
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

100 | P a g e

www.ijacsa.thesai.org

Knowledge Sharing Protocol for Smart Spaces

Jussi Kiljander

VTT Technical Research Centre of

Finland

Oulu, Finland

Francesco Morandi

ARCES, University of Bologna

Bologna, Italy

Juha-Pekka Soininen

VTT Technical Research Centre of

Finland

Oulu, Finland

Abstract— In this paper we present a novel knowledge sharing

protocol (KSP) for semantic technology empowered ubiquitous

computing systems. In particular the protocol is designed for M3

which is a blackboard based semantic interoperability solution

for smart spaces. The main difference between the KSP and

existing work is that KSP provides SPARQL-like knowledge

sharing mechanisms in compact binary format that is designed to

be suitable also for resource restricted devices and networks. In

order to evaluate the KSP in practice we implemented a case

study in a prototype smart space, called Smart Greenhouse. In

the case study the KSP messages were on average 70.09% and

87.08% shorter than the messages in existing M3 communication

protocols. Because the KSP provides a mechanism for

automating the interaction in smart spaces it was also possible to

implement the case study with fewer messages than with other

M3 communication protocols. This makes the KSP a better

alternative for resource restricted devices in semantic technology

empowered smart spaces.

Keywords- Semantic Web; SPARQL; Ambient Intelligence;

Ubiquitous Computing; embedded system; M3.

I. INTRODUCTION

Smart spaces are realizations of ubiquitous computing
(ubicomp) [1] and ambient intelligence (AmI) [2] visions. A
typical smart space consists of a large amount of devices
which in co-operation provide services for users. In order to
provide relevant services in the right situations the devices
need to share knowledge about the smart space with each
other. Fortunately, a lot of knowledge representation (KR)
technologies have been developed for the emerging Future
Internet paradigm, called the Semantic Web [3] that could be
also exploited in ubicomp/AmI domain. This has also been
proposed by Lassila [4], and Chen [5], for example. The M3
concept [6] is a recent example of ubicomp interoperability
framework which utilizes semantic technologies for
knowledge representation.

Many of the devices in smart spaces are resource restricted
in terms of memory, processing capacity, and energy.
Additionally, typical communication technologies in smart
spaces such as the 6LowPAN [7], and Bluetooth low energy
(BLE) [8], for example, possess limited capabilities when
compared to the technologies used in the Web. On the other
hand, the current technologies enabling KR in the Semantic
Web such as Resource Description Framework (RDF) [9],
RDF Schema (RDFS) [10], Web Ontology Language (OWL)
[11], and SPARQL [12] use either Extensible Markup

Language (XML) based or human readable
1
 syntax. These

formats both require a large amount of memory and are slow
to process in low capacity computing platforms. As a result
they are not as such feasible for real-life smart spaces. Binary
XML formats such as Efficient XML Interchange (EXI) [13]
and X.694 [14] provide feasible solutions for compressing
XML, but cannot be used with non-XML based semantic
technologies such as the SPARQL, for example. Another
interesting approach for Semantic Web based KR in resource
restricted devices is the Entity Notation (EN) [15]. As a
lightweight KR notation the EN is a good alternative for
typical RDF serialization formats such as the RDF/XML,
Turtle, and N-Triple, but it does not provide SPARQL-like
mechanisms to query and update knowledge in smart spaces.

In M3 applications the problem with resource restricted
computing platforms has been typically solved by utilizing
gateways which transform the proprietary format data from
low capacity devices to semantic format. However, this
approach complicates the system unnecessarily as for each
new device a new gateway is needed (or new interface to
existing gateway needs to be added). If all the communication
between smart space agents would be based on common
knowledge sharing protocol instead, the smart spaces would be
much easier to develop and maintain. Additionally, since the
common knowledge sharing protocol would enable also
resource restricted devices to access the information published
by other devices it would be easier to develop context-aware
embedded systems capable of providing relevant services for
users.

In this paper we present a novel Knowledge Sharing
Protocol (KSP) for M3-like semantic interoperability
frameworks. The KSP provides all kind of agents from low
capacity embedded systems to high end personal computers
with SPARQL-like mechanisms for accessing and
manipulating the knowledge in smart spaces. Unlike normal
SPARQL, however, the KSP is designed to be suitable for
smart spaces. Instead of the sparse human readable syntax
used in SPARQL the KSP uses a compact binary format which
allows significantly shorter messages to be created. Features
such as the persistent update and max request size option make
it also easier to exploit semantic technologies in resource
restricted devices and networks. Additionally, to support the

1
 By human readable syntax we refer to notations

designed to be used by developers as such. These kinds of
formats are used, for example, in SPARQL, Notation3, and
Turtle.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

101 | P a g e

www.ijacsa.thesai.org

heterogeneous nature of smart spaces the KSP defines various
bindings for typical communication and networking
technologies used in smart spaces. In the paper bindings for
the most typical transports User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP) are presented.

The rest of the paper is structured as follows. In the section
2 we present short overview of the SPARQL and M3 concepts
as necessary background information for the paper. The
section 3 describes the KSP in high detail. In the section 4 we
illustrate the KSP with practical example and compare it with
existing M3 communication protocols (M3CP). In the section
5 conclusions and future work directions are presented.

II. BACKGROUND

A. SPARQL

SPARQL provides the standard way to access and
manipulate RDF data in the Semantic Web. The importance of
SPARQL to the Semantic Web is formulated by the W3C
Director Tim Berners-Lee as follows: “Trying to use the
Semantic Web without SPARQL is like trying to use a
relational database without SQL.” [16]

SPARQL 1.1 defines four types of query forms: SELECT,
CONSTRUCT, ASK and DESCRIBE. All these query forms
use solutions obtained via pattern matching to form result sets
or RDF graphs. The SELECT query returns the bound
variables as such. The CONSTRUCT query returns an RDF
graph constructed by substituting variables in a set of RDF
triple patterns with bound variables obtained from the pattern
matching. ASK query returns a Boolean value indicating
whether the query has a solution or not. The DESCRIBE query
returns a single RDF graph that contains data about the
requested resource.

In addition to the query language the SPARQL 1.1
specification defines an update language for manipulating
RDF data. The update operations are classified into two
groups: graph management and graph update. Management
type operations provide mechanisms for creating, destroying,
moving and copying named graphs, or adding the contents of
one graph to another. In contrast to the management
operations used for operating on the graph level the update
operations are used for modifying triples inside the graphs.
The update operations are: INSERT DATA, DELETE DATA,
DELETE/INSERT, LOAD and CLEAR. The DATA format
operations operate on concrete RDF triples meaning that the
use of variables is prohibited. Blank nodes are also not
permitted in the DELETE DATA operation. The
DELETE/INSERT operation is used to modify triples in the
graph store based on bindings obtained via query pattern
matching. It is possible to omit either DELETE or INSERT
part of the operation in which case only the remaining part of
the operation is executed. LOAD operation is used to insert
triples from a RDF document specified by an URI into the
graph store. CLEAR operation is used to remove all triples
from the specified graphs.

SPARQL provides also many features that can be used to
modify the outcome of query and update operations. These
features include, for example, OPTIONAL graph pattern,
FILTER, BIND, subquery, GROUP BY, and various solution

sequence modifiers. The OPTIONAL graph pattern is used to
declare a graph pattern which does not need to match in order
for the query pattern match to succeed. FILTER keyword
provides a way to restrict the solution to those in which the
FILTER expression evaluates as true. The BIND feature
allows a variable to be bound with a new value. The subquery
feature makes it possible to combine results of multiple
queries by allowing queries to be put inside of queries. The
GROUP BY keyword allows sets of data to be grouped
together so that aggregate functions such as average,
minimum, maximum, sum, and count can be performed on the
individual groups.

In SPARQL the results of the query operations can be
modified using modifiers such as ORDER BY, LIMIT,
OFFSET, and DISTINCT. The ORDER BY keyword can be
used to sort the results of the query to either ascending or
descending order. The LIMIT keyword allows the number of
results to be restricted. The OFFSET keyword provides a way
to skip a number of results. The DISTINC feature can be used
to remove duplicates from the results set.

B. M3 Concept

The M3 aims to combine Semantic Web technologies with
publish/subscribe-based blackboard [17] architecture to
provide multi-device, multi-domain and multi-vendor solution
to semantic level interoperability in smart spaces. Like in
typical blackboard systems the idea in M3 is that knowledge is
shared between various knowledge sources via common
knowledge base.

The main advantage of the blackboard architecture is
flexibility. In blackboard system the knowledge sources are
not tied together in any way. The knowledge sources do not in
fact have to know anything about each other – they just see the
information published to the knowledge base. This makes it
possible to add new, or remove existing knowledge sources
without the need to reconfigure other knowledge sources. The
blackboard system is also independent of any particular
application domain. This means that the blackboard
architecture can be used for sharing any kind of information
and the shared information can be used in all kind of
applications. Because of these features the blackboard
architecture is ideal for smart spaces where it is not possible to
a priori determine all the components or features needed in the
future.

The difference between M3 and typical blackboard
systems is that the knowledge in M3 is presented with
semantic technologies such as RDF, RDFS, and OWL. There
are many advantages in using the semantic technologies to
present the knowledge in ubiquitous computing systems. First,
because semantic technologies provide a natural way to
describe any kind of knowledge as common machine-
interpretable ontologies they make it easier to develop context-
aware applications to smart spaces. Second, because of the
flexible data model of RDF it is possible to add new
information and create links between the information available
in the knowledge base without breaking the existing
applications. Third, the ontologies described with OWL and
RDFS make it possible for knowledge sources to learn new

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

102 | P a g e

www.ijacsa.thesai.org

concepts much in the same way as humans use encyclopedias
to describe unfamiliar words.

In M3 the blackboard is called Semantic Information
Broker (SIB). The Knowledge Processor (KP) is the name for
the knowledge sources. M3 applications are created by KPs
who provide services for end-users by interacting with each
other via the SIB. The Smart Space Access Protocol (SSAP)
defines the rules for KP-SIB interaction.

There are currently two serialization formats for the SSAP
available: SSAP/XML and SSAP/WAX. Both formats define
eight operations: join, leave, insert, remove, update, query,
subscribe, and unsubscribe. The SSAP/XML version provides
three types of query operations: Triple, Wilbur, and SPARQL
1.0. The M3 implementation using the SSAP/XML is called
Smart-M3 [18]. A Word Aligned XML (WAX) version of the
SSAP was introduced to better support the exploitation of M3
in low capacity devices [19]. In SSAP/WAX encoding scheme
each XML tag is 32 bit long. This allows more compact
messages to be constructed. The SSAP/WAX is used in RIBS
version of the M3 [20]. Wilbur queries are not supported in the
RIBS.

III. KNOWLEDGE SHARING PROTOCOL

A. Overview

The objective of the KSP is to define the methods and
syntax for knowledge sharing in AmI/ubicomb domain. The
idea was to develop similar protocol to Semantic Web
enhanced ubicomb systems, as the Constrained Application
Protocol (CoAP) [21] is to the embedded web (i.e. the idea
was to do the same for SPARQL/HTTP, as the CoAP has done
for the HTTP). Initially we even planned to implement the
KSP solely on top of CoAP. However, we soon understood
that the heterogeneous nature of smart spaces requires the KSP
to be usable also directly with various lower level transport
technologies. In this paper bindings for TCP and UDP
transports are presented. The principal model of KSP stack is
illustrated in the fig. 1.

Figure 1. Knowledge Sharing Protocol stack

The different requirements of various transport
technologies is managed in the KSP header presented in the
section C. The KSP messages can contain also transport
independent data and options fields. The structure for these
fields is presented in sections D and E respectfully. All KSP
messages are encoded in little endian format.

There are five major differences with the KSP and existing
M3CPs (namely the SSAP/XML and SSAP/WAX). First, to
provide a feasible solution for low capacity devices a binary
format for the messages is used in KSP. The binary format is

more compact and faster to parse, but not as versatile as the
XML format used in the SSAP. Second, all the transactions in
KSP are based on the SPARQL 1.1 whereas in SSAP the
SPARQL is only one of the three query formats. Third, KSP
does not require join and leave operations because the access
control parameters can be added to any KSP message when
needed. This makes the basic KP-SIB interaction more
scalable because the SIBs do not have to keep track of the
state of KPs. Fourth, the KSP allows KPs to define the
maximum size for SIB responses. This is very useful for low
capacity devices because the memory requirements can be
estimated at the compile time. The fifth main difference is that
the KSP defines persistent format also for update operations
(i.e. DELETE, INSERT, and UPDATE). The persistent type
update operations work so that the data manipulation part of
the operation is executed if a solution is found from the query
pattern matching. Similarly to the query operation the
persistent update operations are re-evaluated every time the
content of the SIB change. By allowing KPs to create simple
rules to the SIB the persistent update operations provide a way
to reduce the traffic in resource restricted networks and lighten
the load on low capacity devices. The persistent operation are
terminated with TERMINATE operation.

B. Messaging Model

The KP always initiates the transaction by sending a
request (REQ) message to the SIB. To support the needs of the
wide range of communication technologies the KSP defines
two types of requests: Non-confirmable (NON), and
Confirmable (CON). With NON request the SIB sends a
response (RES) message only if results are found or an
internal error has occurred. The NON requests are useful for
TCP-like transports that provide a reliable delivery of
messages and do not therefore require extra control from the
KSP. Additionally, the NON request are useful for reducing
the network traffic when it is not required that every message
is delivered to the SIB. For example, a low capacity
accelerometer updating acceleration value in high intervals
does not have to care if a message is lost because it would take
more time to update the old value than to insert a new one.
The NON requests are also useful when KSP is used in
multicast/broadcast manner to discover the available SIBs in
the network. With CON type requests the SIB always sends a
response to the KP. Therefore, the CON type request is
typically used with transport technologies such as the UDP
that do not provide reliable delivery of messages. The RES
message is always send to the same socket where the REQ
message was received

In addition to normal RES messages, the KSP defines
indication (IND) messages which are used to notify the KP
about changes in the persistent operations. The IND messages
are typically used when the results of a persistent query
operation (i.e. subscribe) change. Indications are also used to
inform KP when a persistent operation needs to be terminated
for some reason. Because transports such as UDP do not
provide reliable delivery of messages the KSP provides
acknowledgement (ACK) messages to be used with unreliable
communication protocols to notify the SIB when the IND
message has been received. The decisions on how long to wait
before retransmitting and how many times to retransmit the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

103 | P a g e

www.ijacsa.thesai.org

IND message are left for various SIB implementations. It is
even possible to implement a SIB that can dynamically adjust
to various networks by making these values modifiable via a
specific graph in the SIB. The fig. 2 presents a sequence chart
which illustrates the message exchange between KP and a SIB
in a scenario where a KP1 subscribes to a triple and KP2
modifies the triple using UPDATE operation. Confirmable and
Non-confirmable type requests are used by KP1 and KP2
respectfully.

Figure 2. Example of message exchange with CON and NON requests

C. Message Format and Semantics: Header field

The fixed size header field contains parameters such as the
version, transaction type, request type, and transaction
identifier that are common for all transactions. The structure of
the header field depends on the message type (REQ, RES,
IND, or ACK) and the transport technology. The header size is
eight bytes for TCP, four bytes for UDP REQ/RES/ACK
messages, and six bytes for UDP Indications. Fig. 3 and fig. 4
illustrate the header formats for different message types with
TCP and UDP transports.

Figure 3. KPS header formats for TCP

Figure 4. KSP header formats for UDP

The 8-bit Version field specifies the KSP version number.
Value 0x01 is used for the version presented in the paper.
With TCP the length of the KSP messages is defined in the 32-
bit Length field. The length of the message is needed with
TCP because the KSP message can be divided into multiple

TCP segments. With UDP the Length field is not present and
the whole KSP message must fit to a single UDP datagram.
The maximum size for UDP datagram depends on the
underlying protocols. For example, with 6LowPAN the
maximum message size is 1024 bytes. In KP initiated
messages the 7-bit Transaction type field specifies the type of
the operation and the 1-bit Request type the type of the request
(either NON or CON). Table 1 presents the code values for
different transaction types. With connectionless transports the
ACK message is identified by assigning value 0x00 for the
transaction type and request type fields.

TABLE I. TRANSACTION TYPES

Transaction type Code

DELETE DATA 0x01

INSERT DATA 0x02

UPDATE DATA 0x03

DELETE 0x04

INSERT 0x05

UPDATE 0x06

SELECT 0x07

ASK 0x08

CONSTRUCT 0x09

DELETE_PERSISTENT 0x0a

INSERT_PERSISTENT 0x0b

UPDATE_PERSISTENT 0x0c

SELECT_PERSISTENT 0x0d

ASK_ PERSISTENT 0x0e

CONSTRUCT_ PERSISTENT 0x0f

TERMINATE 0x10

RESET 0x11

CREATE 0x12

DROP 0x13

COPY 0x14

MOVE 0x15

ADD 0x16

In RES and IND messages the Transaction type and
Message type fields are replaced with 7-bit Status code and 1-
bit Response type fields (either RES or IND). The Status code
specifies whether operation was successfully executed.
Available status codes are illustrated in the table 2.

TABLE II. STATUS CODES

Status Code

OK 0x00

ERROR: KSP version not supported 0x01

ERROR: Invalid transaction type 0x02

ERROR: Invalid message type 0x03

ERROR: Invalid data field format 0x04

ERROR: Invalid option type 0x05

ERROR: Invalid option format 0x06

ERROR: SIB internal error 0x07

In order to be able to pair RES and IND messages with the
requests each KSP transaction is identified with 16-bit
Transaction ID. UDP-like transports (no ordered delivery of
messages) need also an additional identifier for the IND
messages. The 16-bit Sequence number field is used for this
purpose. The first indication for each persistent transaction
must use a value 0x01 and the value is incremented by one for
each following indication. A KP may discard an indication as
outdated under the following condition:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

104 | P a g e

www.ijacsa.thesai.org

 ()

Where I1 is the sequence number of the previous (not
discarded) indication and the I2 is the sequence number of the
most recent indication. The right side of the equation checks if
the sequence number for I2 is smaller than for I1. The left side
of the equation checks whether the sequence number for the I2
has wrapped around.

D. Message Format and Semantics: Data field

The KSP transactions can be divided into three categories:
query, update, and terminate. In query and update operations
the REQ message Header field is followed by the Data field
which contains the transaction specific information. With
TERMINATE operation the Data field is not needed because
transaction identifier in the request header can be used to
define the active persistent transaction to be terminated. In
RES messages only query operations contain the Data field.

1) Encoding Format for RDF graph
Since the KSP is a query and update protocol for RDF the

RDF graphs play a central role in almost all KSP messages.
The common structure for Graph fields is illustrated in the fig.
5.

Figure 5. RDF graph field structure

The Graph field consists of 8-bit triple count (TC) field
and a zero or more (maximum 255) Triple fields. Each Triple
field starts with 3-bit ST, 2-bit PT, and 3-bit OT fields, which
specify the content of the following Subject, Predicate, and
Object fields respectfully. Possible types for these triple
members (subject, predicate, and object) are presented in the
table 3. The Literal type can be only used in objects.

TABLE III. TRIPLE MEMBER TYPES

Type Code

Empty 0x00

URI 0x01

Reserved Word 0x02

Variable 0x03

Literal 0x04

The field structure for the various triple members is
illustrated in the fig. 6. In URI field the 8-bit Prefix index field
specifies the URI from the prefix list that is concatenated with
the local URI to form the full URI (see prefix option). For
example, with prefix index value 0x03 the third URI is
selected form the prefix list. Prefix index value 0x00 is used
for full URIs. The 8-16 bit URI length field specifies the
length of the actual URI string field. The first bit of the URI
length field denotes whether the length of the URI is presented
with one or two bytes. This kind of length encoding allows not
only compact messages, but also makes it possible to use
longer URIs when necessary. The drawback is that the parser
needs to perform extra work when decoding/encoding the

messages. Similar length encoding is also used in other strings
in the KSP.

Figure 6. Field structure for triple member types

Literals in RDF can be either plain or typed. Only typed
Literals are used in KSP however. The first eight bits in the
Literal field is reserved for the type. The table 4 presents the
supported Literal types in the KSP version 1.0.

TABLE IV. LITERAL TYPES

Type Value

xsd:string 0x00

xsd:interger 0x01

xsd:float 0x02

xsd:dateTime 0x03

xsd:Boolean 0x04

 With xsd:string type literal the first 8-32 bits is reserved
for the length of the string. The two most significant bits
specify the number of bytes used for the length field and
following 6-30 specify the length of the xsd:string. The
xsd:integer and xsd:float fields are 32-bit long. The IEEE 32-
bit floating-point format is used for the xsd:float type. The
xsd:dateTime field is 19 byte ASCII string. The xsd:Boolean
field contains a 8-bit unsigned integer. Value 0x00 is reserved
for “false” and 0x01 for “true”.

Variable type triple member field contains 8-bit variable
index which is used as an identifier for the variable in the KSP
message. With n variables the largest variable index is n-1. In
SELECT operation it is also required that the indexes for
projected variables (i.e. variables whose bindings are returned)
start from zero. For example, in SELECT query with six
variables of which two are projected variables the variable
indexes 0x00 and 0x01 are used for projected variables and
indexes from 0x02 to 0x05 are reserved to other variables.

The target in KSP is to provide as compact messages as
possible and therefore two triple member types are designed
just for this purpose. With Empty type the field (subject,
predicate, or object) is not present and the corresponding value
from the previous triple is used. The purpose of the Empty
type is to enable more compact messages to be constructed by
grouping triples with common subjects, predicates, and
objects. The basic idea is similar to the Predicate-Object and
Object lists in SPARQL, but the Empty type is more versatile
because it allows both predicates without common subject, and
objects without common subject-predicate to be grouped. The
Reserved word type is another mechanism for shortening KSP
messages. The idea in reserved words is to present common
vocabulary with eight bit unsigned integers. The code values

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

105 | P a g e

www.ijacsa.thesai.org

for various reserved RDF, XML Schema (XMLS), RDFS, and
OWL words are presented in the table 5.

TABLE V. RESERVED WORDS

Word Value

rdf:type 0x00

rdfs:Class 0x01

rdfs:subClassOf 0x02

rdfs:property 0x03

rdfs:subPropertyOf 0x04

rdfs:range 0x05

rdfs:domain 0x06

owl:TransitiveProperty 0x07

owl:SameAs 0x08

xsd:string 0x09

xsd:interger 0x0a

xsd:float 0x0b

xsd:dateTime 0x0c

xsd:Boolean 0x0d

2) Data field format for query operations
KSP defines six types of query operations. These

operations include the transient and persistent formats for
SELECT, ASK and CONSTRUCT. The persistent query
operations in KSP are very similar to the SSAP equivalents.
The only difference is that in KSP the SIB does not inform the
KP about new and obsolete results, but just sends the current
status of the query when the results have changed. The Data
field format for transient and persistent query REQ and RES
messages is presented in the fig. 7.

Figure 7. Data field format for query requests and responses

In SELECT requests the 8-bit VC field specifies the
number of variables whose bindings are returned in the RES
message. The following three fields are reserved for the query
pattern which is matched against the RDF-database of the SIB.
The query pattern consists of a Basic graph, and a number of
Optional graph fields. The Basic graph field defines a triple
pattern that must match in order for there to be a solution. The
Optional graph fields contain graphs that do not reject the
solution if no match for the graph pattern is found. The
optional graphs are useful when a KP wants to receive some
results even though not all the requested triples exist in the
SIB. The 8-bit OGC field defines the number of optional
graphs in the query pattern. The ASK request is otherwise
identical to the SELECT request except there is no VC field.
The CONSTRUCT request is also similar to the SELECT
request expect the VC field is replaced by a Construct graph

field. The Construct graph field defines triples to be
constructed by replacing the variables with RDF terms
obtained from the query pattern matching.

As already mentioned the query RES and IND messages
are identical in KSP. This simplifies parser and SIB
implementations when compared to the SSAP where the
indications contain both new and obsolete results. The
SELECT RES/IND messages start with 8-bit PC field which
specifies the number of following URIs associated to the
prefix indexes. The 16-bit TRC and RC fields specify the
number of total results and results respectfully. The difference
between these fields is that the total result count specifies the
total number of results of the query operation whereas the
result count defines the number of results in the RES message.
These values can be different if all the results do not fit to a
single message due the max response size. Each Result field in
SELECT RES/IND message contains a number of bound
variables. The exact number of variables (maximum 255) in a
single Result field is defined by the 8-bit VC field. The first
eight bits in the Variable field specify the type of the RDF
term to which the variable is bound. Possible types for bound
variables include Empty, URI, Reserved Word, and Literal.
Same formats for these RDF terms fields are used as in the
Triple field (see fig. 6). The CONSTRUCT RES/IND
messages are otherwise similar to the SELECT messages
expect there is no VC field and the Results field contains
triples instead of RDF terms. The Data field in ASK RES/IND
messages contains 8-bit unsigned integer defining whether
solutions were found.

3) Data field format for update operations
In addition to the query operations the KPS provides

various operations for manipulating the data in the SIB. These
operations can be roughly divided into two groups: update and
management. The difference between these operation types is
that update operations are used to modify triples inside the
graphs whereas the management operations provide
mechanisms for creating, destroying, etc. complete graphs.
Fig. 8 illustrates the data field formats for the data
manipulation requests.

Figure 8. Data field structure for update request

The DATA format KSP update requests consist of various
graphs which depending on the operation define either the
triples to be deleted or/and inserted. The difference between
plain and DATA type operations is that variables are not
allowed in DATA operations. The advantage of DATA type
operations is that large updates can be done without the need
to first query bindings to the variables. The plain update

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

106 | P a g e

www.ijacsa.thesai.org

operations provide also many advantages over the DATA type
operations, however, and it depends on the situation which
type should be used. The plain update operations are
especially useful in situations where a KP would need to first
query information and then use the information for modifying
triples in the SIB. It is also possible to create simple rules to
the SIB by defining the update to be persistent. In persistent
update operation a new query pattern match is executed
always when information in the SIB is modified. If solutions
are obtained from the query pattern matching the data
manipulation part of the operation is executed.

With SSAP it is only possible to access a single graph in
the SIB. Sometimes it is feasible to be able to create separate
graphs for different purposes however (e.g. privacy
management). A simple way to manage privacy in M3 is to
create separate graphs for various user groups and make the
graphs accessible only to specific users. In KSP the CREATE
and DROP operations are used for creating and destroying
graphs respectfully. The 8-bit GC field defines the number of
following Graph name fields which specify the URIs for the
graphs to be created or destroyed. The encoding of the Graph
name field is identical to the URI field. In COPY, MOVE and
ADD operations the Source graph and Destination graph
fields specify the source and destination graphs of the
operation respectfully. Same encoding is used as for the Graph
name field.

E. Message Format and Semantics: Options field

One of the main advantages of XML based protocols is
extendibility. In KSP options are a way to achieve a certain
level of extendibility in a non-XML protocol. Another
advantage of options is that because options are, as the name
implies, optional they make it possible to create more compact
messages by leaving out the parts that are not needed in the
particular message. The Options field follows the Data field in
the KSP REQ messages. The 8-bit OC field defines the
number of options in the request. Eight bits are reserved for
the type in each option field. The table 6 presents the code
values for the various option types.

TABLE VI. OPTION TYPES

Option Code

PREFIX 0x00

DELETE GRAPH 0x01

INSERT GRAPH 0x02

QUERY GRAPH 0x03

OPTIONAL PATTERN 0x04

FILTER 0x05

SOLUTION MODIFIER 0x06

BIND 0x07

MAX RESPONSE SIZE 0x08

CREDENTIALS 0x09

The fig. 9 illustrates the field formats for the various KSP
options. One of the most important design guidelines for the
KSP was to support low capacity computing platforms. There
are two options specified for this purpose: Prefix and Max
response size. The Prefix option works as the PREFIX
keyword in SPARQL and it is useful for shortening URIs
appearing multiple times in a message. In Prefix field the first

eight bits specify the number of following URI fields. In KSP
messages the order number (prefix index) of the URI is used in
the same way as the prefix label in SPARQL. By allowing the
maximum size for RES and IND messages to be specified in
the REQ message, the 32-bit Max response size option field
makes it easier for a KP to estimate the memory requirements
at compile time.

Figure 9. Field structures for options

Normally the query and update operations affect to all the
graphs in the SIB (assuming KP has access rights). It is
sometimes useful to make a KSP operation to affect only
certain graphs in the SIB however. The Delete graph, Insert
graph and Query graph options are used for this purpose. The
first eight bits specify the number of named graphs. Same
encoding is used for Graph name fields as for normal URI
fields. The various named graph options are typically used
together with credentials option which provides access control
for KSP communication. Credentials are needed in situations
where the SIB (or some graphs inside a SIB) can be accessed
only by certain KPs. The Credentials field consists of 128-bit
KP ID and Password fields which identify each KP uniquely.
The first 8-bits in the Password field define the length of the
following password. The Credentials option is typically only
useful with transports such as Transport Layer Security (TLS)
and Datagram TLS (DTLS) that provide encryption and trust
for the authentication process. It should be noted that the KSP
provides only a way to present the access rights and the actual
access control management is out of the scope of the paper.

The KSP provides two options for modifying the solution
produced in query pattern matching: Filter and Solution
modifier. The Filter option can be used for limiting the
solution to those which filter expression evaluates true. The
first eight bits in the Filters field are reserved for filter count
(FC). Each filter expression consists of a group of operand and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

107 | P a g e

www.ijacsa.thesai.org

operator tokens presented in Reverse Polish notation (RPN).
The RPN was chosen because it provides a compact notation
and allows fast processing of the expressions. The 8-bit TC
field defines the number of tokens in the expression. The type
for each token is also presented with eight bits. Values from
0x00 to 0x06 are reserved for operands and values from 0x07
onwards for operators. The table 7 presents the code values for
various token types. If the token is operand type the Type field
is followed by the Operand field which specifies the value for
the operand.

TABLE VII. TOKEN TYPES

Token type Code

xsd:string 0x00

xsd:integer 0x01

xsd:float 0x02

xsd:dateTime 0x03

xsd:Boolean 0x04

variable 0x05

URI 0x06

= 0x07

!= 0x08

< 0x09

> 0x0a

<= 0x0b

>= 0x0c

+ 0x0d

- 0x0e

* 0x0f

/ 0x10

|| 0x11

&& 0x12

regex 0x13

The Solution modifier option provides ways for altering the
solution sequence. By default the solution sequence of query
operations is unordered. The 2-bit Order field can be used to
define the solution order (unordered, ascending, or
descending). The 1-bit Limit flag, Offset flag, and Distinct flag
fields define whether the Limit, Offset, and Distinct modifiers
are used. These modifiers are identical to the SPARQL
equivalents. The next 3-bits are unused in this version of the
KSP. If the solution sequence is ordered the 8-bit Variable
index field defines the variable based on which the order of the
solution sequence is created. For example, alphabetic order for
the solution sequence is used if the variable is bound to
xsd:string type. If the Limit and Offset flags are set the 16-bit
Limit and Offset fields specify the maximum number and the
offset for the results respectfully. The Limit and Offset
modifiers are especially useful in large queries because they
allow the KP to request the results in smaller packets.

The last option type in KSP is the Bind. The Bind option
allows new values for variables to be assigned. Unlike the
BIND keyword of SPARQL (can be used inside the query
pattern) the Bind option is always executed after the query
pattern matching. The Bind option is especially useful in
update operations. Certain scenarios are even quite difficult to
execute without the bind. For example, let’s consider a
scenario where the KP needs to increment a certain literal by
one. Without the Bind option the KP would first need to query
the value, update it by one, and then insert the new value to the
SIB. However, if another KP modifies the literal between the

query and the update operations, the update operation does not
work correctly. The structure of the Bind field is similar to the
Filter field. The only difference is the 8-bit Variable index
field specifying the variable to be bound.

IV. VALIDATION

In order to evaluate the KSP in practice we compared it
with the other M3 communication protocols in a prototype
smart space called Smart Greenhouse [22]. Of all the KPs in
the Smart Greenhouse we chose to implement the Autocontrol
KP because it is the most complex embedded system in that
smart space. First, the Autocontrol KP was implemented with
SSAP/XML and SSAP/WAX using as few and as compact
messages as possible. In order to reduce the amount of
messages the SPARQL queries were used instead of the Triple
queries. We used both the Predicate-Object and Object list, as
well as, minimum number of characters in variables to make
the SPARQL queries as compact as possible. Then, to make
direct comparison of the M3CPs possible we implemented the
Autocontrol KP with KSP using the same operations used with
SSAP. Finally, to demonstrate the full capabilities of the KSP
we implemented the Autocontrol KP using persistent update
operations.

In Smart Greenhouse the Autocontrol KP is responsible for
modifying the status of the virtual actuators (LEDs, fans, and a
water pump) available in the SIB. To do this it utilizes
information about plant preferences and sensor measurements
for humidity, temperature, and luminosity. For example, when
the temperature is too high for a given plant the Autocontrol
KP publishes information stating that the fans should be turned
on. The information published by the Autocontrol KP is used
by Actuator KP which modifies the physical actuators
accordingly.

The operations needed for modifying the status for LEDs,
fans, or the water pump when the luminosity, temperature, or
humidity are out of the range of plant preferences are very
similar. First, the Autocontrol KP needs to query the available
actuators. Then to be aware when the state of an actuator
needs to be modified the KP executes two ASK subscriptions.
The first subscription informs when an actuator needs to be
turned on and the second when an actuator needs to be turned
off. The content of the subscriptions depends on the actuator
type. After performing the ASK subscriptions the Autocontrol
KP waits for IND messages from the SIB. Every time the SIB
notifies the Autocontrol KP that the status of an actuator needs
to be modified the KP updates a new status using the SSAP
update operation. Again the content of the message depends
on the actuator type.

The fig. 10 illustrates the message exchange between
Autocontrol KP, Sensor KP, Actuator KP and the SIB. To
make the sequence diagram as clear as possible we simplified
it in two ways. First, only the messages related to the
temperature and fans are illustrated and it should be noted that
in reality similar message exchange is executed for other
measurements and actuators as well. Second, only one of the
two ASK subscriptions is illustrated in the sequence chart. It is
also assumed that the static plant preference values for
minimum (19.5 Celsius degree) and maximum (25.7 Celsius
degree) temperature have been published into the SIB. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

108 | P a g e

www.ijacsa.thesai.org

Autocontrol KP uses CON type request while NON type
request are used by the Sensor KP and the Actuator KP.

Figure 10. Sequence chart illustrating the message exchange between the KPs
and the SIB in Smart Greenhouse

The average size of REQ messages sent by the Autocontrol
KP is illustrated in the fig. 11. The sizes for RES and IND
messages are presented in the fig. 12. TCP was used as the
transport technology with all M3CPs. For clarity sake we did
not include the join and leave messages needed with
SSAP/XML and SSAP/WAX. The first column in the fig. 11
presents the average size of messages used to query the
different actuators (fans, LEDs, or a water pump) from the
SIB. In the fig. 12 the first column presents the average size of
the RES messages to the actuator query. The second and third
columns in fig. 11 and fig. 12 represent the ASK subscription
requests and indications respectfully. In fig. 11 the fourth
column presents the average size for the update message that
is send every time a subscribe indication is received from the
SIB. The average size for the update response message is
illustrated in the fourth column of the fig. 12. As can be seen
from the fig. 11, the size for KSP query/subscribe request is on
average only 18.63% of the corresponding SSAP/XML and
43.58% of the corresponding SSAP/WAX requests. In the case
of the update request the average size of KSP message size is
15.22% of SSAP/XML and 27.50% of the SSAP/WAX
requests. In the RES and IND messages the difference
between KSP and SSAP is even bigger. The KSP
response/indication message size is on average 6.89% of the
SSAP/XML and 19.06% of the SSAP/WAX RES/IND
messages.

In the previous study we illustrated how implementing the
Autocontrol KP with KSP leads to a significantly shorter
message sizes than with other M3CPs even when the same
operations are used. The KSP provides also more advanced
ways to implement the Autocontrol KP however. By using the
persistent update operation both the workload on the
Autocontrol KP and the network traffic can be dramatically
decreased. Only two persistent update operations are needed
for each actuator type and once the Autocontrol KP has
performed these operations it can enter to a sleep mode. The
persistent update requests are the only messages the
Autocontrol KP has to send and it is therefore practical to
compare them with the largest messages needed with other
M3CPs. The average size of the persistent update requests sent
by the Autocontrol KP is 165 bytes which is only 14.27% and
25.78% of the largest SSAP/XML and SSAP/WAX requests
respectfully.

Figure 11. Average request size of Autocontrol KP with different M3

communication protocols

 Figure 12. Average message size of the response and indication messages

received by the Autocontrol KP with different M3 communication protocols

When CON type requests are used the size for each
persistent update RESP message is four bytes (UDP assumed)
which is only 0.59% of the largest SSAP/XML and 1.50% of
the largest SSAP/WAX RES message. When used with TCP it
is feasible to use NON type request in which case the
persistent update response messages are not needed at all. The
fig. 13 presents the message exchange between the KPs and
the SIB in Smart Greenhouse when persistent update
operations are used by the Autocontrol KP.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel knowledge sharing protocol for
semantic technology empowered AmI systems. The KSP is
designed for M3 applications but it can be also used with any
other application that requires a compact protocol for
knowledge sharing.

55
115 115

176

448
541 541

1156

152
251 251

640

0

200

400

600

800

1000

1200

1400

1 2 3 4

M
e

ss
ag

e
 s

iz
e

 (
b

yt
e

s)

Message number

KSP SSAP/XML SSAP/WAX

104

9 9 8

674

457 457

299
266

98 98

220

0

100

200

300

400

500

600

700

800

1 2 3 4

M
e

ss
ag

e
 s

iz
e

 (
b

yt
e

s)

Message number

KSP SSAP/XML SSAP/WAX

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

109 | P a g e

www.ijacsa.thesai.org

Figure 13. The message exchange between the KPs and the SIB when

persistent update operations are used by the Autocontrol KP.

The main design guideline in the KSP was to implement
SPARQL-like knowledge sharing mechanism in a compact
binary format that is suitable for real-life smart spaces. In
addition to the compact binary format, the feasibility of the
KSP to resource restricted devices and networks is improved
with mechanisms such as the persistent update, multi-transport
support, and the max request size option, for example.

For evaluation purposes we implemented the Autocontrol
KP of the Smart Greenhouse with different M3CPs. The KSP
messages were on average 87.08% and 70.09% shorter than
the SSAP/XML and SSAP/WAX messages respectfully. We
also demonstrated how the Autocontrol KP implementation
can be significantly simplified with persistent update
operations. Only six (two for each actuator type) persistent
update request were needed to fully implement the
Autocontrol KP. It is evident that with fewer and more
compact messages the KSP is more suitable for battery
powered low capacity devices than the other M3CPs.

The KSP is designed to be compact and easily processable
knowledge sharing protocol for ubicomb systems. This kind of
format does not come without limitations however. The binary
format limits both maximum amount and size of entities such
as prefixes, graphs, triples, and results, for example. This may
cause troubles in certain situations where huge amount of RDF
triples need to be manipulated in a single operation. Another
drawback in KSP is that unlike SPARQL it requires a good
application programming interface (API) because the binary
format is not suitable to be used by developers as such. We
also choice not to implement some of the rarely used features
of SPARQL 1.1 mainly because they would have made the
KSP too complicated. The current version of the KSP does not
support SPARQL 1.1 features such as DESCRIBE queries,
Property paths, Aggregates and Subqueries, for example.

The adoption of semantic technologies in resource
restricted devices is not only important for ubiquitous
computing, but also for the Semantic Web. This is because, the
Semantic Web is not going to get wider acceptance before
there is enough data available to create meaningful Semantic
Web applications. Therefore, in the future we are planning to
exploit the KSP also in the field of IoT and Semantic Web. To
this end we will further develop and evaluate the KSP. For
example, new bindings for at least the BLE transport needs to
be implemented. We are also considering whether some of the
missing SPARQL 1.1 functionalities should be incorporated
into the next version of the KSP.

In the future we will also need to make a more
comprehensive study on the benefits and drawbacks of the
KSP when compared to SPARQL/HTTP used in the Semantic
Web. Because the KSP is a binary format with predefined
places for parameters it is obviously much faster to parse than
the SPARQL. However, the actual difference in parsing times
needs to be measured with different workloads to justify the
drawbacks caused by the binary format. The effect of
persistent update operations on the performance of the SIB
needs to also to be carefully analyzed in the future.

ACKNOWLEDGEMENTS

This work has been funded by the Merging IoT
Technologies (MIoTe), the Device and Interoperable
Ecosystem (DIEM), and Smart Objects for Intelligent
Applications (SOFIA) projects.

REFERENCES
[1] M. Weiser, “The Computer for the 21st Century,” Scientific American,

September 1991, pp. 94-100.

[2] E. Aarts, H. Harwing, and M. Schuurmans, “Ambient Intelligence,” The
Invisible Future: The Seamless Integration Of Technology Into Everyday
Life. Denning, P. (ed.), McGraw Hill, New York (2001).

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, May 17, 2001, pp. 34-43.

[4] O. Lassila, “Serendipitous interoperability”, The Semantic Web Kick-
off in Finland – Vision, Technologies, Research, and Applications, HIIT
Publications, University of Helsinki, 2002.

[5] H. Chen, An Intelligent Broker Architecture for Pervasive and Context-
Aware Systems, doctoral dissertation, University of Maryland, Baltimore
County, Department of Computer Science and Electrical Engineering,
2004.

[6] A. Lappeteläinen, J. Tuupola, A. Palin, and T. Eriksson, “Networked
systems, services and information – The ultimate digital convergence,”
First International NoTA conference, 2008.

[7] Z. Shelby, and C. Bormann, 6LoWPAN: the Wireless Embedded
Internet, John Wiley and Sons, 2010, p. 244

[8] B. SIG, “Bluetooth specification version 4.0,” Available at
http://www.bluetooth.org, August 2012.

[9] G. Klyne and J. J. Carroll. 2004. Resource Description Framework
(RDF): Concepts and Abstract Syntax, W3C Recommendation, 10
February 2004, URL: http://www.w3.org/TR/rdf-concepts/.

[10] D. Brickley and R.V. Guha. 2004. RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Recommendation 10 February 2004,
URL: http://www.w3.org/TR/rdf-schema/.

[11] W3C OWL Working Group. 2009. OWL 2 Web Ontology Language
Document Overview. W3C Recommendation, 27 October 2009, URL:
http://www.w3.org/TR/owl2-overview/.

[12] S. Harris and A. Seaborne. 2012. SPARQL 1.1 Query Language, W3C
Working Draft, 5 January 2012, URL: http://www.w3.org/TR/sparql11-
query/.

[13] J. Schneider and T. Kamiya, 2001. Efficient XML interchange (EXI)
format 1.0. W3C Recommendation, 10 March 2001, URL:
http://www.w3.org/TR/exi/

[14] International Telecommunication Union: X.694 (2004),
http://www.itu.int/ITU/studygroups/com17/languages/x694.pdf

[15] X. Su, J. Riekki, and J. Haverinen, ”Entity Notation: enabling knowledge
representations for resource-constrained sensors”, Personal and
Ubiquitous Computing, 21 September, 2011, pp. 1-16

[16] B. DuCharme, Learning SPARQL: Querying and Updating with
SPARQL 1.1, O’Reilly Media (2011)

[17] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System Of Patterns, West
Sussex, England: John Wiley & Sons Ltd., 1996

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/exi/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

110 | P a g e

www.ijacsa.thesai.org

[18] J. Honkola, H. Laine, R. Brown, and O. Tyrkkiö, ”Smart-M3
information sharing platform,” proc. ISCC 2010, pp. 1041 – 1046

[19] A. Ylisaukko-oja, P. Hyttinen, J. Kiljander, J. Soininen, and E. Viljamaa,
”Semantic Interface for Resource Restricted Wireless Sensors,” IC3K
2nd International Workshop on Semantic Sensor Web – SSW2011,
October, 2011, Paris, France.

[20] J. Suomalainen, P. Hyttinen, and P. Tarvainen, "Secure information
sharing between heterogeneous embedded devices," proc. ECSA 2010,
pp. 205-212

[21] Z. Shelby, K. Hartke, C Bormann, and B. Frank. B. 2012. Constrained
Application Protocol (CoAP). IETF Internet-Draft 09, URL:
http://datatracker.ietf.org/doc/draft-ietf-core-coap/ (2012)

[22] J. Kiljander, M. Eteläperä, J. Takalo-Mattila, and J. Soininen, “Opening
information of low capacity embedded systems for Smart Spaces”, Proc.
WISES 2010, pp. 23-28

AUTHORS PROFILE

Jussi Kiljander is a research scientist at VTT Technical Research Centre
of Finland. He received his M.Sc. (Technology) from University of Oulu in

2010. His current research and Ph.D. studies are focused on ubiquitous
computing and device interoperability with semantic technologies. He has
published more than 10 scientific papers and contributed to several projects
related to semantic interoperability and pervasive computing.

Francesco Morandi was born in Lugo, Italy, the 26th of July 1984. He
received the degree in Electronical Engineering in 2006 and specialistic degree
in Telecommunication Engineering in 2009 both from University of Bologna.
In 2010 he worked for Fondazione Ugo Bordoni in Pontecchio Marconi
(Bologna) as consultant for the television transition to digital (DVB-T). From
2011 he's working as researcher for the University of Bologna in ARCES
(Advanced Research Center on Electronic Systems for Information and
Communication Technologies E. De Castro). His current research is focused on
developing and improving interoperable platforms for healthcare, maintenance
and energy smart grids.

Prof. Juha-Pekka Soininen is a research professor of computing and
computer architectures at VTT Technical Research Centre of Finland. He
received his MSc, LicTech and Doctor of Science (Technology) degrees from
University of Oulu 1987, 1997 and 2004 respectively. He has been Research
scientist at VTT since 1988, senior research scientist since 1996 and research
professor since 2007. He has been the leading expert in various large research
projects at VTT during 1993 - 2011. These projects include contract research
projects, joint research projects and European Union research projects. His
current research deals with ubiquitous and distributed computing, system
architectures, platform-based design methodologies, system architecture
evaluation methods, and system-level design methods. He has been a reviewer
in several international conferences, journals and books. His has published
more than 70 scientific publications and he is a member of IEEE.

http://datatracker.ietf.org/doc/draft-ietf-core-coap/

