d) If r ∈ P and a ∈ B+(r) ̸ ∃r′ ∈ P : H(r′) = a, then

Failure(P ) = P \ {r}

(e) Let M be unique minimal model of the positive program

POS(P ) = {H(r)← B+(r) : r ∈ P}

then

LOOP(P ) = {r : r ∈ P,B+(r) ⊆M}

Example 13. [13] Let Q = {a← ¬b∧c, b← ¬a∧¬e, d←
b, b ← e,m ← n, n ← m}, and let A be the pair of sets of
atoms ⟨{c}; {e}⟩. Thus, R′(Q,A) = {a← ¬b, b← ¬a, d←
b,m ← n, n ← m}. Hence, R(Q,A) = {a ← ¬b, b ←
¬a, d← b}.

Now, in order to define the MMr semantics, we first
define the MMr

c semantics in terms of the Minimal Model
semantics, denoted by MM .

Definition 14. Given A = {A1 . . . An} where the Ai,
1 ≤ i ≤ n are sets, and B = {B1 . . . Bm} where the Bj,
1 ≤ j ≤ m are sets, we define A ⊎ B = {Ai ∪ Bj | Ai ∈
A and Bj ∈ B}.

Definition 15. [13] We define the associated MMr
c seman-

tics recursively as follows: Given a program P of order 0,
MMr

c (P ) = MM(P ). For a program P of order n > 0 we
define

MMr
c (P ) =

∪
M∈MM(P0)

{M} ⊎MMr
c (R(P \ P0, ⟨M ;N⟩))

where N := (LP0 ∪ {a ∈ LP | a ̸∈ Head(P )}) \M .

It is important to eliminate tautologies from the pro-
grams, since they can introduce non-desirable models. For
example, if P is the program {a← ¬b, b← a, b}, then the
minimal models for this program are {a} and {b}; however,
after deleting the second rule, which is a tautology, it is
clear that the second set, namely {b} is not an intended
minimal model. Given a normal program P , we define
Taut(P ) = {a← B+∪¬B− ∈ P | B+ ∩ B− ̸= ∅ or a ∈ B+}.

Definition 16. [13] Let P be a normal program. We define
MMr(P ) = MMr

c (P \ Taut(P )).

The following example illustrates our two previous def-
initions.

Example 17. Let us consider the program E = {a ←
¬b, b← ¬a, p← ¬b, p← ¬p}. We are going to compute
the MMr

c (E). According to Definition 15, since E is of
order 1, then we need to obtain the following:
1) MM(E0),
2) MMr

c (R(E \ E0, ⟨M ;N⟩)) for each M ∈MM(E0), and
3) MMr

c (E) =
∪

M∈MM(E0)
{M} ⊎ MMr

c (R(E \
E0, ⟨M ;N⟩)).

Obtaining MM(E0): Let us see that E0 = {a← ¬b, b←
¬a} is the component of order 0 of program E. Thus
MM(E0) = MM(E0) = {{a}, {b}}.

Obtaining MMr
c (R(E \ E0, ⟨M ;N⟩)) for each M ∈

MM(E0): There are two cases to consider.
Let us consider M to be {a}. Then E′ is the program

R(E \ E0, ⟨M ;N⟩) with E \ E0 = {p ← ¬b, p ← ¬p},
and N = {b}. We can see that E′ = {p ←, p ← ¬p}.
Now we need to obtain MMr

c (E
′) which is the same as

MM(E′) = {{p}}. Hence, {M} ⊎ MMr
c (E

′) = {{a}} ⊎
{{p}} = {{a, p}}.

Let us consider M to be {b}. Let E′ be the program
R(E \ E0, ⟨M ;N⟩) with E \ E0 = {p← ¬b, p← ¬p}, and
N = {a}. We can see that E′ = {p← ¬p}. Now we need to
obtain MMr

c (E
′) which is the same as MM(E′) = {{p}}.

Hence, {M} ⊎MMr
c (E

′) = {{b}} ⊎ {{p}} = {{b, p}}.

Obtaining MMr
c (E): It is easy to verify that

MMr
c (E) =

∪
M∈MM(E0)

{M} ⊎ MMr
c (R(E \

E0, ⟨M ;N⟩)) = {{a, p}, {b, p}}.

Since E is a program with no tautologies then MMr(E) =
MMr

c (E).
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Some properties of logic programming semantics

Not all normal programs have p-stable models or stable
models [17, 11], although they always have MMr models
[13], that is why it is convenient to have the next definition.

Definition 18. Let S be any of the three semantics. Let
P be a program. We say that P is S consistent if P has
at least one S model. We say that P is S inconsistent if P
does not have S models.

Now, we present two notions of equivalence for pro-
grams.

Definition 19. [4] Let S be any of the three semantics.
Two programs P1 and P2 are equivalent, denoted by P1 ≡S

P2, if P1 and P2 have the same S models. Two programs P1

and P2 are strongly equivalent, denoted by P1 ≡SE(S) P2, if
(P1 ∪ P ) ≡S (P2 ∪ P ) for every program P . We will drop
the subindex S that follows the equivalent symbol whenever
no ambiguity arises.

The following lemma1 indicates that given a program
P and an atom x that does not occur in P , we can define
a new program P ′ such that P and P ′ are equivalent and
LP ′ = LP ∪ {x}. The two programs must have the same
clauses except for one of them. One of the clauses in P ′

corresponds to one of the clauses in P after adding ¬x to
its body. This way, P and P ′ have the same S models since
x does not appear as the head of any clause in P ′.

Lemma 20. Let S be any of the three semantics. Let P be
a program and x be an atom, x ̸∈ LP . Let r be any clause
a ← B+ ∪ ¬B− in P . Then M is a S model of P iff M is
a S model of (P \ {r}) ∪ {a← B+ ∪ ¬(B− ∪ {x})}.

III. Minimal generalized S models

The definition of our schema for generate update se-
mantics is based on a concept called Minimal Generalized
S models, denoted as MG S models, where S is any of
the three semantics given in the Section , namely stable,
p− stable, or MMr semantics.

The intuition behind the MG S models is simple. Given
a semantics S, a program P and a set of atoms A, the MG
S models of P are the S models of P ∪∆ that are obtained
by adding the minimal subset ∆ ⊆ A to P for which P ∪∆
has S models.2 For instance, let us consider the program
P = {−a, a← ¬b}, A = {b, c}, and the p-stable semantics,
hence {b,−a} is one of its MG p-stable models where the
minimal subset of A added to P is {b}. We also can see
that that P does not have p-stable models.

Next, we present the definition of abductive logic pro-
grams and their semantics in terms of the minimal explicit
generalized S models. Then, we define the MG S models
based on the minimal explicit generalized S models. These

definitions are similar to the definitions of syntax and se-
mantics of abductive logic programs as presented in the
context of the stable semantics in [2].
Definition 21. Let S be a semantics. An abductive logic
program is a pair ⟨P,A⟩ where P is a program and A is a
set of atoms, called abducibles. ⟨M,∆⟩ is an explicit gen-
eralized S model, denoted as EG S model, of the abductive
logic program ⟨P,A⟩ iff ∆ ⊆ A and M is an S model of
P ∪∆.

We give an ordering among EG S models in order to get
the minimal of them.

Definition 22. Let S be a semantics. Let T = ⟨P,A⟩ be
an abductive logic program. Let ⟨M1,∆1⟩ and ⟨M2,∆2⟩ be
two EG S models of T , we define ⟨M1,∆1⟩ < ⟨M2,∆2⟩ if
∆1 ⊂ ∆2; this order is called inclusion order. ⟨M,∆⟩ is a
Minimal EG S model, denoted as MEG S model, of T iff
⟨M,∆⟩ is an EG S model of T and it is minimal w.r.t.
inclusion order.

For practical purposes, given a MEG S model, ⟨M,∆⟩,
we are only interested in its first entry, namely M , and we
call it a Minimal Generalized S model, denoted as MG S
model, of an abductive logic program.

Example 23. Let S be the p-stable semantics. Let ⟨P,A⟩
be the abductive logic program where the set of abductive
atoms is A = {x1, x2} and P = {b ← ¬x1, a ←
b ∧ ¬x2, −a}. There are three EG p-stable models of
⟨P,A⟩ which are: ⟨{−a, x1}, {x1}⟩, ⟨{−a, b, x2}, {x2}⟩, and
⟨{−a, x1, x2}, {x1, x2}⟩. We can see that for ∆ = ∅ there is
no EG p-stable models. Therefore, the MEG p-stable mod-
els are ⟨{−a, x1}, {x1}⟩ and ⟨{−a, b, x2}, {x2}⟩, and the MG
p-stable models are {−a, x1} and {−a, b, x2}.

The following lemma presents some results about MEG
S models that will be useful in a later section to show the
properties of our update operator. The proof of this lemma
is straightforward.

Lemma 24. Let T = ⟨P,A⟩ be an abductive logic program
such that P is S consistent. Then,

• M is a S model of P iff M is a MG S-model of T and

• if ⟨M,∆⟩ is a MEG S model of T then ∆ = ∅.

IV. Updates semantics and formal
properties

In this section, we define the general schema for generate
update semantics based on the concept of MG S models,
and we study some of its properties. We use ⊙S to represent
the update operator with respect to a semantics S. In order
to obtain the ⊙S-update models of a pair of logic programs
(P1, P2), called update pair, we define an update logic pro-
gram, denoted as P. The update logic program is obtained

1Its proof is straightforward.
2By “adding the minimal subset ∆ ⊆ A to P”, we mean that ∆ is interpreted as a set of facts defined by its elements.
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by joining P ′
1 to P2, where P

′
1 is the resulting program from

transforming P1 as follows: at the end of each clause of
P1 which is not a constraint we add the negation-as-failure
of an abducible (a new atom). The intuition behind the
transformation applied to a program P1 consists in weaken-
ing the knowledge in P1 when giving more relevance to the
knowledge contained in P2 whose clauses are not modified.
Definition 25. Let (P1, P2) be an update pair over LP1∪P2

such that the number of clauses in P1 that are not con-
straints is n. Let L∗

P1∪P2
= LP1∪P2 ∪ A where A is a

set of n new abducible atoms, namely A = {ai, 1 ≤ i ≤
n | ai is an atom, ai ̸∈ LP1∪P2 and ai ̸= aj if i ̸= j}. We
define the update logic program P of (P1, P2) over L∗

P1∪P2
,

as the program consisting of the following clauses:

1. all constraints in P1,

2. the clauses a ← B+ ∪ ¬(B− ∪ {ai}) if ri = a ←
B+ ∪ ¬B− ∈ P1, 1 ≤ i ≤ n and ai ∈ A,

3. all clauses r ∈ P2.

We define the abductive logic program of P as follows:
T = ⟨P, A⟩.

In this way, given a semantics S, the intended ⊙S-
update models of a pair of logic programs (P1, P2) are ob-
tained by removing the abducible atoms from the MG S
models of the abductive logic program ⟨P, A⟩. Finally, the
⊙S-update models are chosen as those that contain more
information, i.e. maximal in the sense of inclusion of sets,
from the intended ⊙S-update models.

Definition 26. Let S be a semantics. Let (P1, P2) be an
update pair over LP1∪P2 and T its abductive logic program.
Then, M ⊆ LP1∪P2 is an intended ⊙S-update model of
(P1, P2) if and only if M = M ′ ∩ LP1∪P2 for some MG
S model M ′ of T . In case M is an intended ⊙S-update
model of (P1, P2) and is maximal among all intended ⊙S-
update models of (P1, P2) w.r.t. inclusion order, then M is
an ⊙S-update model of (P1, P2).

We can illustrate our semantics with the following ex-
ample.

Example 27. Let S be the p-stable semantics. Let (P1, P2)
be an update pair over {a, b} where, P1 and P2 are the
following logic programs, P1 = {b ←, a ← b} and
P2 = {−a ←}. We can see that the update logic program
P of (P1, P2) over L∗

P1∪P2
corresponds to the program P of

Example 23 where the xi are the abducible ai. The intended
⊙p−stable-update models of (P1, P2) are {−a} and {−a, b};
and its only ⊙p−stable-update model is {−a, b}.

Now, we show that our update operator (⊙S) satis-
fies several formal properties. These properties have been
deeply analyzed, in the context of stable semantics, by sev-
eral authors such as J. J. Alferes et al. in [1] or T. Eiter

in [10], except for the last one. We will see that all the
properties are expressed in terms of equivalence, hence it
is useful to recall the two notions of equivalence for logic
programs given in Definition 19. Since the S models of a
logic program are sets of literals, we can see easily that ≡
represents an equivalence relation, and the logic programs
P1 and P2 can be of any kind defined in this paper.

The following definition is used to define the last of our
properties.

Definition 28. Let S be a semantics. Let (P1, P2) be a
pair of logic programs over LP1∪P2 . We define the update
semantic function of (P1, P2) as follows:

SEM⊙S (P1, P2)
3 = {M | M is an ⊙S

-update model of (P1, P2)}.

Now we define the properties for ⊙S when S is the stable
or p-stable semantics. In the case of the MMr semantics
these properties have not been verified, the study of them
are the topic of future work. Since the intuition behind the
first six properties is easy, we only give a deeper explanation
about the last property below. For any of the semantics S
we have the following properties.

P1. Initialisation: If P is a logic program then ∅ ⊙S P ≡
P .

P2. Strong consistency: Let P1 and P2 be logic programs.
Suppose P1∪P2 has at least one p-stable model. Then
P1 ⊙S P2 ≡ P1 ∪ P2.

P3. Idempotence: If P is a logic program then P ⊙S P ≡
P .

P4. Weak noninterference: If P1 and P2 are logic pro-
grams defined over disjoint alphabets, and both of
them have p-stable models or do not, then P1⊙SP2 ≡
P2 ⊙S P1.

P5. Weak irrelevance of syntax: Let P , P1 and P2

be logic programs under LP. If P1 ≡SE P2 then
P ⊙S P1 ≡ P ⊙S P2.

P6. Augmented update: Let P1 and P2 be logic programs
such that P1 ⊆ P2. Then P1 ⊙S P2 ≡ P2.

P7. Independent parts property. Let J1 = (P1, P
′
1)

and J2 = (P2, P
′
2) such that (LJ1 ∩ LJ2) = ∅.

Then SEM⊙S
((P1 ∪ P2), (P

′
1 ∪ P ′

2)) = SEM⊙S
(J1) ⊎

SEM⊙S
(J2).

Property P7 indicates that our update operator does
not violates the general principle that completely indepen-
dent parts of a logic program should not interfere with each
other. Hence the property P7 of operator ⊙ indicates that
if we update the union of a pair of logic programs (P1 ∪P2)
by the union of a different pair of logic programs (P ′

1 ∪ P ′
2)

such that P1 and P ′
1 are defined under a different language

from the language of logic programs P2 and P ′
2 then, the

3Let us notice that SEM⊙S (P1, P2) is a set of sets.
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result can be also obtained from a particular union of the
update of P1 by P ′

1 and the update of P2 by P ′
2. This par-

ticular union of updates corresponds to our Definition 28.
The next example is taken from [16], where it is used

for different purposes.

Example 29.

Let P1 be: Let P ′
1 be:

openSchool← . −openSchool← holiday.
holiday ← ¬workday. workday ← ¬holiday.

Let P2 be: Let P ′
2 be:

seeStars← . −seeStars← .

Let S be the p-stable semantics. Let J1 = (P1, P
′
1),

J2 = (P2, P
′
2), and J = ((P1 ∪ P2), (P

′
1 ∪ P ′

2)). We can see
that (LJ1 ∩ LJ2) = ∅.
According to independent parts property we have that,
SEM⊙p−stable

((P1 ∪ P2), (P
′
1 ∪ P ′

2)) = SEM⊙p−stable
(J1) ⊎

SEM⊙p−stable
(J2) since

SEM⊙p−stable
((P1 ∪ P2), (P

′
1 ∪ P ′

2)) =
{{openSchool, workday,−seeStars}} =
{{openSchool, workday}} ⊎ {{−seeStars}} =
SEM⊙p−stable

(J1) ⊎ SEM⊙p−stable
(J2).

Theorem 30. The update operator (⊙S) satisfies proper-
ties, P1, P2, P3, P4, P5, P6, and P7 when S is stable
or p-stable semantics.

Proof. We present the proof for the p-stable semantics.
Properties P1 to P6 for stable semantics are proved in [20].
The proof of property P7 for the stable semantics is similar
to the one presented here for the p-stable semantics.

First, it is straightforward to verify that given a p-stable
consistent program P , ifM is p-stable model of P then there
is not another p-stable model M ′ of P such that M ′ ⊂M .
So, by this last fact and by Lemma 24, it is also straight-
forward to verify that given an abductive logic program
⟨P,A⟩, where P is p-stable consistent, then if M is a MG
p-stable model of ⟨P,A⟩ then there is not another MG p-
stable model M ′ of ⟨P,A⟩ such that M ′ ⊂M .
(P1. Initialisation): ∅ ⊙ P = P by construction. Hence
∅ ⊙p−stable P ≡ P .
(P2. Strong consistency): Let Q = (P1 ∪ P2) such that
Q is p-stable consistent. Let J = (P1, P2). We must prove
that M is an ⊙p−stable update model of J iff M is a p-stable
model of Q.
Let us notice that programs Q and P have the same clauses
except for some of them, namely in P there are some clauses
that have an abducible atom (a new atom) in their body
and these atoms do not occur in Q. So when we apply
iteratively Lemma 20, two things are certain:

(1) S is a p-stable model of Q, iff S is also a p-stable
model of P, and

(2) if Q is p-stable consistent, then P is p-stable consis-
tent too.

(⇒) By hypothesis M is an ⊙p−stable update model of J ,
then by Definition 26, there exists a MG p-stable model
M ′ of the abductive logic program of J , ⟨P, A⟩, such that
M = M ′∩LJ . Then by Definition 22, there exists ∆, ∆ ⊆ A
such that ⟨M ′,∆⟩ is a MG p-stable model of ⟨P, A⟩, where
M = M ′ ∩ LJ .

By hypothesis, Q is p-stable consistent then, by (2) P is
p-stable consistent too. Hence applying Lemma 24, it is
possible to verify that ∆ = ∅ and M ′ = M . So ⟨M, ∅⟩ is a
MEG p-stable model of ⟨P, A⟩. Finally by Definition 21, M
is a p-stable model of P. Thus by (1) we have that M is a
p-stable model of Q.
(⇐) LetM be a p-stable model ofQ. By (1), M is a p-stable
model of P. By Lemma 24, M is a MG p-stable model of
the abductive logic program of J , ⟨P, A⟩. By Lemma 24,
M ∩ A = ∅. Hence by Definition 26, M is an ⊙p−stable

update model of J .
(P3. Idempotence): If P does not have p-stable models,
then neither does P ⊙p−stable P . If P has p-stable models,
then P ∪ P does, hence by Strong Consistency, P ∪ P ≡
P ⊙p−stable P . Hence in each case P ⊙p−stable P ≡ P .
(P4. Weak noninterference): If each of P1 and P2 lacks
of p-stable models then the update (in any order) lacks of
p-stable models. If P1 and P2 have p-stable models, then
P1∪P2 does too — because they are defined over disjoint al-
phabets. By Strong Consistency, P1∪P2 ≡ P1⊙p−stableP2.
Also P2 ∪ P1 ≡ P2 ⊙p−stable P1. Hence, P1 ⊙p−stable P2 ≡
P2 ⊙p−stable P1.
(P5. Weak irrelevance of syntax): Let P , P1, and
P2 be logic programs under the same language L. Since
P1 ≡SE P2, then for every program P , P ∪ P1 is strongly
equivalent to P∪P2. Thus, (P∪A)∪P1 and (P∪A)∪P2 have
exactly the same p-stable models. Thus, P ⊙p−stableP1 and
P ⊙p−stable P2 have exactly the same EG p-stable models.
Therefore, P ⊙p−stable P1 and P ⊙p−stable P2 have exactly
the same MG p-stable models. Hence, P ⊙p−stable P1 ≡
P ⊙p−stable P2.
(P6. Augmented update): If P2 does not have p-
stable models, neither does P1 ⊙p−stable P2. If P2 has at
least one p-stable model and P1 ⊆ P2 then, (P1 ∪ P2)
has at least one p-stable model too. By strong consis-
tency P1 ⊙p−stable P2 ≡ P1 ∪ P2. Hence in each case
P1 ⊙p−stable P2 ≡ P2.
(P7. Independent parts): Let J1 = (P1, P

′
1), J2 =

(P2, P
′
2) such that (LJ1∩LJ2) = ∅, and J = ((P1∪P2), (P

′
1∪

P ′
2)). Let M1 and M2 be a ⊙p−stable update model of J1

and a ⊙p−stable update model of J2 respectively. It is clear
that M1 and M2 are disjoint, since (LJ1 ∩ LJ2) = ∅. We
have to prove that M is a ⊙p−stable update model of J iff
M = M1 ∪M2.

(⇒) By Definition 26, if M is a ⊙p−stable update model of
J , then there exists M ′, a MG p-stable model of ⟨P, B⟩,
such that M = M ′ ∩ LJ . Then by Definition 22, there ex-
ists ∆, ∆ ⊂ B such that ⟨M ′,∆⟩ is a EG p-stable model of
⟨P, B⟩ and it is minimal. By Definition 21, M ′ is a p-stable
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model of P ∪∆.
Moreover, since (LJ1∩LJ2) = ∅, we can verify the following:

(1) P = P1 ∪ P2
4,

(2)∆ = ∆1 ∪∆2 such that ∆1 = ∆∩LJ1
, ∆2 = ∆∩LJ2

and ∆1 ∩∆2 = ∅,
(3)M ′ = M ′

1 ∪M ′
2 such that M ′

1 is a p-stable model of
P1 ∪∆1 and M ′

2 is a p-stable model of P2 ∪∆2.
Now by Definition 21, ⟨M ′

1,∆1⟩ is a MEG p-stable model of
⟨P1, B1⟩ and ⟨M ′

2,∆2⟩ is a MGE p-stable model of ⟨P2, B2⟩
where B1 is the set of abducible atoms of P1 and B2 is the
set of abducible atoms of P2.
Finally by Definition 26, M1 = M ′

1∩LJ1
andM2 = M ′

2∩LJ2

are ⊙p−stable update model of J1 and J2 respectively.
(⇐) This proof is similar to the proof of the first part above.
Taking into account that P = P1 ∪ P2; and if ∆ = ∆1 ∪∆2

then there exists a p-stable model M ′ = M ′
1 ∪M ′

2 of P∪∆
such that M ′

1 as a p-stable model of P1 ∪∆1 and M ′
2 as a

p-stable model of P2 ∪∆2.

V. Conclusions

Our general schema for defining new update semantics
takes as input any basic logic programming semantics S
and gives as output a new update semantics. The schema
uses minimal generalized S models, where S is any of the
logic programming semantics. Each update semantics is
associated to an update operator. We also presented prop-
erties for the update operator which are valid for the stable
and p-stable semantics. The study of those properties for
the MMr semantics as well as the extension of our results
to other semantics along with a comparative study of them
are topics to be developed in future work.
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