
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.4, 2012

1 | P a g e
www.ijacsa.thesai.org

A New Application Programming Interface and a
Fortran-like Modeling Language for Evaluating

Functions and Specifying Optimization Problems at
Runtime

Fuchun Huang
School of Engineering and Science, Victoria University

Melbourne, Australia

Abstract—A new application programming interface for
evaluating functions and specifying optimization problems at
runtime has been developed. The new interface, named FEFAR,
uses a simple language named LEFAR. Compared with other
modeling languages such as AMPL or OSil, LEFAR is Fortran-
like hence easy to learn and use, in particular for Fortran
programmers. FEFAR itself is a Fortran subroutine hence easy
to be linked to user’s main programs in Fortran language. With
FEFAR a developer of optimization solver can provide pre-
compiled, self-executable and directly usable software products.
FEFAR and LEFAR are already used in some optimization
solvers and should be a useful addition to the toolbox of
programmers who develop solvers of optimization problems of
any type including constrained/unconstrained, linear/nonlinear,
smooth/nonsmooth optimization.

Keywords-programming language; Fortran computing language;
Fortran subroutine; Application programming interface; Runtime
function evaluation; Mathematical programming; Optimization
problem; Optimization modeling language.

I. INTRODUCTION
In this paper we introduce to readers a new application

programming interface for evaluating functions and specifying
optimization problems at runtime. FEFAR is a Fortran
subroutine For Evaluating Functions At Runtime. It can be
linked to a programmer’s main program to provide a way to
evaluate a function or solve an optimization problem at
runtime. The functions or optimization problems must be
written in a new language called LEFAR I developed together
with FEFAR, for evaluating functions or specifying
optimization problems at runtime. LEFAR is similar to but
much simpler than Fortran, and that is a big merit as it is easy
to learn and use and yet powerful enough and complex enough
to be able to specify any functions and optimization problems
at runtime. FEFAR and LEFAR are already used in USsolver
[1] and UNsolver [2], two binary machine code programs for
solving unconstrained smooth or nonsmooth optimization
problems.

This paper is organized as following. Section II gives the
background and related works, section III explains the FEFAR
interfaces and parameters, and give some examples, section IV

explains the rules of the LEFAR language with comparison to
Fortran language, and section V gives some other resources
and a near future work scope.

II. BACKGROUND AND RELATED WORKS
Advanced computing languages such as Fortran [3] and C

are compiled language [4]. Unlike interpreted languages [5]
such as the S language [6] in SPLUS and R, and the MATLAB
language [7], compiled languages must first compile the main
program and all other subroutines and functions into a binary
machine code program. Programmers of such compiled
languages often want to be able to evaluate functions at runtime
after the source code of the program has been compiled into a
binary machine code program. They may also want to be able
to specify/describe optimization problems at runtime by using a
modeling language similar to, or, ideally the same, advanced
computing language they use, such as Fortran. They may want
to keep the source codes of their programs to themselves for
commercial reasons but still want others to be able to use or
test their software products by giving them a self-executable,
directly usable binary machine code program. On the user’s
end, the binary machine code programs are self-executable and
usable immediately; hence the users, in particular the ordinary
users but not programmers, are eased from the troubles of
finding or purchasing a compiler and compiling the source
code programs into binary machine code programs. There are
some available modeling languages such as AMPL [8] and
OSiL [9] for modeling and specifying optimization problems at
runtime though, it is still better to have another modeling
language and application programming interface that meet the
abovementioned needs better, and that is why I have developed
FEFAR and LEFAR, a new application programming interface
and modeling language for evaluating functions and specifying
optimization problems at runtime, in particular for Fortran
programmers. FEFAR is a Fortran subroutine For Evaluating
Functions At Runtime. It can be linked to a programmer’s main
program to provide a way to evaluate a function or solve an
optimization problem at runtime. The functions or optimization
problems must be written in a new language called LEFAR I
developed together with FEFAR, for evaluating functions or
specifying optimization problems at runtime. LEFAR is similar

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.4, 2012

2 | P a g e
www.ijacsa.thesai.org

to but much simpler than Fortran, and that is a big merit as it is
easy to learn and use. Another reason I made it simple is to
shorten the processing and running time of LEFAR codes at
runtime, subject to yet being powerful enough and complex
enough to be able to specify any functions and optimization
problems.

III. FEFAR INTERFACES
In the following we use gfortran [12] to illustrate how to

use FEFAR, but other compilers work as well. There are
several interfaces of FEFAR: FEFAR1.obj, FEFAR2.obj,
FEFAR3.obj, etc. The following is a simple test program of
FEFAR1.obj linked to the main program at compiling and
linking stage.

>type FEFARtest.f90
program FEFARtest
real*8 :: f
real*8,dimension(1000) :: b
integer*4 :: k
do;
call FEFAR1(1,b,k,f);
call FEFAR1(2,b,k,f);
call FEFAR1(3,b,k,f);
end do;
end program
>
>gfortran FEFARtest.f90 FEFAR.obj
>a.exe
Input the file name of the function:
rosenbrock.far
 f= 24.1999999999999957
 x1= -1.2000000000000000
 x2= 1.0000000000000000
>

The file “rosenbrock.far” is written in LEFAR language to
evaluate the following Rosenbrock function [13] at given x
values:

LEFAR code (that is, the content of the file rosenbrock.f95) is
the following:

function: Rosenbrock
real :: f
real, dimension(2) :: b
integer :: if123

if(if123==1)
 b(1)=-1.2
 b(2)=1.0
end if

if(if123<=2)
f=100.0*(b(2)-b(1)**2)**2+(1.0-b(1))**2
end if

if(if123==3)
 print,”f=”,f
 print,”x1=”,b(1)
 print,”x2=”,b(2)
end if
end function

FEFAR1 is a Fortran subroutine of the following structure:

subroutine FEFAR1(if123,b,k,f)
integer*4 :: if123
real*8, dimension(1000) :: b
integer*4 :: k
real*8 :: f
…
end subroutine FEFAR1

FEFAR2 is a Fortran subroutine of the following structure:

subroutine FEFAR1(if123,b,k,f,g)
integer*4 :: if123
real*8, dimension(1000) :: b,g
integer*4 :: k
real*8 :: f
…
end subroutine FEFAR1

FEFAR3 is a Fortran subroutine of the following structure:

subroutine FEFAR1(if123,b,k,f,kg,g)
integer*4 :: if123
real*8, dimension(1000) :: b,g
integer*4 :: k
real*8 :: f
integer*4 :: kg
…
end subroutine FEFAR1

In calling each FEFAR, a file name is prompted to be
inputted at runtime. The value of the integer variable “if123”
will be passed to the first integer variable in the runtime file to
control which statements in the runtime to be executed or not.
For example, initial value assignment statements only need to
be executed once, and most other statements need to be
executed each time the subroutine is called. Another example is
“if123==3” can be used for only displaying values without
executing many other statements. Of course, the integer
variable “if123” can take any integer value for more complex
controls. The argument “b” is a real data type array of
dimension 1 for getting initial values of the function from the
source code at runtime or setting from the main program the
next step x values of the function for solving an optimization
problem . The argument “f” is a real variable of the value of the
function. In FEFAR2 and FEFAR3 argument “g” is a real data
type array of dimension 1 for getting array values of dimension
1 returned from the runtime function, with the only difference
being that FEFAR3 returns an integer “kg” for the actual
number of array values calculated and returned from the
runtime function file which are to be used by the main program

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.4, 2012

3 | P a g e
www.ijacsa.thesai.org

while FEFAR2 assumes implicitly kg=k. Argument “g” can be
used to return gradients of a differentiable function, for
example. It can also be used to return values of constraints.

IV. RULES OF LEFAR LANGUAGE
LEFAR is a very simple language similar to but far simpler

than Fortran language, so in many cases below we just give the
Fortran equivalence of most LEFAR statements.

A. Data types
There are only three data types: real, integer, and logical,

and they are equivalent to Fortran’s real(len=8) (or equivalently
real*8), integer(len=4) (or equivalently integer*4) and
logical(len=2) (or equivalently logical*2).

B. Constants
Real constants are specified like 2.0, 2.1, -2.0, where the

decimal symbol ‘.’ is necessary, so is the ‘0’ following the ‘.’
even if there are no other decimal digits. Scientific notations
such as 2.0D-1 and 2.0E-1 are not used in LEFAR. The
following are not allowed: 2., .1, -2., -.3, 2.0D-1. Correct ways
are: 2.0, 0.1, -2.0, -0.3, 0.2. Logical constants are .true. and
.false., like in Fortran. The mathematical constant π (sometimes
written as pi or PI) which is the ratio of any circle's
circumference to its diameter is .PI. in LEFAR. For example,
y=sin(.PI./2) assigns value 1.0 to y.

C. Intrinsic functions
Intrinsic functions in LEFAR have the same rules as those

in Fortran. Currently implemented functions are: abs(), exp(),
log(), log10(), cos(), acos(), sin(), asin(), tan(), atan(), max(),
min(), sqrt(), dble(),and int(). Depending on demands other
functions can be easily added to LEFAR.

D. Arrays
Arrays are specified and used the same way as in Fortran.

E. Operators, mathematical expressions and the assignment
All operators in Fortran work the same way in LEFAR. The

assignment and mathematical expressions have the same rules
as Fortran. For example, x(2,1)=2*(3.4+5)**2-5*x(1,2)**2 is
valid in LEFAR and evaluated the same way as in Fortran.
Additionally, “^” is also used for exponentiation, the same as
“**”.

F. Do loop
There is only one construct of do looping:

do while(expr)
⋮
end do

which is equivalent to Fortran’s DO WHILE(expr) … END
DO construct.

G. If construct
 IF-THEN constructs are

if(expr)then
 ⋮

end if

if(expr)then
⋮
else
⋮
end if

if(expr)then
⋮
else if(expr)then
⋮
else if(expr)then
⋮
⋮
else
⋮
end if

They are equivalent to Fortran’s IF-THEN constructs. In
LEFAR, however, the word “then” is not necessary, hence the
following are also valid:

if(expr)
 ⋮
end if

if(expr)
⋮
else
⋮
end if

if(expr)
⋮
else if(expr)
⋮
else if(expr)
⋮
⋮
else
⋮
end if

H. data-end data construct
data(x)
⋮
end data

by which listed values between are read into x starting from the
most right array index then the second array index from the
right until the first array index from the left hand side.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.4, 2012

4 | P a g e
www.ijacsa.thesai.org

I. datafile-end datafile construct
datafile(x)
‘filename’
end datafile

by which values in the file ‘filename’ (a path can be included)
are read into x starting from the most right array index then the
second array index from the right until the first array index
from the left hand side.

J. “print” statement
‘print’ outputs values to the monitor screen. For example,

print, “i, b(i):”, i, b(i)
is similar to the following Fortran statement:

print*,‘i, b(i):’,i, b(i)
In ‘print’ statement, character strings must be put in double
quotation marks “…”, not single quotation marks.

K. Other statements and rules of LEFAR
♦ ‘exit’, ‘cycle’, ‘stop’, ‘return’ statements work the

same as in Fortran.
♦ LEFAR statements use lower-case letter only. For

example, ‘print’, but not ‘PRINT’.
♦ LEFAR variables are case-sensitive.
♦ A LEFAR statement line can be up to 200 characters

long.
♦ Like in Fortran, Any line starting with ‘!’ is treated as

a comment line.
♦ A function file can have up to 1000 lines.
♦ There is no way to continue a one-line statement (not

a construct) in another line.
♦ All variables must be declared. There are no implicit

rules. The way to declare variables and arrays are the
same as in Fortran 95.

L. Rules of the runtime function
Generally the file may have the following structure:

function: function_name
real :: fmin
real, dimension(k) :: x
integer :: if123
[declare other working variables]

if(if123==1)
⋮
end if

if(if123<=2)
⋮
end if

if(if123==3)

⋮
end if
end function

where ‘fmin’ is the value of the function to be returned to the
main program, ‘x’ is the vector input of the function passed to
and from the main program, and ‘if123’ is a working integer
variable passed from the main program. Important: the first
‘real ::’ variable is the one to be returned, the first ‘real,
dimension(k) ::’ vector is the input variable of the function,
where ‘k’ is a positive integer like 2, 3, etc., which is the
dimension of the function, while the first ‘integer ::’ variable is
a special integer variable come from the main program (that is,
the value of the variable is set in the main program and passed
to the function for controlling which blocks to be executed).
They can use different names such as ‘f’, ‘b’, ‘iw’. Generally,
within the block “if(if123==1) … end if” are statements to be
processed only once. For example, ‘data … end data’
statements, to specify initial values for an optimization
problem, etc. Within the block “if(if123<=2) … end if” are
statements to be processed repeatedly like in optimization
program. Within the block “if(if123==3) … end if” are
statements to be processed only once in the final stage. For
example, after a minimum x* has been found, it can be used in
this block to evaluate values of other variables or functions
depending on it. Two other rules are:

♦ In Fortran, ‘;’ is used to put and separate two
statements in one line. In LEFAR, however, there is
no way to separate two one-line statements in one
line.

♦ There should not be a ‘;’ nor any other separator at
the end of any statement.

A side note of the above two rules, they make the
processing and running time of the codes shorter.

V. RESOURCES AND FUTURE WORK
More codes, examples and future work are available at

http://sites.google.com/site/SoftSome. Future work may
include a C computing language version of FEFAR for easy
linking of optimization solver programs in C language to
FEFAR.

ACKNOWLEDGMENT
The author thanks Professor Yosihiko Ogata, Professor

Satoshi Ito, Professor and Director Tomoyuki Higuchi and The
Institute of Statistical Mathematics, Tokyo, Japan, for
supporting my research visit to the institute from the 5th of
January to the 28th of February in 2012.

REFERENCES
[1] F. Huang, Some test results of UNsolver: a solver for solving

unconstrained non-smooth optimization problems,
http://sites.google.com/site/VicSolver, 2012.

[2] F. Huang, Some test results of USsolver: a solver for solving
unconstrained smooth optimization problems,
http://sites.google.com/site/VicSolver, 2012.

[3] Wikipedia, “Fortran”, http://en.wikipedia.org/wiki/Fortran, retrived on
April 16, 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.4, 2012

5 | P a g e
www.ijacsa.thesai.org

[4] Wikipedia, “Compiled language”,
http://en.wikipedia.org/wiki/Compiled_language, retrived on April 16,
2012.

[5] Wikipedia, “Interpreted language”,
http://en.wikipedia.org/wiki/Interpreted_language, retrived on April 16,
2012.

[6] Wikipedia, “S (programming language”,
http://en.wikipedia.org/wiki/S_(programming_language), retrived on
April 16, 2012.

[7] Wikipedia, “MATLAB”, http://en.wikipedia.org/wiki/MATLAB,
retrived on April 16, 2012.

[8] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Scientific Press, San
Francisco, CA, 1993.

[9] R. Fourer, J. Ma and Kipp Martin, “OSiL: An Instance Language for
Optimization,” Computational Optimization and Applications,
Computational Optimization and Applications, 2010.

[10] Wikipedia, “gfortran,” http://en.wikipedia.org/wiki/Gfortran, retrived on
April 16, 2012.

[11] L. Luksan and J. Vlcek, “Test Problems for Nonsmooth Unconstrained
and Linearly Constrained Optimization,” Technical report No. 798,
Institute of Computer Science, Academy of Sciences of the Czech
Republic, 2000.

AUTHORS PROFILE
Dr Fuchun Huang is a Senior Lecturer in the School of Engineering and

Science at Victoria University, Melbourne, Australia. He was awarded a PhD
degree by The Graduate University of Advanced Studies, Tokyo, Japan, and
has published papers on computational statistics, in particular Monte Carlo
methods, pseudo-likelihood and generalized pseudo-likelihood methods, and
developed solver software for solving smooth and nonsmooth optimization
problem. He is a member of The Japan Statistical Society.

	I. Introduction
	II. Background and related works
	III. FEFAR interfaces
	IV. Rules of LEFAR language
	A. Data types
	B. Constants
	C. Intrinsic functions
	D. Arrays
	E. Operators, mathematical expressions and the assignment
	F. Do loop
	G. If construct
	H. data-end data construct
	I. datafile-end datafile construct
	J. “print” statement
	K. Other statements and rules of LEFAR
	L. Rules of the runtime function

	V. Resources and future work
	Acknowledgment
	References

