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Abstract—The particle swarm optimizer (PSO) is a population-
based optimization technique that can be widely utilized to many 
applications. The cooperative particle swarm optimization 
(CPSO) applies cooperative behavior to improve the PSO on 
finding the global optimum in a high-dimensional space. This is 
achieved by employing multiple swarms to partition the search 
space. However, independent changes made by different swarms 
on correlated variables will deteriorate the performance of the 
algorithm. This paper proposes a separability detection approach 
based on covariance matrix adaptation to find non-separable 
variables so that they can previously be placed into the same 
swarm to address the difficulty that the original CPSO 
encounters. 

Keywords- cooperative behavior; particle swarm optimization; 
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I.  INTRODUCTION 
The particle swarm optimizer (PSO) [1, 2] is a stochastic, 

population-based optimization learning algorithm. Its learning 
procedure is based on a population made of individuals with 
specific behaviors similar to certain biological phenomena. 
Individuals keep exploring the solution space and exploiting 
information between individuals while evolution proceeding. In 
general, by means of exploring and exploiting, the PSO is less 
likely to be trapped at the local optimum.  

As with many stochastic optimization algorithms [1, 3-6], 
the PSO suffers from the “curse of dimensionality,” which 
implies that its performance deteriorates as the dimensionality 
of the search space increases. To cope with this difficulty, 
Potter [3] proposed a cooperative coevolutionary genetic 
algorithm (CCGA) that partitions the search space by splitting 
the solution vectors into smaller ones. The mechanism 
proposed by Potter significantly improves the performance of 
the original GA. Van den Bergh [5] applies this technique to 
the PSO and presented several cooperative PSO models named 
CPSOs. In the CPSOs learning procedure, the search space can 
be arbitrarily partitioned into different number of subspaces. 
Each smaller search space is then searched by a separate 
swarm. The fitness function is evaluated by the context vector, 
which means the concatenation of particles found by each of 
the swarms. However, as with the CCGA algorithm, the 
performance of the CPSO deteriorates when correlated 
variables are placed into separate populations. In this paper, we 
call such variables “non-separable.” A function f is said to be 
separable if  
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and it is followed by a fact that f can be optimized in a 
sequence of n independent 1-D optimization processes. This 
paper proposes a variation on the original CPSO to detect the 
separability of the variables. To this end, we adopt a 
mechanism from evolution strategy with covariance matrix 
adaption (CMA-ES) [8, 9]. The performance of the CPSO after 
applying separability detection is compared with that of the 
traditional PSO and CPSO algorithm. 

This paper is organized as follows. Section II presents an 
overview of the PSO and the CPSO. In section III, we describe 
the proposed separability detection cooperative particle swarm 
optimizer (SD-CPSO). This is followed by the experiment 
results presented in section VI. Finally, some directions for the 
future research are discussed in section V. 

II. RELATED WORKS 
The PSO is first introduced by Kennedy and Eberhart. It’s 

one of the most powerful methods for solving global 
optimization problems. The algorithm searches an optimal 
point in a multi-dimensional space by adjusting the trajectories 
of its particles. The individual particle updates its position and 
velocity based on its personal best performance and the global 
best performance among all particles that denote y and   
respectively. The position xi,d and velocity vi,d of the d-th 
dimension of i-th particle are updated as follows: 
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 ( 1) ( ) ( 1)i i ix t x t v t+ = + + ,                                       (3) 
where yi represents the previous best position yielding the best 
performance of the i-th particle; c1 and c2 denote the 
acceleration constants describing the weighting of each particle 
been pulled toward y and $y  respectively; 1rand  and 2rand  are 
two random numbers in the range [0, 1]. 

Let s denote the swarm size and f() denote the fitness 
function evaluating the performance yielded by a particle. After 
(2) and (3) are executed, the personal best position y of each 
particle is updated as follows: 
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and the global best position is found by: 
       $( 1) arg min ( ( 1)),     1

i
iy

y t f y t i s+ = + ≤ ≤ .         (5) 

The CPSO [5, 6] is one of the most significant 
improvements to the original PSO. Van den Bergh presented a 
family of CPSOs, including CPSO-S, CPSO-SK, CPSO-H, 
CPSO-HK. Algorithm CPSO-HK is the hybrid from PSO and 
CPSO-SK and it is proposed to address the issue of 
“pseudominima.” A discussion of pseudominima is outside of 
the scope of this article. The objective of this article is to 
propose a self-organized technique to assist the CPSO-SK in 
finding how the components on a context vector be related.  

The concept of CPSO-S is that instead of trying to find an 
optimal n-dimensional vector, the vector is split into n parts so 
that each of n swarms optimizes a 1-D vector. The CPSO-SK is 
a family of CPSO-S, where a vector is split into K parts rather 
than n, where K n≤ . K also represents the number of swarms. 
Each of the K swarms acts as a PSO optimizer (2)-(5). The 
main difference between the PSO and the CPSO is that the 
fitness of a single particle of the CPSO has to be evaluated 
through global best particles of the other swarms. Let Pj denote 
the j-th swarm and Pj‧xi represents the i-th particle in the 
swarm j. The fitness of Pj.xi is defined as: 

        $ $ $
1 1( ) ( , , , . , , )j i j j i Kf P x f P y P y P x P y-=g g K g K g .           (6) 

The CPSO applies cooperative behavior to improve the 
PSO on find the global optimum in a high-dimensional space. 
This is achieved by employing multiple swarms to explore the 
subspaces of the search space separately to reduce the curse of 
dimensionality. However, there is no absolute criterion that the 
CPSO is superior than the PSO since independent changes 
made by different swarms on correlated variables will 
deteriorate its performance . In addition, in one generation of a 
n-dim CPSO-S operation, the computational cost is n times 
larger than that of a PSO operation. 

III. METHODLOGY 
This paper proposes an approach to help the CPSO self-

organize the swarms composed of non-separable variables. 
Consider a particular optimization task illustrated in Fig. 1, 
from which we can see a 2-dim function with a bar-shaped 
local optimal region and a global optimum lies in it. The task is 
to find its global optimum by particle swarm optimizer. At first, 
particles are uniformly distributed in the search space. At this 
moment, we expect particles to be divided into two swarms, 
performing separate 1-dim PSO operation on each dimension 
to speed up the process of particles gathering around the 
optimal region. 

If by any chance particles gather around the optimal region 
as we expected, as shown in Fig. 2. At this point of time, we 
prefer particles performing 2-dim PSO operation on the whole 
search space to reduce the computational cost, which, in this 
case, represents the number of function evaluations. 

 
 

 
Figure 1.  Case with particles uniformly distributed in the search space to 

find the global optimum lies in a bar-shaped local optimal region. 

    
Figure 2.  Case with particles gather around the bar-shaped optimal region to 

find the global optimum. 

In order to implement the idea illustrated above, we have to 
determine the timing of switching between the PSO and the 
CPSO operation when dealing with a task. In this paper, we 
think this can be done by determining the separability between 
variables, and placing non-separable into the same swarm at 
each generation. If at certain moment, all variables are 
determined as non-separable, then the PSO operation is taken; 
otherwise, the CPSO operation is taken.  

The separability between variables is found by estimating 
the covariance matrix of the distribution of particles. The 
method we adopt is called the covariance matrix adaptation 
proposed in [8, 9]. In the standard CMA-ES, a population of 
new search points is generated by sampling a multivariate 
normal distribution N with mean nm∈ ¡  and covariance 
matrix n n×∈C ¡ . The equation of sampling new search points, 
for each generation number g = 0, 1, 2, …, reads 

( 1) ( ) ( ) ( )(0, )    for 1, ,g g g g
ix m N iσ λ+ + =C: L ,             

(7) 
where ~ denotes the same distribution on the left and right hand 
side; σ(g) denotes the overall standard deviation, step-size, at 
generation g and λ is the sample size. The new mean m(g+1) of 
the search distribution is a weighted average of the μ selected 
points from λ samples ( 1)
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where wi are positive weights, and ( 1)

:
g

ix λ
+  denotes the i-th rank 

individual out of λ samples from (8). The index i:λ denotes the 
i-th rank individual and 
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where f() is the objective function to be minimized. The 
adaption of new covariance matrix C(g+1) is formed by a 
combination of rank-μ and rank-one update [10] 

( )

( )

( 1) ( ) ( 1) ( 1)cov
cov

cov

( 1) ( 1)
cov : :

1cov

rank-one update

rank-  update

(1 )

1            (1 )

Tg g g g
c c

T
g g

i i i
i

c
c p p

c w y y
µ

λ λ

µ

µ

µ

+ + +

+ +

=

= - +

+ - ×∑

C C
1 44 2 4 43

1 4 44 2 4 4 43

,       

(11) 
where μcov ≥ 1 is the weighting between rank-μ update and 
rank-one update; ccov ∈ [0,1] is the learning rate for the 
covariance matrix update, and  

( 1) ( 1) ( ) ( )
: :( ) /g g g g

i iy x mλ λ σ+ += − ,                                   
(12) 
is a modified formula used to compute the estimated 
covariance matrix for the selected samples. The evolution path 

( 1)g
cp +  for rank-one update is described as follows: 
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where cc ≤ 1 denotes the backward time horizon and  
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denotes the variance effective selection mass. The new step-
size σ(g+1) is updated according to  
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where cσ is the backward time horizon of evolution path, 
similar to cc; dσ is a damping parameter and ( 1)gpσ

+  is the 
conjugate evolution path for step-size σ(g+1). The expectation of 
the Euclidean norm of a N(0, I) reads 

1(0, ) 2 ( ) / ( ) (1/ )
2 2

n nE N n O n+
= Γ Γ ≈ +I ,       

(17) 
where O(‧) represents high-order terms.  

Consider the estimated covariance matrix has the form 
shown as follows,  
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) 
where n is the number of dimensions, cjk represents the 
weighted covariance between variables j and k. The 
separability between dimensions can be obtained from 
correlation coefficient matrix with its element defined as 
follows: 

                            jk jk j kc c cρ = ,                            
(19) 

We define a parameter ρthres to determine whether 
dimension j and k are viewed as separable. If ρjk < ρthres then we 
say variable j and k are separable. Conventionally, if |ρ|>0.8, it 
implies that there exists a very strong linear relationship 
between these two variables; 0.8>|ρ|>0.6 implies strong 
relationship, and 0.6>|ρ|>0.4 implies moderate relationship. So, 
in this paper, we avoid setting ρthres less than 0.6. The block 
diagram of the proposed method can be found in Fig. 3. 

 

 
Figure 3.  Block diagram of SD-CPSO. 

IV. EXPERIMENT RESULTS 
In order to compare the performance between different 

algorithms, a fair time measure must be selected. Here we use 
the number of function evaluations as a time measure following 
[5]. The performance of the proposed SD-CPSO is verified by 
real-parameter minimization tasks, which contains totally nine 
test functions. By their nature they can be divided into two 
parts: unimodal and multi-modal functions.  
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The first two functions are unimodal, followed by seven 
multimodal functions with three of them have simple global 
structures (single-funnel functions) and another four have 
complex global structures (multi-funnel functions). The 
difference between single- and multi-funnel functions can be 
illustrated by the following two figures, where Figure 4 shows 
a visualization of a 2-D Rastrigin’s function, from which we 
can see that in spite of the large amount of local minima, there 
exists a trend to the global minimum. Figure 5 shows a 
visualization of a 2-D double Rastrigin’s function, from which 
we can see that there are two funnel-type global trends and a 
large amount of noisy local minima. 

 
Figure 4.  Visualization of a single-funnel, 2-D Rastrigin’s function. 

 

Figure 5.  Visualization of a multi-funnel-funnel, 2-D double Rastrigin’s 
function. 

The types and names of functions are described in Table I. 
A detailed definition of test functions can be seen in [11, 12]. 

All functions are of 50 dimensions and have been adjusted 
to zero optimal solution respectively. To make sure that there 
was sufficient correlation between the variables, making it even 
harder for optimization, all the functions were further tested 
under 45 degree coordinate rotation.  

In the following of this chapter, we will describe the 
configurations of the algorithms that we use to compare the 
performance with the proposed SD-CPSO in section 3.A. 
Experiment result and the discussion will be shown in section 
3.B. 

A. Algorithms Configuration 
The three algorithms for comparison are listed as follows: 

• PSO: the origin algorithm. 

• CPSO-S: algorithm that splits swarm into each 
dimension. 

• SD-CPSO: the proposed separability detection 
cooperative particle swarm optimization. 

For each algorithm, experiments are executed for 50 times. 
Denote n the dimension of the optimization task and s the 
number of particles in one swarm. Parameters of the three 
algorithms are listed in Table II. 

TABLE I.  TYPE AND NAME OF THE TEST FUNCTION. 

Unimodal Functions 

F1: Sphere Function 
F2: High Conditioned Ellipsoidal Function 

Multimodal Functions 

F3: Rosenbrock Function 
F4: Rastrigin Function 
F5: Griewank Function 

Multi-Funnel Functions 

F6: Schwefel Function 
F7: Double-Rastrigin Function 

F8: Weierstrass Function 
F9: Michalewicz Function 

TABLE II.  MS-CMA-ES AND CMA-ES PARAMETERS. 

Parameters of Selection operator 
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Parameters of PSO operation: 
c1=c2=1.49 
ρthres=0.8 

s=50 
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B. Experiment Result 
  This section presents optimization results. The number of 

maximum fitness calculation times, initial search range, initial 
search position and minimum fitness threshold are detailed in 
Table III. All particles are evenly distributed in the initial 
search range.  

TABLE III.  PARAMETERS OF THE EXPERIMENT. 

 maximum 
fitness 

calculation 
times 

Initial search 
range 

Minimum 
fitness 

threshold 

f 1 10000 x∈[0,100]d 1e-6 

f 2 10000 x∈[0,100]d 1e-6 
f 3 10000 x∈[0,100]d 1e-2 
f 4 3000 x∈[0, 5]d 1e-2 
f 5 8000 x∈[0,600]d 1e-2 
f 6 4000 x∈[0,3]d 1e-2 
f 7 2000 x∈[-20,20]d 1e-2 
f 8 4000 x∈[0,0.5]d 1e-2 
f 9 5000 x∈[0,5]d 1e-2 

 
The experimental data is obtained by executing each 50 

dimensional test functions until the stopping criterion is met. 
The procedure was repeated 50 times to compute the average 
fitness value. In the paper, instead of the actual numeric fitness 
value, the rank of the minimum average fitness value is defined 
as the standard of comparison. The reason is that we want to 
exclude the impact of the different degree of scale on the raw 
numeric difference between each test function. For example, 
some functions have very large fitness gap between the best 
and the second best local minimum, some of them don’t even 
have local minima. Therefore, the numeric difference may not 
be a good performing index for evaluating algorithms. The 
experiment result is shown in Table IV as follows. 

TABLE IV.  AVERAGE FITNESS VALUE. 

 CPSO-S SD-CPSO PSO 

f 1 6.361e-99(1)* 2.634e-062(3) 9.653-76(2) 
f 2 4.481e-84(1)* 3.464e-033(3) 2.876e-75(2) 

f 3 18.8764 (3) 0.8872 (1)* 1.4356(2) 
f 4 11.871(1) 17.721(2) 26.65(1)* 
f 5 9.6198(3) 0.6893(1)* 6.3769(2) 

f 6 469.9(3) 288.3(2) 87.36(1)* 
f 7 12.57(2) 7.659(1)* 95.03(3) 
f 8 1.2287(2) 0.6643(1)* 1.254(3) 
f 9 5.75(3) 7.864e-008(1) * 4.08(2) 

 
The results to be discussed are divided into three parts in 
accordance with the function types: 

1) Unimodal Function: 
Under the sphere function f 1, CPSO-S has the best 

performance, owing to its property of rapid convergence. As to 
ellipsoid function f 2, at first, PSO is better than the other two 
algorithms. As shown from the experiment result, all three 
algorithms are capable of solving unimodal optimization task, 
and no improvement of performance can be found by applying 
our method. 

2) Multimodal Function: 
The SD-CPSO is better than other algorithms under the f 3 

and f 5 test functions except for f 4, the Rastrigin’s function. We 
think it might due to the fact that Rastrigin’s function is nearly 
the same after rotation, which makes our effort trying to find a 
special trend to the global optimum irrelevant. However, the 
superiority of the proposed SD-CPSO in finding global optima 
of multimodal functions can be seen in substance. 

3) Multi-Funnel Function: 
From Table IV we can see that in coping with multi-funnel 

function optimization tasks, the superiority of the proposed SD-
CPSO is obvious. In general, the optimization of multi-funnel 
function is difficult as we can see especially from the 
optimization result of the f6 function. Despite the proposed SD-
CPSO has better performance on the optimization tasks of f7 
and f8 function, the improvement is not very obvious. However, 
in the optimization of f9, the Michalewicz's function, the 
improvement is remarkable. As a result, we will illustrate the 
optimization results of applying Michalewicz's function in both 
its unrotated and rotated form in Fig. 7.  

Fig. 7(a) represents the result of applying unrotated 
Michalewicz's function. Michalewicz's function introduces 
many valleys into the plain, and the function values for points 
in the space outside the narrow valleys give very little 
information about the location of the global optimum. Thus, the 
swarms need to follow through these valleys to find minimums. 
In its rotated version, these narrow valleys are too correlated to 
follow through from the perspective of the CPSO. In Fig. 7(b), 
the SD-CPSO in evidence overcomes the drawback. 

 
Figure 6.  Visualization of a 2-D Michalewicz's function. 
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(a) 

 
(b) 

Figure 7.  Experiment results of applying Michalewicz's function in its (a) 
unrotated form, (b) rotated form. 

 
Figure 8.  Results of the number of swarms of applying rotated Michalewicz's 

function. 

Fig. 8, on the other hand, illustrates the ability of SD-CPSO 
self-organizes the decomposition of dimensions. We place the 
detected non-separable variables to the same swarm in the 
CPSO operation to alleviate the detrimental effect we 
encountered when placing independent variables into separate 
swarms. When particles waver in the valley, the number of 

swarm decreased for the sake of correlated dimension has 
being coupled, and when swarms step into the local minimum 
region, the number of swarm increased to adapt these 
uncorrelated sphere-liked region.  

V. CONCLUSION 
In this paper, we propose a self-organization approach to 

the CPSO. This approach determines the suitable swarm 
structure of the CPSO by estimating the correlations between 
variables. Experiments show reasonable performance. The 
combination of dimensions forming a swarm is detected by 
covariance matrix adaptation. Future research should be done 
to investigate the pseudominima caused by the split of swarm. 
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