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Abstract— The recent digital transmission systems impose the 

application of channel equalizers with bandwidth efficiency, 

which mitigates the bottleneck of intersymbol interference for 

high-speed data transmission-over communication channels. This 

leads to the exploration of blind equalization techniques that do 

not require the use of a training sequence. Blind equalization 

techniques however suffer from computational complexity and 

slow convergence rate. The Constant Modulus Algorithm (CMA) 

is a better technique for blind channel equalization. This paper 

examined three different error functions for fast convergence and 

proposed an adaptive blind equalization algorithm with variable 

step size based on CMA criterion. A comparison of the existing 

and proposed algorithms’ speed of convergence shows that the 

proposed algorithm outperforms the other algorithms. The 

proposed algorithm can suitably be employed in blind 

equalization for rapidly changing channels as well as for high 

data rate applications. 
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I. INTRODUCTION 

One of the most important advantages of the digital 
transmission systems for voice, data and video communication 
is their higher reliability in noise environment in comparison 
with that of their analog counterparts. Both existing wired and 
wireless communication systems have significantly made a 
shift to digital transmission of data. Unfortunately, most often 
the digital transmission of information is accompanied with a 
phenomenon known as intersymbol interference (ISI). This 
means that the transmitted pulses are smeared out so that 
pulses that correspond to different symbols are not separable. 
ISI is a common problem in telecommunication system and 
wireless communication systems, such as television 
broadcasting, digital data communication, and cellular mobile 
communication systems. 

In telecommunication systems, ISI occurs when the 
modulation bandwidth exceeds the coherent bandwidth of the 
radio channel where modulation pulses are spread in time. For 
wireless communication, ISI is caused by multipath in band-
limited time-dispersive channels, and it distorts the transmitted 
signal, causing bit errors at the receiver. ISI has been 
recognized as the major obstacle to high-speed data 

transmission with the required accuracy and multipath fading 
over radio channels. 

Obviously, for a reliable digital transmission system, it is 
crucial to reduce the effect of ISI. This can be achieved by the 
technique of equalization [1, 2]. Equalization is one of the 
techniques that can be used to improve the received signal 
quality in telecommunication especially in digital 
communication. In a broad sense, the term equalization can be 
used to describe any signal processing operation that 
minimizes the ISI. Two of the most intensively developing 
areas of digital transmission, namely digital subscriber lines 
(DSL) and cellular communication (GSM) are strongly 
dependent on the realization of reliable channel equalizers [3, 
4, 5]. 

There are generally two approaches to equalization: 
conventional equalization, and “blind” equalization. In 
systems employing conventional equalization, a training 
sequence is transmitted over the channel prior to the 
transmission of any useful data. The training sequence is a 
data sequence that is a priori known to the receiver. The 
receiver uses the relationship between the known training 
sequence and the sequence it actually receives to construct an 
approximation of the inverse transfer function for the channel. 
The equalizer is then configured to use the inverse transfer 
function and thereby induce minimal ISI. 

Conventional equalization is problematic in some 
communication systems, such as mobile and multi-point 
communication systems, because the training sequence uses 
up scarce bandwidth resources that could otherwise be used to 
transmit useful data. Such systems, therefore, often use blind 
equalization, which is a form of equalization that does not 
require the use of a training sequence. 

It is desirable to improve the ability of digital 
communication systems to minimize ISI, including 
communication systems employing blind equalization. 
Systems achieving such reduced ISI are capable of achieving 
reduced data error rates at prevailing data transmission rates, 
or can obtain higher data transmission rates without sacrificing 
data integrity, in order to obtain better overall system 
performance [6]. 
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In order to provide an efficiently high data rate 
transmission with high accuracy in digital communication 
without spectral wastage, advanced signal processing 
techniques are necessary. As earlier mentioned, several digital 
communication systems are inherent with rapid varying 
channel characteristics. The assumption that a communication 
channel is stationary over a transmission period is not valid. 
For communication systems like mobile communication this 
assumption results in performance degradation. There arises a 
need for algorithms that can exercise tracking ability in the 
face of fast changing characteristics of communication 
channels [7].  

The rate of convergence becomes very pivotal in the 
development of any such algorithms. This paper considers an 
adaptive blind equalization technique based on Constant 
Modulus Criterion using different error functions and a 
comparison of their speed of convergence is made. 

II.  SYSTEM MODEL FOR BLIND ADAPTIVE EQUALIZATION 

The baseband Model of a communication system for 
channel equalization is shown in Fig 1. 

In Fig. 1, our communication channel and equalizer are 
both modeled using a Finite Impulse Response filter (FIR). Of 
course, the channel and equalizer can also be modeled as 
Infinite Impulse Response filter (IIR).  

However, it is dangerous to update the poles of an IIR 
filter in real-time, because it is possible that they could move 
outside the unit circle, hence causing instability in the system. 

From Figure 1, the relationship between the input and 
output of the FIR channel filter is, 

                   
 

k

knxkhnb )()()(                    (1) 

The input to the equalizer is, 

                   
)()()( nvnbnr                               (2) 

This implies that, 

                   

)()()()( nvknxkhnr
k

        (3) 

where )(kh  is the channel response. 

    
)( knx   is the input to the channel at time kn  . 

    
)(nv  represents the additive noise (zero mean) 

    
)(nr  is the input to the equalizer. 

The output of the system )(ny  is given as, 

                      
)()( nrwny T                                          (4) 

where )(ny  is the equalizer output and
Tw is the tap 

weight vector. 

The equalizer model (4) forms the basis for the discussion 
of the blind adaptive algorithms in the following subsection. 

A. Constant Modulus Algorithm Criterion 

The CMA criterion may be expressed by the non-negative 

cost function qCMApJ , parameterized by positive integer, p  

and q . 
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Figure 1: Baseband model of a Communication System for Channel Equalization. 
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where R  is a fixed constant, chosen for each form of 
modulation schemes, represents the statistics of the transmitted 

signal. CMAJ  in (5) is a gradient based algorithm [8] and 

works on the premise that the existing interference causes 
fluctuation in the amplitude of the output that otherwise has a 

constant modulus. For the simplest case we put 2p  and

2q , we have 

                  

 22
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4

1
RnyJCMA                       (6) 

It updates equalizer coefficients by minimizing the cost 
function. The steepest gradient descent algorithm [9] is 

obtained by taking the instantaneous gradient of CMAJ  which 

results in an equation that updates the system. 
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where w n( )  is the equalizer coefficient, )(nr  is the 

receiver input,   is the step size constant and ))((1 ny  is 

the  error function for CMA  

With the above expression, ))(( ny for the error 

function, the usual CMA  becomes: 

    
 2
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where iw  is the 
thi  tap of the equalizer. The signed error 

version of CMA (SE-CMA) takes  

       
 ))((sgn))(( 12 nyny                       (13) 

and updates the equalizer as; 

  2
)()(sgn)()()1( nyRnynrnwnw    (14) 

 

B.  Proposed Error Functions 

In this section we construct three error functions 

)),(( nyi  i  3, 4, 5. Assume the source to be a real BPSK 

(Binary Phase Shift Keying) with equiprobable alphabet and 

unity dispersion .1R  Note that the dispersion constant R is 

chosen for each form of modulation scheme.  Let the product 

of the squared deviations of the output be  )(nyP . For real 

BPSK source,  )(nyP  is taken as [10]: 

    
   21)(1)(  nyny

   in the 

case of  )(3 ny  and 
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Using a step size parameter  , the updated equation can 

be written as 
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The factor ½ is used merely for convenience. The above 

algorithm might experience gradient noise amplification 

whenever  )(nyP  is large. Hence we normalized the 

correction term above by dividing with  )(nyPa   with the 

choice of a = 1. This idea comes from the well-known 
“normalized LMS algorithm,” which can be viewed as the 
minimum-norm solution. The positive constant  “a” is used to 
remove numerical difficulties that arise when the denominator 
is close to zero. Thus the equation (15c) becomes; 
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With the expressions 
   21)(1)(  nyny

 and 
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 for 

 )(nyP
 respectively, we 

arrive at: 

                     

 
 22

2

3

1)(1

)(1)(4
))((






ny

nyny
ny      (17) 

    

  
 222

22

4

1)()(1

1)(3)(1)(4
))((






nyny

nynyny
ny           (18) 

 

Further, as the step size   controls the rate of 

convergence, with a large value giving fast convergence and a 
smaller value providing better steady state performance we 
introduce a variable step size,  , as done in the case of 

traditional least mean square (LMS) algorithm [11]. We 

suggest ))((5 ny  (proposed error function) as: 

                      
))(()())(( 45 nynny        (19) 
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where a condition of maxmin0    must be satisfied. 

The initial value of variable step size )0(  is chosen 

according to the upper bound constant max . 

In equation (20),   and   are two fixed parameters 

which control the variation of    within two limits min  and

max  . The updated equation in (8) with the step-size and 

error function as in (19) and (20) respectively is thus a 
variable step-size algorithm. The effectiveness of the three 
error functions (algorithms) with the usual CMA algorithm is 
shown through simulation in the next section. 

III.    SIMULATION CONSIDERATIONS 

To demonstrate the effectiveness of the error functions 
proposed which affect the speed of convergence of the 
equalizer, we assume that the transmitted signal is a zero mean 
distributed random sequence and is modulated using binary 
phase shift keying (BPSK) in which case the dispersion 
constant R is taken unity.  

Also for the simulation the following parameters were 
used: 

(i) a two-tap filter  Twww 10 , 

(ii) a constant step size 001.0   and min = 0.00001 

and max = 0.1 for variable step size algorithm, 

(iii)   = 0.97, and   = 0.0005, and equalizer 

initialization coefficients of 2 and 0.5. 

The additive noise after the channel is neglected, owing to 
the fact that in most digital communications the dominant type 
of distortion for which the equalizers are employed is the time 
varying multipath fading phenomenon, intersymbol 
interference (ISI).  

Also, the BPSK modulation scheme used in this work is 
relatively immune to the additive noise levels present in 
communication channels. 

IV.  RESULTS 

Figures 2 to 4 show the plot of squared error against the 
iteration number for the usual Constant Modulus Algorithm 
(CMA) and the three different algorithms examined in this 
study. 

 

 
The effects that the blind adaptive equalizer has on the 

signal quality are shown in Figures 2, 3, and 4. The algorithms 
aim at altering the filter impulse response so as to reduce and 
ultimately minimize the cost function. This is clearly seen in 
these Figures where the curves descend with time and then 
level out at their minimum. The time constant, or, more 
generally the convergence time of the algorithm, is indicated 
by the rate at which the cost function is reduced. 
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Figure 3: Squared error versus iteration for CMA 

algorithm with step size 0.001. 
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The Constant Modulus Algorithm (CMA) no doubts, does 

reduce the cost function, however, as observed in Figure 2, the 
normal CMA tends to diverge even after 1msec (10

4
 

iterations) of the time when the adaptation begins. This shows 
that it converges at some local minimum after a long time, 
comparatively. The algorithms with fixed step size shown in 
Figure 3 tend to continue improving the equalizer’s 
performance even beyond 0.5msec point. The effect of the 
proposed algorithm with variable step size is quite obvious as 
can be seen in Figure 4.  

The performance of this algorithm improves dramatically 
over the first few milliseconds and then flattens out. This 
variable step size algorithm appears to outperform all the other 
algorithms in this work because it ultimately minimizes the 
cost function to it minimum in a very short time, restoring the 
constant modulus of the transmitted signal, thus recovering the 
original signal. Note that the time it takes an algorithm to 
converge is significant: it is the measure of its ability to track 
the changing impulse response of the propagation channel.  

From these results, it has been demonstrated that the 
equalizer, which employs this algorithm, does a good job of 
computing the new coefficient every 0.5msec, which is good 
for fast varying channels. 

V. CONCLUSIONS 

The quality of service that a blind equalizer is able to 
provide is marked by its convergence speed; that is, the 
number of received samples that it needs to provide good 
enough estimates of the channel characteristics. This work has 
examined different error functions that might be incorporated 
into the Constant Modulus Algorithm (CMA) for fast 
convergence. The proposed variable step size algorithm out-
performs the other two models in terms of convergence. The 
proposed algorithm can suitably be employed in blind 
equalization for rapidly changing channels as well as for high 
data rate applications. Based on our investigations blind 
method is a promising approach towards high data rate 
transmission and warrants further research in future 
communication technologies. 
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Figure 4:  Squared error versus iteration for the proposed 

adaptive blind equalization algorithm with variable step size 

based on CMA criterion. 

 


