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Abstract—In this paper, we consider a complementary model for 

the equilibrium management of supply chain. In order to give an 

optimal decision for the equilibrium management, we propose a 

new algorithm based on an estimate of the error bound. This 

algorithm requires neither the existence of a non-degenerate 

solution nor the non-singularity of the Jacobian matrix at the 

solution. We also prove the quadratic convergence of the given 

algorithm.  It can be viewed as extensions of previously known 

results. 
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I.  INTRODUCTION  

Supply chain management involves many aspects, 
including manufacturing, transportation, logistics and sales 
markets, etc. Manufacturers produce a commodity and then 
transport it to sellers. The manufacturers need to pay for the 
costs of production and transportation. In order to make a 
profit, they have to determine optimal production and 
transportation.   Sellers need to pay for the costs in stores, and 
maximize their profits from the commodity price. Commodity 
price is the price customers are willing to pay. The customers 
need to determine their optimal level of consumption, which is 
related to commodity prices at different stages of the supply 
chain and the commodity handling costs.  The supply chain 
management problem can be abstracted as a "complementary" 
relationship between the two sets of decision variables, 
expressed as a complementary model ([1,2,3]). 

Let mapping : ,n nf R R  be continuously differentiable. 

Find vector * ,nx R such that 

                   0, ( ) 0, ( ) 0,Tx f x x f x                               (1)

We use *X to denote the solutions of ，and assume that
*X is not empty. 

The model takes into consideration different behaviors and 
their interactions of the various participants, and provides a 
standard to assess the appropriate commodity prices and 
quantities. It is an equilibrium optimization problem. At its 
core is the use of mathematical methods, with computer and 
network as tools, to study various complex systems having this 
complementary relationship and their corresponding solutions. 
It provides scientific basis for decision makers, with the goal of 
ultimately achieving balanced and harmonious development of 
complex system operation. It is widely used nowadays. In 

recent years it has become a hot topic of operational research 
and management studies. Many researchers, especially scholars 
abroad, are increasingly interested, and great progress has been 
made in both theoretical research and practical applications. To 
solve (1), many algorithms have been proposed ([4, 5, 6, 7, 9]). 
The basic idea of these algorithms is to transform (1) into an 
unconstrained optimization problem, or into a simple 
constrained optimization problem ([4, 7, 9]), and then to use 
the Newton type algorithms or confidence region algorithms. 
Although the convergence and the corresponding rate of 
convergence are established, the conditions are mostly quite 
strong. Most of these algorithms require that the Jacobian 
matrix at the solution of (1) is non-singular or there exists a 
non-degenerate solution. As we know, the non-singularity of 
the Jacobian matrix at the solution of (1) ensures that the 
application of the well-known Levenberg-Marquardt (L-M) 
algorithm for solving (1) has the property of quadratic 
convergence ([7]). Recently, Yamashita, and Fukushima have 
proved that under certain conditions on the local error bound, 
the L-M algorithm for solving nonlinear equations also has the 
property of quadratic convergence. These conditions on local 
error bound are weaker than the non-singularity of the Jacobian 
matrix ([8]). This motivates us to transform (1) into a nonlinear 
equation, and to establish the error bound for (1).  With the 
establishment of an error bound of a residual function from (1), 
we propose a new algorithm and prove its quadratic 
convergence, thereby overcoming the drawbacks of the above 
mentioned algorithms on convergence. 

II. PRELIMINARIES  

In this section, we mainly give a result on the error bound 
for (1) ([10]), which play a key role in the establishment of the 
nonlinear equation and in the proof of the convergence of the 
proposed algorithm. 

Assumption 1 Let : n nf R R be a uniform P function, 

i.e., there exists a constant 0  such that 

2

1
|| ||max{( ) [ ( ) ( )] } , , .n

i i
i n

x yx y f x f y x y Rm
£ £

³ -- - " Î  

Theorem 1 Assume that the mapping : n nf R R in (1) is 

a uniform P function, and is Lipschitz continuous. Then there 

exist constant 
1 0,   and

* *x X for any
nx R , such that 

*

1|| || || min{ , ( )}|| .x x x f x                                                 (2) 
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III.  ALGORITHMS AND CONVERGENCE  

In this section, we first transform (1) into a nonlinear 
equation, and then give another type of error bound for (1). 
Based on this, we give the new algorithm for solving (1) and 
establish its property of quadratic convergence, overcoming the 
drawbacks of requiring the non-singularity of the Jacobian 
matrix at the solution or the existence of a non-degenerate 
solution. 

We transform（1）into a nonlinear equation via Fischer 

function ([11]) 2 1: R R  2 2( , ) , , .a b a b a b a b R       

This function has the property ( , ) 0a b   0,a  0,b  

0.ab  For any 2( , ) ,a b R  Fischer function also has the 

following property ([12]) 

 (2 2) | min{ , }| | ( , ) | (2 2) | min{ , }| .a b a b a b     (3) 

For any vectors , na b R , we define the following vector-

valued function
1 1 2 2( , ) ( ( , ), ( , ), , ( , )) ,T

n na b a b a b a b      (4) 

Where 
1 2 1 2( , , , ) , ( , , , ) .T T

n na a a a b b b b    Obviously,  

( , ) 0 0, 0, 0.Ta b a b a b     
 

With (2), (3) and Theorem 1, we can easily prove the 
following result. 

Theorem 2  If the mapping : n nf R R in (1) is a uniform 

P function, and is Lipschitz continuous， then there exist 

constant
2 0,  and 

* *x X for any
nx R , such that   

*

2|| || ( , ( )).x x x f x    

Function（4）is not smooth. In order to give a smooth 

algorithm with the property of quadratic convergence, we give 
also the following smooth Fisher-Burmeister function 

2 1: R R   2 2 2( , ) 2 ,a b a b a b       where 0  is 

a smooth parameter.  For ease of presentation, let 

1 1 2 2( , ) ( ( , ), ( , ), , ( , ))T n

n ny z y z y z y z R         , 

We define the following vector-valued function 

: (0, ) (0, )n nF R R     ，
( , ( ))

( , ) :
x f x

F x




 
  
 

 

and real-valued function 1: nf R R   

          2( , ) : ( , ) ( , ) || ( , ) || .Tf x F x F x F x      (6) 

Obviously, * * *( ,0)x X x   ( , ) 0F x  

.In the following, we give the algorithm for solving 

( , ) 0F x   , and denote the solutions of ( , ) 0F x   by 
*.  

First, we give some properties of function ( , )a b ([13], [14])

． 

Lemma 1 Function ( , )a b has the following properties： 

(i) Function ( , )a b is continuously differentiable on

2 (0, )R   ; function ( , )a b is strongly semi-smooth on 

2( , , ) [0, )a b R    that is, 

2

( ) ( , ) ( , ) ( , , ) (|| ( , , ) || )Ta a b b a b V a b O a b                

 Where  
( ) ( , ),V a a b b      and ( , , )a b    0,  

  is the Clarke generalized gradient of   ([15]) ． 

(ii) For any 2( , , ) (0, ),a b R     we have  

0| ( , ) ( , ) | 2 .a b a b     

For (5), using Lemma 1, we have the following result. 

Theorem 3 Function ( , ) 0F x   has the following 

properties: 

(i)Function ( , )F x  is continuously differentiable on 

(0, )nR  

semi-smooth, i.e., for any ( , ) [0, ),nx R    there exist  

1 20, 0L L  and 
1 0b   such that 

1|| ( , ) ( , ) || || ( , ) ||,F x x F x L x                        (7) 

2

2|| ( , ) ( , ) ( , ) || || ( , ) || ,TF x x F x V x L x              

                                         (8) 

1 1( , ) (0, ) : {( , ) [0, ) ||| ( , ) || , 0},nx N b x R x b                    

Where ( , ),V F x x     ( , )F x  is the Clarke 

generalized gradient of ( , ).F x   

(ii) From Theorem 2, for a solution * *( ,0)x  , there exist 

a neighbourhood * *

2(( ,0), )N x b   of *( ,0)x and a constant

1 0c  , such that for any *

2( , ) (( ,0), )x N x b  , we have 

             *

1(( , ), ) || ( , ) ||,dist x c F x    (9) 

Where * *

2 2(( ,0), ) : {( , ) ||| ( , ) ( ,0) || , 0}.N x b x x x b       

Proof .  (i)  is a direct result of Lemma 1. 

(ii) From Theorem 2, there exists a constant
21 0b  , 

such that * *

3 2( , ) || ( ) ||, ( , ),dist x X x x N x b    where 

* *

2 2( , ) : { ||| || },nN x b x R x x b    and there exists
*x X , 

such that 
*( , ) || ||,dist x X x x   From Lemma 1(ii), we have 

0 0( , ( )) ( , ( )) ( , ( )) ( , ( ))x f x x f x x f x x f x        

1

2 2
0

1

( ( ( , ( ) ) ( , ( ) ) ) 2 .
s

i i i i

i

x f x x f x n  


    

Because of this, for any *

2( , ) (( ,0), )x N x b   we have 

*

3 ( , ) || || || ( , ) ( ,0) || || || || ( ) ||dist x X x x x x x x x              
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3 0 3 3|| ( , ( )) ||  (|| ( , ( )) || +( 2 1)x f x x f x n           

3( 2 1)(|| ( , ( )) || ) n x f x      

3 1 3 1( 2 1)(|| ( , ( )) || ) ( 2 1) || ( , ) ||n x f x n F x               

31( 2 1) || ( , ) || .n n F x     

In the following we give a smooth Levenberg-Marquardt 
algorithm for solving (1). 

Algorithm： 

Step 1: Select an initial point 0 ,nx R  and a parameter 

0 0    0  ． Let 0.k   

Step 2: If || ( , ) || ,k kf x     stop; otherwise, go to Step 3． 

Step 3: Choose kH , where kH is the Jacobian matrix of 

( , )k kF x  , 2|| ( , ) || .k k kF x  Let 1( , )k k k nd x R      be 

the solution of the following strictly convex quadratic 
programming 

22min || ( , ) || || ||

1
. . | |

1

k k k k

k

k

F x H d d

s t

 

 


 

 
  

Step 4: Let 1 1: , : ,k k k k k kx x x         : 1k k  , go 

to Step 2． 

In the following convergence analysis, we assume that 
Algorithm 1 generates an infinite sequence. From (7)-(9), 
combined with (14) – (15), and the proof of Theorem 2.1 ([8]), 
we can obtain the quadratic convergence rate of Algorithm 1. 

Theorem 4 Let {( , )}k kx  be an infinite sequence 

generated by Algorithm 1. If 0 0( , )x  is close to *( ,0)x  

sufficiently, then *(( , ), )k kdist x    converges to 0 

quadratically, and sequence ( , )k kx  converges quadratically to 

$ * *

2( ,0) (( ,0), / 2)x N x b I ． 

IV. CONCLUSION AND PROSPECT 

In this paper, we present a new algorithm for solving the 
equilibrium management model of supply chain, and also have 
showed that method has the quadratic convergence, the 
conditions guaranteeing the quadratic convergence in this 
paper are weaker than those in the existing resolving methods 
in  [7],  since it does not require the existence of a non-
degenerate solution of (1), nor the non-singularity of the 
Jacobian matrix at the solution of (1), 

It is uncertain whether we have that the results in this paper 

for the functions which contain the P functions discussed in 
this paper, this is a topic for further research.  
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