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Abstract— In this paper, we report the results of new experiments 
that test the performance of Scala parallel collections to find the 
fair value of riskless bond portfolios using commodity multicore 
platforms. We developed four algorithms, each of two kinds in 
Scala and ran them for one to 1024 portfolios, each with a 
variable number of bonds with daily to yearly cash flows and 1 
year to 30 year. We ran each algorithm 11 times at each 
workload size on three different multicore platforms. We 
systematically observed the differences and tested them for 
statistical significance. All the parallel algorithms exhibited 
super-linear speedup and super-efficiency consistent with 
maximum performance expectations for scientific computing 
workloads. The first-order effort or “naïve” parallel algorithms 
were easiest to write since they followed directly from the serial 
algorithms. We found we could improve upon the naïve approach 
with second-order efforts, namely, fine-grain parallel algorithms, 
which showed the overall best, statistically significant 
performance, followed by coarse-grain algorithms. To our 
knowledge these results have not been presented elsewhere. 

Keywords- parallel functional programming; parallel processing; 
multicore processors; Scala; computational finance. 

I. INTRODUCTION  
A review of the high performance computing literature 

suggests opportunities and challenges to exploit parallelism to 
solve compute-intensive problems. [1] [2] [3]. Proponents of 
functional programming have long maintained that elaboration 
of the lambda calculus lends itself to mathematical 
expressiveness and avoids concurrency hazards (e.g., side-
effects, managing threads, etc.) that are the bane of shared-state 
parallel computing. [4] Yet parallel functional programming 
has remained largely outside the mainstream programming 
community. [5] One could conceivably argue that parallel 
functional programming was ahead of its time and the era of 
inexpensive multicore processors in which some investigators 
have observed that the “free lunch is over” since clock speeds 
have been decreasing or at least not increasing significantly, 
necessitating a turn toward parallel programming. [6]  

Enter Scala [7], a relatively new, general-purpose language 
which runs on the Java Virtual Machine (JVM) and hence, 
desktops, browsers, servers, cell phones, tablets, set-tops, and 
lately, GPUs [8] [9] [10], a related topic we do not explore here 
(see the section, “Conclusions and Future Directions”). Scala 
blends object-oriented and functional styles with shared-
nothing, task-level parallelism based on the actor model. [7] 
Parallel collections [11] [12] are recent additions that provide 

data-level parallelism [3] through a simple, functional 
extension of the ordinary, non-parallel collections of Scala. 
While the use of parallel collections has potential to improve 
programmer productivity and greatly facilitate a transition to 
parallel programming, no independent study has investigated 
whether parallel collections scale in terms of run-time 
performance on commodity hardware, taking into account 
furthermore end-to-end processing that involves I/O which is 
typically a prerequisite for and often the bottleneck of practical 
applications. 

Coleman, et al., conducted end-to-end experiments to find 
the fair value of riskless bond portfolios using task-level 
parallelism via map-reduce. [13] [14] In this paper, we take a 
new, different tack on the same problem that applies data-level 
parallelism via parallel collections. We were motivated to use 
bond portfolio analysis, first, because computational finance 
workloads can be very large. [15] Second, bond portfolio 
pricing theory is fairly transparent. [16] Finally, bonds inform 
or are closely related to other financial instruments, including 
annuities, mortgage securities, bond derivatives, and interest 
rate swaps, which are among the most heavily traded financial 
contracts in the world. [17] Thus, computational methods and 
performance results from this class of problem would likely 
have implications beyond bonds and finance. 

Indeed, the experiments with Scala parallel collections 
using eight algorithms on three different hardware platforms 
show super-linear speedup and super-efficiency are consistent 
with the maximum performance expectations for scientific 
computing workloads. While the data suggests that the more 
modern processors are also more efficient, overall fine-grain 
algorithms significantly outperform others in runtime, which 
interests and surprises us considering the presumed overhead of 
this approach. The coarse-grain algorithms are next best, 
followed by the “naïve” algorithms. The findings we report 
here using parallel collections are new and have not been 
reported elsewhere or by others. All the source code is 
available online for review, download, and testing (see section, 
“Appendix – Source Code”). 

II. METHODS 

A. Parallel collections – a primer 
Scala has standard, template data structures called 

collections, which include lists, arrays, ranges, and vectors, 
among others. Scala collections are different from the ones it 
also inherits from the Java standard library in that the Scala 
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versions are typically immutable with methods to operate on 
the data elements using functional objects. For instance, to 
multiply every element of a range collection by two using the 
map method, we have the snippet below (where “scala>” is the 
Scala interactive shell prompt): 

scala> (1 to 5).map(x => x * 2) 
Vector(2, 4, 6, 8, 10) 

Snippet 1. Maps sequential range. 
 

The parameter, x => x * 2, an anonymous function literal 
object, receives each element of the range collection as an 
immutable value parameter, x, multiplies it by two, and map 
copies the result into a new collection, Vector.  

The methods of a parallel collection as accessed in the same 
way except the method name is preceded by .par as the snippet 
below suggests: 

scala> (1 to 5).par.map(x => x * 2) 
ParVector(10, 6, 2, 8, 4) 

Snippet 2. Maps the parallel range. 
Here map invokes the function literal object on the range 

using the machine’s parallel resources. The parallel collections 
map method returns a parallel vector, ParVector, in which the 
ordering of the return results is unspecified because of the 
asynchronous nature of parallel execution. From a 
programmer’s point of view, virtually no effort is involved to 
parallelize the code. There are no new programming constructs 
to learn and apply and algorithm redesign and code refactoring 
are not demanded. There is furthermore no need to write 
special test cases to verify the results since in principle the 
serial (non-parallel) implementation is the test case. While the 
result ordering may need to be addressed, in general, parallel 
collections are a potential windfall for programmer 
productivity and transitioning to parallel programming. 

The research question is whether use of .par scales, 
enabling speed-up and efficiency on a non-trivial problem on 
commodity hardware. For bond portfolio analysis, the 
functional nature of parallel collections makes implementation 
of the pricing equations straightforward. In the “naïve” case, 
we simply reuse the pricing function object from the serial 
algorithm with no other changes to the code other than to apply 
.par, just as we did in the above snippet. However, we go 
further and explore whether we can obtain further 
improvements using fine-grain and course-grain algorithms. 

B. Pricing theory 
For purposes of this paper, we are considering only simple 

bonds [16] bi, defined by the five-tuple: 

bi = [i,C,n,T,M ]  (1) 
i is an integer which plays no part in bond pricing except to 

uniquely identify the bond in an inventory which we describe 
below; C is the coupon amount paid one or more times; n is the 
payment frequency of coupons per annum; T is the time to 
maturity in years; and M is the face value due at maturity. The 
sum of the net present value of these cash flows, C and M, is 
the fair value of the bond. Thus, the fair value, P(bi,,r), of a 

bond, bi, is the net-present value of its cash flows which 
functionally defined as: 

P(bi, r) =
C

(1+ rt )
t/n

t=1

n ×T

∑ +
M

(1+ rT )
T  

 
(2) 

The parameter, r, is the time-dependent yield curve, the 
general discussion of which is beyond the scope of this paper. 
Without loss of generality, we use the United States Treasury 
on-the-run bond yield curve, which we observe once. We 
interpolate between the tenors (i.e., Treasury maturity dates) 
using polynomial curve fitting, the coefficients of which we 
cache and apply for all bonds in the inventory. 

A portfolio is a collection instruments, in our case, bonds. 
The fair value, P(φj), of a portfolio, φj, with a basket of Q bonds 
is functionally defined as follows: 

P(φ j ) = P(bφ ( j,q), r)
q=1

Q

∑  
 

(3) 

C. Bond portfolio generation 
We generate simple bonds that model a wide range of 

computational scenarios. The goals are to 1) produce a 
sufficient number of bonds to mimic realistic fixed-income 
portfolios and 2) avoid biases in commercial-grade bonds that 
depend on prevailing market conditions. Specifically, we have 
the collections, n ={1, 4, 12, 52, 365), T


={1, 2, 3, 4, 5, 7, 10, 

30}, and δ


={0.005, 0.01, 0.02, 0.03, 0.04, 0.05}, where the 

elements of n  are payment frequencies, T


are maturities, and 

δ


 are coefficients. We derive the parameters for a bond object 
from the bond generator equations below: 

M=1000 (4a) 
n = n [•] (4b) 
T =

T [•] (4c) 

C = M / T × 

δ  [•] (4d) 

where • is an integer uniform random deviate in the range 
of [0, s-1]; and s is the size of the respective collection. We 
invoke Equations 4a - 4d a total of 5,000 times to produce the 
bond inventory, V, which we store in an indexed persistent 
database that we describe below. 

We generate a portfolio by first selecting its size, that is, the 
number of bonds, Q, per the equation below. 

Q = v+σ ×η  (5) 
η is a Gaussian deviate with mean of zero and one standard 

deviation. v and σ are configurable parameters set to 60 and 20, 
respectively. Finally, we construct a basket of size, Q, bonds 
for a portfolio, φj. We use the equation below to specify a bond 
id or primary key, 

i =•  (6) 
where • is an integer uniform random deviate in the range 

of [1,|V|] and |V|=5,000 is the size of the bond inventory. We 
generate a universe, U, of bond portfolios where |U|=100,000. 
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The bond portfolios are also store in a database indexed by j, a 
unique portfolio id. 

D. Database design 
We store the bonds, bi, portfolios, φj (which also contains 

the result of Equation 3) in MongoDB, an indexed, document-
oriented, client-server database. [18] As we noted above, φj 
does not contain bond objects, bi, but the bond primary key, i. 
In MongoDB parlance, the bonds are linked to portfolios rather 
than embedded by them.  In other words, the database is 
organized in third-object normal (3ONF) form. [19] Thus, to 
evaluate Equation 3, a total of 2+Q accesses are necessary: one 
access to fetch φj; Q fetches to retrieve each bi; and finally, one 
store to update the portfolio, φj, with its price. The figure below 
gives the class diagram, as it is stored in the document 
repository. 

 
Figure 1.  Third normal object form (3ONF) of the database 

Although this design is consistent with best practices for 
data modeling, we could reduce the number of database 
accesses at the expense of redundancy through 
denormalization. However, we decided to forgo this 
optimization in the interests of establishing a baseline of 
performance for future reference. 

E. Algorithms 
We develop two classes of algorithms: serial and parallel. 

There are three types of parallel algorithms, “naïve,” fine-grain, 
and coarse-grain. Each serial and parallel algorithm comes in 
two kinds: composite and memory-bound. The composite kind, 
represented by the notation, {io+compute}, overlaps access to 
the database while evaluating Equation 2 and Equation 3. The 
memory-bound kind, represented by the notation, 
{io}+{compute}. In other words, we measure I/O ({io}) and 
compute ({compute}) runtimes separately, first caching all the 
bonds by portfolio into memory and only then evaluating 
Equation 2 and Equation 3. I/O ({io}) and compute 
({compute}) runtimes furthermore provide insight into the 
maximum compute and IO performance potentials. In each 
case, the algorithms evaluate the same collection of portfolios, 
U’⊂U, which has been randomly sampled from the database. 
We give here only snippets from the source code. See the 
appendix to access the complete source. 

F. Serial algorithms 
We invoke the composite serial algorithm as the snippet 

below suggests. 
val outputs = inputs.map(price) 

Snippet 3. Maps input of randomly sampled portfolio key ids to price results 

The object, inputs, is a collection of portfolio ids and 
outputs is a collection of portfolio prices. (The “val” 

declaration means that outputs is an immutable value object.) 
The parameter, price, is a named function object with the 
declaration: 

def price(input: Data): Data 
Snippet 4. Price the collection of randomly sampled portfolio ids serially 

This means price receives a Data object as an input 
parameter and returns a Data object. We wrote the Data object 
for use by all the algorithms of this study. It contains the 
portfolio id, a list of bonds, and a result object which itself 
contain the portfolio price and diagnostic information about the 
run. On input in this case, the Data object has set only the 
portfolio id. On output, Data has the portfolio id and the result 
object defined. 

The function object, price, accesses the 3ONF repository to 
retrieve a portfolio by its id and then retrieve the bond objects, 
pricing them according to Equation 2, then according to 
Equation 3 summing the prices using the foldLeft method. (For 
readers who may be unfamiliar with functional programming, 
“folding” is a common operation in functional programming 
for aggregating elements. The foldLeft method is a serial 
aggregator, traversing the collection, left-to-right, that is, from 
the element at index zero to the element of the last index. The 
analogous foldRight traverses the collection from right-to-left 
using tail-recursion. We prefer foldLeft as opposed to 
foldRight to avoid the problem of stack overflow.) 

The serial memory-bound algorithm is virtually identical to 
the composite algorithm as the snippet below suggests. 
val inputs = loadPortfsFoldLeft(n) 
val outputs = inputs.map(price) 

Snippet 5. Serially load the bonds in memory, then price portfolios serially 

The method, loadPortfsFoldLeft, loads a random sample of 
n portfolios from the database and uses foldLeft to aggregate 
the corresponding bonds. Thus, in this case, the inputs value is 
a collection of Data objects, each containing a list of bond 
objects. The parameter, price, is a function object, the same one 
used in the composite serial algorithm. 

G. Naïve algorithms 
The naïve algorithms are so-called because, as a first-order 

effort, they “naively” use .par. They are virtually identical to 
the serial algorithms. That is, we have the snippet below for the 
composite case. 

val outputs = inputs.par.map(price) 
Snippet 6. Price the collection of randomly sampled portfolio ids in parallel 

We have the snippet below for the memory-bound kind. 

val inputs = loadPortfsParFold(n) 
val outputs = inputs.par.map(price) 

Snippet 7. First, load the bonds into memory in parallel by portfolio id, then 
prices the portfolios in parallel 

Notice that the memory-bound kind uses loadPortfsParFold 
(i.e., rather than loadPortfsFoldLeft), which accesses the 
database and loads the portfolios in parallel using a parallel 
collection. It uses Scala’s par.fold method. This method 
aggregates like its serial version, foldLeft, except par.fold does 
so in parallel with non-deterministic ordering.  

Portfolio 

-id: Int 
-bondIds: List[Int] 
-price: Double 

Bond 

-id: Int 
-freq : Int 
-coupon: Double 
-tenor: Double 
-maturity: Double 

1..n * 
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#999 #5 

query query 

++ ++ 

++ 

List[Data]( ) 

List[Data(17,List(SimpleBond(12,…)),…] 

… 

 
Figure 2.  Parallel IO query-merge tree using the par.fold method  

The figure above shows how loadPortfsParFold works. 
Namely, we start with an empty List collection. Here for the 
sake of demonstration, portfolios, #999 and #5, are being 
loaded into memory from the database by the “query” 
operation. The “++” nodes are binary operations that merge 
partial lists of bond objects until a complete list is merged at 
the root in O(log N) time. At the top of the merge tree we have 
the fully merged in-memory List collection of portfolio data 
objects. In this depiction, the value, 17, represents a portfolio id 
chosen for demonstration purposes. Thus, the outer list contains 
portfolio data objects, each of which contains a list of bond 
objects. Note that this parallel memory-caching algorithm is 
not “embarrassingly parallel” as the data lists must be merged.  

H. Fine-grain algorithms 
In a second-order effort to improve the naïve application of 

.par, we developed fine-grain algorithms, composite and 
memory-bound kinds. Unlike the naïve algorithm, the fine-
grain algorithm uses a parallel collection within the pricing 
function object. In other words, we have a parallel collection 
within a parallel collection. 

The inner parallel collection has a bondPrice function 
object to price the bonds by their id (i.e., it makes a query to 
the database) per Equation 2 using par.map and a sum function 
object to reduce (i.e.., accumulate) the bond prices in parallel 
using par.reduce. In effect, we have the snippet below of the 
price function. 
val output = input.bondsIds.par. 
    map(bondPrice).par.reduce(sum) 

Snippet 8. Price bonds in parallel by their ids then reduce prices in parallel. 

Bond prices flow directly to their reduction in an O(log N) 
processing tree. Thus, like parallel I/O, the workload is not 
“embarrassingly parallel” as the figure below suggests. 

The memory-bound algorithm is similar except, it uses the 
parallel IO query-tree to access the database and cache the 
bonds in memory. 

 
b0 

b1 

bq-1 

. . . 

bondPrice 

bondPrice 

bondPrice 

sum 

sum 

sum 

sum 

sum 

… 

portfPrice 

Equation 2 Equation 3 

 

Figure 3.  Accessing and pricing bonds then reducing prices in parallel. 

I. Coarse-grain algorithms 
The other algorithms created a parallel collection of input 

portfolios whose size was independent of the number of 
processor cores. The idea of the parallel coarse-grain algorithm 
is to “chunk” the portfolios as a second-order effort to the naïve 
application of .par. That is, we create a parallel collection 
whose size is proportional to the number of processors. 

The design of parallel collections does not provide a direct 
way to bind the pricing function to a core. This is part of 
parallel collections design philosophy: the programmer focuses 
on the functional specification and the parallel collection 
distributes it across the cores. 

Nevertheless, the programmer can control the chunk size by 
making the input collection a List of a List of portfolio ids. For 
example, for a four-core platform like the W3540 we study, the 
containing List has eight List elements.  

Each element has |U’|/c portfolios where c is the number of 
cores. For u=1024 portfolios, each element in the containing is 
a List of 128 portfolios. The pricing function object is then 
passed this list with 128 portfolios, which it processes serially 
to evaluate Equation 2 and Equation 3.  

To compute the size of the contained List, we use the Java 
class, Runtime. It has a method, availableProcessors( ). 
However, this method returns the number of hyperthreads, not 
the number of cores. As far as we know there is no way to get 
the number of core except manually from the OEM datasheets, 
which we rely on for calculating the efficiency (see below). 
Otherwise, programmatically we use the Runtime class.  

The coarse-grain composite algorithm loads the bond 
objects by portfolio just as the naïve algorithm except it does in 
“chunks” on-demand. The memory-bound algorithm, like its 
naïve and fine-grain counterparts, uses the parallel IO query 
tree to cache the bonds in memory. 

III. EXPERIMENTAL DESIGN 

A. Environment 
The test environment consisted of three hardware platforms 

of different Intel multicore processors. The table below shows 
the system configurations, with the clock speed in GHz and 
years of introduction by the Intel Corporation. 
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TABLE I.  EXPERIMENTAL ENVIRONMENT 

CPU Clock Cores Threads RAM Year 
W3540 2.93  4 8 4 GB 2009 

i7-2670M 3.20  2 4 4 GB 2011 
i3-370M 2.40  2 4 2 GB 2010 

 
All platforms run Microsoft Windows 7. The code was 

compiled by Eclipse 3.7.1 using the Scala IDE plugin version 
2.0.0. The code was executed with the 64-bit JVM. We used 
MongoDB, version 1.8.3. Although MongoDB is accessed 
through TCP/IP, the database server runs on the same host as 
the Scala code. We indexed the portfolios and bonds 
documents on their key ids. 

B. Runs and trials 
We instrument the code and make the following 

measurements. 

TABLE II.  MEASUREMENTS SOURCES 

# Algorithm kind Measurement (T) 
1 Composite {io + compute} 
2 Memory-bound {io} 
3 Memory-bound {compute} 
4 Memory-bound {io} + {compute} 

 
For each algorithm by its kind in Table 2, we make a total 

of 11 trial invocations of the code to obtain stable run-time 
statistics following. [20] Each trial starts a new JVM, the code 
of which allocates new JVM objects and opens new database 
connections. The trial ends when the algorithm ends and the 
code exits, terminating the JVM, which closes the database 
connections and causes the operating system to recycle the 
JVM objects. A given set of trials, taken together, we call a 
run. There is a run for u=2x portfolios (i.e., the problem size) 
where x∈[0..10]. The run, u=1024, is we call the terminal run. 
Note: #4 in Table 2 is not an actual run; it is derived by adding 
the measurements for #2 and #3 for the respective runs. For 
each run at a given problem size, we analyze the measurements 
for statistical significance as we describe below. We also graph 
the run-times using the median value of the run. 

C. Speed-up and efficiency calculations 
T1 is the serial time of a serial algorithm. TN is the time 

using parallel collections. 

Given T1 and TN where N is the number of cores, we have 
the speedup, R: 

R = T1 /TN  (8) 
The efficiency, e, is  

e = R / N  (9) 
In this case, N is the number of cores, which we got from 

the OEM datasheets online. [21] [22] [23] 

D. Statistical significance calculations 
After obtaining the runtimes, we observe the differences 

and test them for statistical significance in the indicated 
direction. That is, if the median runtime of algorithm, A, is less 
than the median runtime of algorithm, B, we have the null 
hypothesis H0:  

H0 :E(T
A ) ≥ E(T B )  (10) 

where E is expectation. To conservatively estimate the p 
value, we used the one-tailed Mann-Whitney test. [24] We 
report (see the appendix) the rank sum statistic, S, 

S = R(Ti )∑  (11) 

where R(Ti) is the rank of runtime, Ti. Since there are 11 
observations for each algorithm, the one-tailed threshold for 
p=0.05 is the rank sum, S.05=101. This value can be found in 
Table A7 in [24]. Thus, for S < S.05, we reject H0. 

We compare each of our eight algorithms relative to one 
another and test the differences for statistical significance. To 
make the report more accessible, we give the frequency count 
for the number of times an algorithm is found to be statistically 
significantly faster than another algorithm. Again, the rank 
sums, S, algorithm by algorithm for each hardware platform, 
can be found in the appendix. 

We present graphical evidence for performance over the 
range of u mentioned above for each algorithm on each 
platform. We assess the statistical significance and present 
tabular data only for the terminal run, u=1024. 

IV. RESULTS 
The table below gives the kind of algorithms symbolized in 

the graphs and tables that follow. 

TABLE III.  KIND OF PROCESSING 

¿ Composite 
� Memory-bound 
Ú Compute-only 
r IO-only 

A. Naïve results 
The results for the naïve treatments are summarized in the 

next three graphs, one for the W3540, i7, and i3, respectively.  

The number of portfolios or problem size, is u=2x. 

The speedup, R, is on the left axis, and the efficiency, e, is 
on the right axis. 

 
Figure 4.  W3540 naïve results 
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Figure 5.  i7 naïve results 

 
Figure 6.  i3 naïve results 

The table below gives the terminal run results. TN is the 
median run-time in seconds. 

TABLE IV.  TERMINAL RUN, U=1,024, BOND PORTFOLIOS 

W3540 i7 i3 
 TN R TN R TN R 

¿ 14.80 4.37 19.36 2.46 23.19 3.00 
� 12.39 4.95 16.93 2.63 24.17 2.75 
Ú 8.74 5.66 13.90 2.76 18.74 2.95 
r 3.52 2.49 3.07 1.89 5.39 2.13 

 

Note: In general, the median operator does not distribute. 
Namely, median({io} + {compute}) ≠ median({io}) + 
median({compute}). For example, for the W3540, TN({io} + 
{compute}) = 12.39 whereas TN({io}) + T({compute}) = 8.74 
+ 3.52 = 12.26. 

B. Fine-grain results 
The results for the fine-grain algorithms are summarized in 

the next three graphs, one for the W3540, i7, and i3, 
respectively. 

 
Figure 7.  W3540 fine-grain results 

 
Figure 8.  i7 fine-grain results 

 
Figure 9.  i3 fine-grain results 
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TABLE V.  FINE-GRAIN TERMINAL RUN, U=1,024, BOND PORTFOLIOS 

 W3540 i7 i3 
 TN R TN R TN R 

¿ 10.42 6.21 17.53 2.72 22.24 3.13 
� 12.29 4.99 17.00 2.62 23.98 2.78 
Ú 9.04 5.79 13.81 2.78 18.58 2.98 
r 3.58 2.45 3.06 1.90 5.30 2.17 

C. Coarse-grain results 
The results for the coarse-grain algorithms are summarized 

in the next three graphs, one for the W3540, i7, and i3, 
respectively. Note that the algorithms are not defined for 
portfolios less than the number of hyper-threads. 

 
Figure 10.  W3540 coarse-grain results 

 
Figure 11.  i7 coarse-grain results 

 
Figure 12.  i3 coarse-grain results 

The table below gives results for the terminal run. 

TABLE VI.  COARSE-GRAIN TERMINAL RUN, U=1,024, BOND PORTFOLIOS 

 W3540 i7 i3 
 TN R TN R TN R 

¿ 14.18 4.56 18.01 2.64 22.73 3.06 
� 12.07 5.08 16.84 2.65 23.50 2.83 
Ú 8.44 6.20 16.84 2.28 18.28 3.03 
r 3.61 2.43 3.03 1.92 5.16 2.23 

D. Statistical significance results 
The table below gives the counts in which an algorithm is 

statistically significantly faster than another algorithm and 
kind. The details underlying this table are in the appendix, 
“Sorted Rank Sums.” 

TABLE VII.  STATISTICALLY SIGNIFICANTLY COUNTS MEASURED BY 
FASTER RUNTIMES 

Kind Algorithm W3540 i7 i3 Totals 
¿ Serial 0 0 0 0 

Naive 2 2 2 6 
Fine 4 3 2 9 

Coarse 2 2 2 6 
� Serial 1 1 1 3 

Naive 3 2 2 7 
Fine 2 2 6 10 

Coarse 2 2 6 10 
 Totals 16 14 21  

 
To read the above table, choose the kind of algorithm 

(composite vs. memory-bound) and read across for type of 
algorithm. For example, the composite serial algorithm ran 
slower than every other algorithm on the W3540, i7, or i3 
platforms.  
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Hence, there are zero (0) values across the composite serial 
row. The memory-bound naive algorithm ran faster than three 
algorithms on the W3540 and two algorithms the i7 and i3, 
respectively. The memory-bound serial algorithm 
outperformed one algorithm on each platform: these slower 
algorithms were the composite serial algorithms. Evidently 
loading on all the portfolios into memory significantly 
improves even the serial performance. 

See the appendix, “Sorted Rank Sums” for the specific 
counts. 

V. DISCUSSION 
The graphs, Figures 4 – 11, show that for larger problem 

sizes, u, the composite and memory-bound algorithms 
performed better than I/O processing alone which is the least 
efficient but worse than compute by itself which is the most 
efficient. The slopes of these graphs generally point toward 
increasing speedup and efficiency for larger u. 

Tables IV – VI show evidence for high levels of overlap 
between compute and I/O. For instance, the ratios of 
T{compute} /T {io + compute} and T{compute} / 
(T{io}+T{compute}) found in these tables are often around 
80% or higher.  

Table VII nevertheless indicates that the memory-bound 
algorithms tend generally to give statistically significant better 
runtimes compared to the composite algorithms. In other 
words, caching the portfolios in memory upfront seems to give 
better performance than loading them, as they are needed. 

Table VII also suggests that the algorithms on a given 
platform tend to run with significantly more efficiency on the 
i3 across all the algorithms, followed respectively by the 
W3540 and the i7. 

Finally, the data in Table VI show the fine-grain algorithms 
give statistically significantly better runtimes followed 
respectively by coarse-grain and the naïve algorithms across 
different platforms.  

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
This study has found that bond portfolio analysis using 

parallel collections achieve super-linear speedup and super-
efficiency with as few as u=64 portfolios across different 
multicore processors. The data suggests that the “naïve” 
application of parallel collections can be improved 
significantly, foremost with the fine-grain algorithm, which we 
find interesting. That is, portfolio analysis is “embarrassingly 
parallel,” but not for the fine-grain or the I/O parallel 
algorithms which contain inherent dependencies that 
necessitated the use of parallel merge-trees. 

The data points toward greater speed up and efficiency for 
larger problem sizes, u>1024. The terminal run analyzed only 
about 1% of the portfolios. Additional research could consider 
how to harness multiple hosts and/or GPUs to price all 
portfolios.  

Future work might also compare and contrast map-reduce 
versus parallel collections as well as possibly consider how to 
improve the I/O performance.  
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APPENDIX -- SORTED RANK SUMS 
The three tables below give the sorted rank sums of 

runtimes according to Equation 12 for the terminal (u=1,024) 
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run. Algorithm A which has the smaller median runtime 
compared to algorithm B. Smaller rank sums (S) imply greater 
statistical significance. Since there are 11 trials for each 
algorithm, the minimum rank sum is S=1+2+3…11=66 (i.e., all 
runtimes of algorithm A are less than the runtimes of algorithm 
B). In this case, p < 0.001. The threshold for statistical 
significance is S<101 in which p ≤ 0.05. Comparisons that are 
not statistically significant are not included in the tables and by 
implication tables with more rows imply cores with greater 
performance. 

TABLE VIII.  W3540 RANK SUMS (S) ALGORITHM A(KIND) Í B(KIND) 

S Algo A Kind Algo B Kind 
66 Naive composite Serial composite 
66 Naive mem-bound Serial composite 
66 Naive composite Serial mem-bound 
66 Naive mem-bound Serial mem-bound 
66 Fine composite Serial composite 
66 Fine mem-bound Serial composite 
66 Fine composite Serial mem-bound 
66 Fine mem-bound Serial mem-bound 
66 Coarse composite Serial composite 
66 Coarse mem-bound Serial composite 
66 Coarse composite Serial mem-bound 
66 Coarse mem-bound Serial mem-bound 
89 Fine composite Naive composite 
96 Serial mem-bound Serial composite 
98 Fine composite Coarse composite 

100 Naive mem-bound Naive composite 

TABLE IX.  I7 RANK SUMS (S) ALGORITHM A(KIND) Í B(KIND)  

S Algo A Kind Algo B Kind 
66 Naive composite Serial composite 
66 Coarse composite Serial composite 
66 Fine composite Serial composite 
66 Naive mem-bound Serial composite 
66 Fine mem-bound Serial composite 
66 Coarse mem-bound Serial composite 
66 Naive composite Serial mem-bound 
66 Coarse composite Serial mem-bound 
66 Fine composite Serial mem-bound 
66 Naive mem-bound Serial mem-bound 
66 Fine mem-bound Serial mem-bound 
66 Coarse mem-bound Serial mem-bound 
86 Serial mem-bound Serial composite 

99 Fine composite Naive composite 

TABLE X.  RANK SUMS (S) ALGORITHM A(KIND) Í B(KIND)  

S Algo A Kind Algo B Kind 
66 Naive composite Serial composite 
66 Coarse composite Serial composite 
66 Fine composite Serial composite 
66 Naive mem-bound Serial composite 
66 Fine mem-bound Serial composite 
66 Coarse mem-bound Serial composite 
66 Naive composite Serial mem-bound 
66 Coarse composite Serial mem-bound 
66 Coarse composite Naive mem-bound 
66 Fine composite Serial mem-bound 
66 Naive mem-bound Serial mem-bound 
66 Fine mem-bound Serial mem-bound 
66 Coarse mem-bound Serial mem-bound 
69 Coarse composite Fine mem-bound 
70 Serial mem-bound Serial composite 
71 Fine composite Naive mem-bound 
75 Fine composite Fine mem-bound 
79 Fine composite Coarse mem-bound 
85 Fine composite Naive composite 
85 Coarse composite Coarse mem-bound 

100 Coarse composite Naive composite 
 

APPENDIX -- SOURCE CODE 
All the source code used for this project is freely available 

via the Scaly project home and downloadable as an Eclipse 
project at http://code.google.com/p/scaly/.  See the ParaBond 
folder and the package, scaly.parabond.test. The table below 
gives the algorithm and its source. 

TABLE XI.  SOURCE FILES 

Algorithm Kind Scala source file 
Serial Composite NPortfolio02 

Memory-bound NPortfolio03 
Naive Composite Par00 

Memory-bound Par01 
Fine Composite Par05 

Memory-bound Par06 
Coarse Composite Par04 

Memory-bound Par07 

 


