
(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.5, 2011

97 | P a g e

www.ijacsa.thesai.org

Test Case Generation For Concurrent Object-Oriented

Systems Using Combinational Uml Models

Swagatika Dalai

School of Computer Engineering

KIIT University

Bhubaneswar

Arup Abhinna Acharya

School of Computer Engineering

KIIT University

Bhubaneswar

Durga Prasad Mohapatra

Department of Computer Science

Engineering

National Institute of Technology

Rourkela

Abstract—Software testing is an important phase of software

development to ensure the quality and reliability of the software.

Due to some limitations of code based testing method, the

researcher has been taken a new method to work upon UML

model based testing. It is found that different UML model is

having different coverage and capable of detecting different

kinds of faults. Here we have taken combinational UML models

to have better coverage and fault detection capability. Testing

concurrent system is difficult task because due to concurrent

interaction among the threads and the system results in test case

explosion. In this paper we have presented an approach of

generating test cases for concurrent systems using combinational

UML models i.e. sequence diagram and activity diagram .Then a

Sequence-Activity Graph (SAG) is constructed from these two

diagrams. Then that graph is traversed to generate test cases

which are able to minimize test case explosion.

Keywords-Software Maintenance; Regression Testing; Test case

Prioritization.

I. INTRODUCTION

Software testing plays a vital role in System Development
Life cycle. It is an investigation which is to be conducted to
provide information about the quality of the product.
According to IEEE testing is “the process of exercising or
evaluating a system or system components by manual or
automated means to verify that it satisfies specified
requirements”. In other words testing is a process of gathering
information by making observation and comparing them to
expectations. The facts like the primary objective and the risks
of software implementation are provided by software testing.
Testing is not only meant for finding the bug in the code, but
also it checks whether the program is behaving according to the
given specifications and testing strategies [1]. If the software
does not perform the required and expected result then a
software failure is occurred. Therefore maximum of software
development effort is being spent on testing. Generally the
Testing process consists of three things: i) test case generation
ii) test case execution iii) test case evaluation. The test case
generation process plays a vital role among the three cases. The
test case consists of three things i.e. input to the system, state of
the system and the expected output from the system. If the test
case detects maximum number of faults with minimum number
of test cases then it is said to be having good coverage. During
the software development process software testing can be

implemented at any time. But the testing is implemented after
all the requirements are defined and the coding process is over.
But Code based testing having certain disadvantages which are
as follows:

 Code based testing is not capable of extracting the
behavioural aspects of the system.

 Code based software testing is not suitable for
component based software development, because the
source code may not be available to the developer.

An alternative approach is to generate test cases from the
models which represent the software. It has the specific feature
that the testing techniques can be applied throughout the
development process depending on the requirement
specification and design models. Another advantage of model
based testing is that the generated test data is independent of
any particular implementation of design. The model based
testing reduces the testing time and effort.

Therefore now the researchers have used the analysis and
design models like Unified Modelling Language (UML) for
test case generation. UML models are very popular because
UML is a solution of standardization and utilization of design
methodologies. Another advantage of UML models is that it
provide different diagram for representing different view of
system models.

Concurrent computing is a property of systems in which
several computations are executing simultaneously and also
interacting with each other. Testing a concurrent system is a
very difficult task because this type of system can reveal
different responses depending upon different concurrency
condition.

A concurrent system may be implemented via processes
and/or threads. Due to concurrency a major problem arises
known as explosion of test case because of the possibility for
arbitrary interference of concurrent threads. These threads are
executing relatively independently. However, since they are
acting towards some goal, they must need to communicate and
coordinate. So, issues arise while testing the concurrent system.
In case of object oriented system objects interact with each
other to accomplish task. While objects are interacting with
each other there may be arbitrary interference of concurrent
threads. Each thread may have more than one activity which

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.5, 2011

98 | P a g e

www.ijacsa.thesai.org

may be dependent on each other; that may be inter thread
dependency or intra thread dependency. Due to these problems
there issues like Communication deadlock and synchronization
may arise.

In this paper, we propose an approach for generating test
cases using combinational UML diagram. In our approach we
have taken the combination of sequence and activity diagram
which are then traversed to generate the optimized test suite.

The rest of the paper is organized as follows: Section II
describe the related work. The Basic concepts are described in
section III. Analysis of our proposed methodology is discussed
in Section IV. Section V contains the Conclusion and Future
work.

II. RELATED WORK

Sarma et al. [2] proposed a method for generating Test
cases from UML Sequence Diagram (SD). In this technique the
author first derive different operation scenarios from the
Sequence Diagram. Here operation scenario means the set of
messages that are flows between different objects. Based on
this Scenario an intermediate format is constructed known as
Sequence Diagram Graph (SDG). The state of the object
changes when a message flows from one object to other. Here
the author represents each state as a node and also assign an
edge between the nodes. Here the graph has two ends i.e. one
for true condition and other for false condition. Then the graph
is traversed using graph traversal algorithms i.e. BFS and DFS.
By applying All Sequence Message Path Criterion the author
has find out all the possible message paths from the starting
node to the end node. After traversal some test case are
generated which are able to detect the operational faults as well
as interaction faults.

Kim et al. [3] proposed a method to generate test cases
from Activity Diagram (AD). The author first convert the
Activity Diagram into an intermediate format known as called
I/O explicit Activity Diagram (IOAD). In this diagram the
author has suppressed the non-external input and output. He
has only represented the external input and output as the
internal activities are less important than the external activities
to avoid test case explosion. Then an directed graph is being
constructed using the basic path coverage criterion. After that
the graph is traversed using DFS algorithm. Finally a set of
basic paths are derived to generate the test cases.

Samuel et al. [4] proposed a method to generate the Test
Sequences from UML 2.0 Sequence Diagram. In this approach
the author first find out the different types of relationship like
indirect message dependency, direct message dependency,
simple indirect message dependency, simple direct message
dependency that exists between the messages. Depending on
the relationship different message sequences are generated and
a graph is constructed known as Sequence Dependency Graph
(SDG).Here each node in the SDG represent a message or a set
of messages. Here the author associate node with the message
number. Finally the SDG is traversed to generate the test cases.

The author Khandai et al. [5] proposed a method to
generate test cases from UML 2.0 Sequence Diagram. To
represent the complex scenarios she has used the Combined

Fragment (CF). By applying some mapping rule In this
approach first the Sequence Diagram (SD) is transformed into
an intermediate form called Concurrent Composite Graph
(CCG) to represent different scenario and their flow. Then the
CCG is traversed using Message Sequence Paths Criteria
(MSPC) to generate the test cases. The test cases are useful for
detecting scenario, interaction as well as operational faults.

Sarma et al. [6] proposed a method for generating test cases
from combination of UML models i.e. Sequence diagram (SD)
and Use case Diagram (UD). In this approach first of all SD is
converted into Sequence Diagram Graph (SDG). Then the UD
is converted into Use case Diagram Graph (UDG.)In the UDG
each actor is represented as node in the graph and assigns some
edges between the nodes. Then the SDG and the UDG are
combined to form a graph called as System Testing Graph
(STG). Then STG is being traversed to generate the test cases.

The author Sun et al. [7] proposed a transformation-based
approach to generate scenario oriented Test cases from UML
Activity Diagram. The approach consists of three basic steps:
First the UML Activity Diagram is transformed into an
intermediate representation known as Binary Extended AND
OR Tree (BET) via a set of transformation rule. The
transformation rule is applied on different types of nodes like
Fork node, Join node, Branch node and Merge node. Then the
author applied an algorithm on the intermediate format to
generate the Extended AND OR Tree. After that the tree is
traversed using DFS algorithm to generate a set of test
scenario. Finally from the test scenario a set of test cases are
derived. The proposed this method for testing the concurrent
system.

Kundu et al.[8] proposed an approach to generate test cases
from UML Activity Diagram(AD). Then the AD is converted
into an intermediate format known as Activity Graph (AG) by
applying some transformation rules. The AG is traversed using
BFS and DFS algo. BFS algorithm is used traverse all the
concurrent activities and the rest are traversed by using DFS.
Here the author uses the Activity Path Coverage Criterion to
generate different Activity Paths.

Fan et al. [9] proposes a method for generating test cases
from sub activity diagram to compound activity diagram in a
hierarchical manner. They introduce the idea of this method by
taking the thought of functional decomposition, bottom-up
integration testing strategy and round-robin strategy.

Khandai et al. [10] proposed a method to generate test cases
from combinational UML models such as Sequence Diagram
(SD) and Activity Diagram (AD). In her approach AD is
converted into an intermediate format known as Activity Graph
(AG). After that test sequences are generated from AG by
applying Activity Path Coverage Criteria. Then SD is
converted into Sequence Graph (SG) and the test sequences are
generated by applying All Message Path Coverage Criterion.
For having better coverage and high fault detection capability
the author constructed a Activity Sequence Graph (ASG)
which has the combine features of AG and SG. Finally the
ASG is traversed to generate the test cases.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.5, 2011

99 | P a g e

www.ijacsa.thesai.org

III. BASIC CONCEPTS

UML Models

a) Sequence Diagram

The Sequence Diagram is a type of interaction diagram that
is used for dynamic modelling which focuses on identifying the
behaviour within the system. It represents object interaction
arranged in a time sequence. These diagrams are used to
represent or model the flow of messages, events and actions
between the objects or components of a system. Sequence
diagrams are typically used to describe the object-oriented
system. It describes the objects and classes involved in the
scenario and also the sequence of messages exchanged between
the objects to carry out the functionality of the scenario.

b) Activity Diagram

An UML Activity Diagram is suitable for representing
concurrent interaction among multiple threads. An Activity
Diagram describes how multiple objects collaborate to do a
specific set of operation. The basic elements of Activity
Diagram are activity and transition. Activity is used as a state
for doing something and the transition is represented as a
directed line which connects different activities. A transition
can be message flow, object flow or control flow. Activity
Diagram is used for both conditional and parallel behaviour.
Conditional behaviour can be denoted as a branch and a merge,
and parallel behaviour is denoted by a fork and a join.

c) Concurrent System

In a Concurrent System different programs or threads are
represented as collections of interacting computational
processes that may be executed in parallel. The execution of
threads begins from fork node and ends at join node. The main
limitations in designing concurrent program to ensure the
correct sequencing of the interactions or communications
between different computational processes and coordinate the
access to shared resources.

d) Activity path coverage criteria

This coverage criterion is used for both loop testing and
concurrency among activities of activity diagrams. Here in this
coverage criterion precedence relationship is maintained. An
activity path is a path that allows a loop maximum two times
and also maintains precedence relationship between different
concurrent and non-concurrent activities.

IV. PROPOSED METHODOLOGY

We have proposed a methodology whose model diagram is
shown in Fig. 1. The model has been proposed for generating
test cases for concurrent system. In our approach we have
presented an approach to generate test cases for concurrent
system using combinational UML models. Here we have used
the combination of Sequence diagram and Activity diagram. In
a concurrent system several computations are processed
simultaneously and also potentially interacting with each other.

Figure 1. A Frame work of our proposed methodology

In our approach we have taken a sequence diagram and an
activity diagram. From these two diagrams we have
constructed a graph named as Sequence-Activity graph (SAG)
by using an algorithm named as sequence-activity graph. Then
the SAG is traversed using graph traversal algorithm i.e. BFS
and DFS to generate test cases.

The resultant shows that the generated test cases are being
capable of addressing the issue like test case explosion as we
are dealing with concurrent system.

Concurrent computing is a form of computational process
in which processes are designed as a collection of interacting
computational processes that are executed in parallel. Here we
have taken the sequence diagram because by using sequence
diagram we can provide a dynamic view of the system in a
graphical manner to display how the messages are passed
between the objects at run time in order to perform tasks. Here
we are dealing with concurrent system. Software testing is
especially very much difficult when a system contains
concurrently executing objects.

For this we have taken the activity diagram as the activity
diagram is very much suitable for concurrent system as the
activity diagram is capable of showing the parallel execution of
different activities in a concurrent system.

Testing a concurrent system is a difficult task due to the
arbitrary interference of different threads. Each thread may
have more than one activity. Activities present in same thread
maintain partial order relationship which shows dependency
called as Intra thread dependency. Also activities of different
thread may be dependent on each other called as Inter thread
dependency.

Due to these types of dependency some critical situation
arises during message passing which leads to a communication
deadlock and also it causes test case explosion. So our
objective is to minimize the test case explosion while
generating the test cases.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.5, 2011

100 | P a g e

www.ijacsa.thesai.org

Our approach consists of the following steps:

1) Construction of a Sequence Diagram (SD) and an
Activity Diagram (AD).

2) Maintaining a Sequence Table (ST) with different
schema as Source object(SC), Destination object(DO),
Message ID(MI) and Message Content(MC) by taking
the information from SD.

3) Then construction of Sequence-Activity Graph (SAG)
by combining the features from SD and AD.

4) Finally traversal of SAG to generate test cases.

Example of Sequence diagram and Activity diagram

In this section we have presented the dummy examples of
sequence and activity diagrams. Here we have used the
Activity Diagram and Sequence diagram due to the following
reasons.

Activity diagram is suitable for representing the concurrent
activities as there is no state explosion of objects a in state chart
diagram. Activity diagram shows the sequence of activity flows
and also it represents parallel activities taken place in fork and
join node.

Sequence Diagram (SD), also known as Interaction diagram
represent the sequence of messages passed between the objects
to specify some task without leading to test case explosion.

Figure 2. Sequence Diagram

U, M, R, N, Q, P, S, T are different objects of Sequence
Diagram shown in Fig 2 . M1, M2 , M3,M4 and M5 are
different messages that are flows between the objects.

The activity diagram represents the sequence of activity
taken place. In this Activity diagram the Inter and Intra thread
dependency are present. In above diagram different objects are
like U,M,N,P,T,R,S,V are created after or before completion of
different activities.

Technique for constructing Sequence Table (ST)

We have constructed a Sequence Table(ST) by taking the
data from the Sequence Diagram as described in the
section1.1.The table is constructed with the schema as Source
object(SC), Destination object(DO), Message ID(MI) and
Message Content(MC).

TABLE I. SEQUENCE TABLE

Construction of SAG (Sequence-Activity Graph)

In this approach we propose a technique for generating
SAG by combining both the features of Sequence diagram and
Activity diagram. Whenever a transition is there we then take
the two nodes in SAG and assign an edge between them. The
nodes shown in the graph may be the Object node or Activity
node. More no of threads are present in the Activity diagram in
concurrent system. The activities present in different threads
may be dependent on each other which are called as Inter
thread dependency. The objects are created after activities are
being taken place and communicating with each other by
passing message among them. In the graph Inter thread
dependency is represented by dashed arrows.

Node Representation of SAG

To represent a node in the graph two types of lists are
required i.e. node list and edge list.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.5, 2011

101 | P a g e

www.ijacsa.thesai.org

Node List

Figure 3. Node Structure

Here the status field shows whether the node is a object
node or activity node. 0 means object node and 1 means the
node is an activity node. Node ID represents the unique ID of
the node and the third field represents the address of the next
node. and address of next edge shows the next adjacent node.

Edge List

Figure 4. Edge Structure

Here the Dest field describes the destination link of the
node and the Dependency Bit field describes the edge
connecting to the nodes are Intra thread or Inter thread. I is
denoted as Inter thread and O is denoted as intra thread
dependency. Link field denotes the address of the next adjacent
node of the Edge structure.

Traversal of SAG

Here we are using the graph traversal algorithm to traverse
the graph and generate the test sequences by using the activity
path coverage criteria.

Algorithm: SAG Traversal Algorithm

 Input: Sequence-Activity Graph

 Output: Set of test Sequence

1. Start.

2. Traverse the SAG using DFS.

3. While(Ncurr !=Nend) //Ncurr=Current Node

Nend=End Node

4. If(Ncurr= =Nf) //Nf=Fork Node

Then traverse the sub tree rooted at node Nf using

BFS.

5. If Node List[Status bit= =1]

Then traverse the edge list.

Else

Ncurr=Ncurr->next

6. If Edge List[Dependency bit= =0]
Then there is inter thread dependency and traverse that

activity.

 7. Go to step4.

 8. Else Ncurr=Ncurr->next

 9. End If

 10. End while

 11. Exit.

Figure 5. Sequence-Activity Graph (SAG)

After the construction of SAG we have traversed the SAG
using Graph traversal algorithm. While traversing the nodes
whenever a fork node is encountered, we will apply BFS
(Breadth first Search) algorithm and for the rest nodes we have
applied DFS (Depth First Search) algorithm in order to
generate test cases. In this approach we have used the Activity
path coverage criteria to generate test cases. After traversing
the graph some test sequences are generated which are given
below.

T1=1-2-3-4-5-6-2-3-4-5-6-34

T2=1-2-3-4-7-8-34

T3=1-2-3-4-7-9-10-11-14-12-13-15-16-17-18-19-20-21-22-

23-26-24-25-27-28-29-30-31-32-33-34

V. CONCLUSION

In this paper we have proposed an approach for generating
test cases using combinational UML diagram. In our approach
we have taken the combination of sequence and activity
diagram to construct a graph known as Sequence-Activity
Graph(SAG).The partial ordering relationship that exists due to
inter thread and intra thread communication is also included in
the approach. The SAG is then traversed to generate the
optimized test suite which minimizes the test case explosion.

VI. FUTURE WORK

The scalability of the approach is yet to be tested. A
suitable optimization technique like Genetic Algorithm or
Particle Swarm Optimization can be used to further reduce the
volume of test data to be generated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 3, No.5, 2011

102 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Rajib Mall, Fundamentals of Software Engineering, Prentice-Hall of
India Comm, New Delhi, 2007.

[2] M. Sharma, D. Kundu, and R. Mal, Automatic test case generation from
uml sequence diagram, In 15th International Conference on Advance
Computing and Communication, IEEE, pages 60-65, 2007.

[3] H. Kim, S. Kang, J. Baik, and I. Ko, Test cases generation from UML
activity diagram

[4] P. Samuel and A. T. Joseph, Test sequence generation from uml
sequence diagrams, In Ninth ACIS International Conference on
Software Engineering, Artificial intelligence, Networking, and
parallel/distributed computing, IEEE, pages 879 - 887, 2008.

[5] M. Khandai, A. A. Acharya, D. P. Mohapatro, A Novel Approach of
Test Case Generation for Concurrent Systems Using UML Sequence
Diagram, 3rd International Conference on Electronics Computer
Technology, ICECT, 2011, pages 157-161.

[6] M. Sharma and R. Mal, Automatic test case generation from uml
models, In 10th International conference on Information Technology,
IEEE, pages 196-201, 2007.

[7] C. Sun,A transformation-based approach to generating scenario-oriented
test cases from uml activity diagram for concurrent applications, In
Annual IEEE International Computer Software and Applications
Conference, IEEE, pages 160- 167, 2008.

[8] D. Kundu and D.Samanta, A novel approach to generate test cases from
UML activity diagrams, volume 8 no 3, pages 65 - 83, May-June 2009.

[9] X. Fan, J. Shu, L. Liu, and Q. Liango,Test case generation from uml
subactivity and activity diagram ,In Second International Symposium on
Electronic Commerce and Security, IEEE, pages 244 - 248, 2009.

[10] M. Khandai, A. A. Acharya, D. P. Mohapatro, Test Case Generation for
Concurrent System using UML Combinational Diagram, International
Journal of Computer Science and Information Technologies,
IJCSIT,2011, Vol.2, Issue.

AUTHOR PROFILE

Swagatika Dalai is a faculty in Kalinga Polytechnique, KIIT University,
Bhubaneswar, Odisha, INDIA. Her research areas include Object-Oriented
System Testing. Now she is a M.tech student in KIIT University. She has a
teaching experience of 5 years.

Arup Abhinna Acharya is an Assistant Professor and research scholar in
the School of Computer Engineering, KIIT University, Bhubaneswar, Odisha,
INDIA. He received his Masters degree from KIIT University Bhubaneswar.
His research areas include Object Oriented Software Testing, Software Cost
Estimation, and Data mining. Many publications are there to his credit in many
International and National level journal and proceedings. He is having eight
years of teaching experience. He is a member of ISTE.

Durga Prasad Mohapatra received his Masters degree from National
Institute of Technology, Rourkela, India. He has received his Ph.D. from Indian
Institute of Technology, Kharagpur, India. He is currently working as an
Associate Professor at National Institute of Technology, Rourkela. His special
fields of interest include Software Engineering, Discrete Mathematical
Structure, Program Slicing and Distributed Computing. Many publications are
there to his credit in many International and National level journal and
proceedings.

