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Abstract— In this paper we present a novel knowledge sharing 

protocol (KSP) for semantic technology empowered ubiquitous 

computing systems. In particular the protocol is designed for M3 

which is a blackboard based semantic interoperability solution 

for smart spaces. The main difference between the KSP and 

existing work is that KSP provides SPARQL-like knowledge 

sharing mechanisms in compact binary format that is designed to 

be suitable also for resource restricted devices and networks. In 

order to evaluate the KSP in practice we implemented a case 

study in a prototype smart space, called Smart Greenhouse. In 

the case study the KSP messages were on average 70.09% and 

87.08% shorter than the messages in existing M3 communication 

protocols. Because the KSP provides a mechanism for 

automating the interaction in smart spaces it was also possible to 

implement the case study with fewer messages than with other 

M3 communication protocols. This makes the KSP a better 

alternative for resource restricted devices in semantic technology 

empowered smart spaces. 

Keywords- Semantic Web; SPARQL; Ambient Intelligence; 

Ubiquitous Computing; embedded system; M3. 

I. INTRODUCTION 

Smart spaces are realizations of ubiquitous computing 
(ubicomp) [1] and ambient intelligence (AmI) [2] visions. A 
typical smart space consists of a large amount of devices 
which in co-operation provide services for users. In order to 
provide relevant services in the right situations the devices 
need to share knowledge about the smart space with each 
other. Fortunately, a lot of knowledge representation (KR) 
technologies have been developed for the emerging Future 
Internet paradigm, called the Semantic Web [3] that could be 
also exploited in ubicomp/AmI domain. This has also been 
proposed by Lassila [4], and Chen [5], for example. The M3 
concept [6] is a recent example of ubicomp interoperability 
framework which utilizes semantic technologies for 
knowledge representation. 

Many of the devices in smart spaces are resource restricted 
in terms of memory, processing capacity, and energy. 
Additionally, typical communication technologies in smart 
spaces such as the 6LowPAN [7], and Bluetooth low energy 
(BLE) [8], for example, possess limited capabilities when 
compared to the technologies used in the Web. On the other 
hand, the current technologies enabling KR in the Semantic 
Web such as Resource Description Framework (RDF) [9], 
RDF Schema (RDFS) [10], Web Ontology Language (OWL) 
[11], and SPARQL [12] use either Extensible Markup 

Language (XML) based or human readable
1
 syntax. These 

formats both require a large amount of memory and are slow 
to process in low capacity computing platforms. As a result 
they are not as such feasible for real-life smart spaces. Binary 
XML formats such as Efficient XML Interchange (EXI) [13] 
and X.694 [14] provide feasible solutions for compressing 
XML, but cannot be used with non-XML based semantic 
technologies such as the SPARQL, for example. Another 
interesting approach for Semantic Web based KR in resource 
restricted devices is the Entity Notation (EN) [15]. As a 
lightweight KR notation the EN is a good alternative for 
typical RDF serialization formats such as the RDF/XML, 
Turtle, and N-Triple, but it does not provide SPARQL-like 
mechanisms to query and update knowledge in smart spaces.  

In M3 applications the problem with resource restricted 
computing platforms has been typically solved by utilizing 
gateways which transform the proprietary format data from 
low capacity devices to semantic format. However, this 
approach complicates the system unnecessarily as for each 
new device a new gateway is needed (or new interface to 
existing gateway needs to be added). If all the communication 
between smart space agents would be based on common 
knowledge sharing protocol instead, the smart spaces would be 
much easier to develop and maintain. Additionally, since the 
common knowledge sharing protocol would enable also 
resource restricted devices to access the information published 
by other devices it would be easier to develop context-aware 
embedded systems capable of providing relevant services for 
users. 

In this paper we present a novel Knowledge Sharing 
Protocol (KSP) for M3-like semantic interoperability 
frameworks. The KSP provides all kind of agents from low 
capacity embedded systems to high end personal computers 
with SPARQL-like mechanisms for accessing and 
manipulating the knowledge in smart spaces. Unlike normal 
SPARQL, however, the KSP is designed to be suitable for 
smart spaces. Instead of the sparse human readable syntax 
used in SPARQL the KSP uses a compact binary format which 
allows significantly shorter messages to be created. Features 
such as the persistent update and max request size option make 
it also easier to exploit semantic technologies in resource 
restricted devices and networks. Additionally, to support the 

                                                           
1
  By human readable syntax we refer to notations 

designed to be used by developers as such. These kinds of 
formats are used, for example, in SPARQL, Notation3, and 
Turtle. 
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heterogeneous nature of smart spaces the KSP defines various 
bindings for typical communication and networking 
technologies used in smart spaces. In the paper bindings for 
the most typical transports User Datagram Protocol (UDP) and 
Transmission Control Protocol (TCP) are presented. 

The rest of the paper is structured as follows. In the section 
2 we present short overview of the SPARQL and M3 concepts 
as necessary background information for the paper. The 
section 3 describes the KSP in high detail. In the section 4 we 
illustrate the KSP with practical example and compare it with 
existing M3 communication protocols (M3CP). In the section 
5 conclusions and future work directions are presented.  

II. BACKGROUND 

A. SPARQL 

SPARQL provides the standard way to access and 
manipulate RDF data in the Semantic Web. The importance of 
SPARQL to the Semantic Web is formulated by the W3C 
Director Tim Berners-Lee as follows: “Trying to use the 
Semantic Web without SPARQL is like trying to use a 
relational database without SQL.” [16] 

SPARQL 1.1 defines four types of query forms: SELECT, 
CONSTRUCT, ASK and DESCRIBE. All these query forms 
use solutions obtained via pattern matching to form result sets 
or RDF graphs. The SELECT query returns the bound 
variables as such. The CONSTRUCT query returns an RDF 
graph constructed by substituting variables in a set of RDF 
triple patterns with bound variables obtained from the pattern 
matching. ASK query returns a Boolean value indicating 
whether the query has a solution or not. The DESCRIBE query 
returns a single RDF graph that contains data about the 
requested resource.  

In addition to the query language the SPARQL 1.1 
specification defines an update language for manipulating 
RDF data. The update operations are classified into two 
groups: graph management and graph update. Management 
type operations provide mechanisms for creating, destroying, 
moving and copying named graphs, or adding the contents of 
one graph to another. In contrast to the management 
operations used for operating on the graph level the update 
operations are used for modifying triples inside the graphs. 
The update operations are: INSERT DATA, DELETE DATA, 
DELETE/INSERT, LOAD and CLEAR. The DATA format 
operations operate on concrete RDF triples meaning that the 
use of variables is prohibited. Blank nodes are also not 
permitted in the DELETE DATA operation. The 
DELETE/INSERT operation is used to modify triples in the 
graph store based on bindings obtained via query pattern 
matching. It is possible to omit either DELETE or INSERT 
part of the operation in which case only the remaining part of 
the operation is executed. LOAD operation is used to insert 
triples from a RDF document specified by an URI into the 
graph store. CLEAR operation is used to remove all triples 
from the specified graphs. 

SPARQL provides also many features that can be used to 
modify the outcome of query and update operations. These 
features include, for example, OPTIONAL graph pattern, 
FILTER, BIND, subquery, GROUP BY, and various solution 

sequence modifiers. The OPTIONAL graph pattern is used to 
declare a graph pattern which does not need to match in order 
for the query pattern match to succeed. FILTER keyword 
provides a way to restrict the solution to those in which the 
FILTER expression evaluates as true. The BIND feature 
allows a variable to be bound with a new value. The subquery 
feature makes it possible to combine results of multiple 
queries by allowing queries to be put inside of queries. The 
GROUP BY keyword allows sets of data to be grouped 
together so that aggregate functions such as average, 
minimum, maximum, sum, and count can be performed on the 
individual groups.  

In SPARQL the results of the query operations can be 
modified using modifiers such as ORDER BY, LIMIT, 
OFFSET, and DISTINCT. The ORDER BY keyword can be 
used to sort the results of the query to either ascending or 
descending order. The LIMIT keyword allows the number of 
results to be restricted. The OFFSET keyword provides a way 
to skip a number of results. The DISTINC feature can be used 
to remove duplicates from the results set. 

B. M3 Concept 

The M3 aims to combine Semantic Web technologies with 
publish/subscribe-based blackboard [17] architecture to 
provide multi-device, multi-domain and multi-vendor solution 
to semantic level interoperability in smart spaces. Like in 
typical blackboard systems the idea in M3 is that knowledge is 
shared between various knowledge sources via common 
knowledge base. 

The main advantage of the blackboard architecture is 
flexibility. In blackboard system the knowledge sources are 
not tied together in any way. The knowledge sources do not in 
fact have to know anything about each other – they just see the 
information published to the knowledge base. This makes it 
possible to add new, or remove existing knowledge sources 
without the need to reconfigure other knowledge sources. The 
blackboard system is also independent of any particular 
application domain. This means that the blackboard 
architecture can be used for sharing any kind of information 
and the shared information can be used in all kind of 
applications. Because of these features the blackboard 
architecture is ideal for smart spaces where it is not possible to 
a priori determine all the components or features needed in the 
future.  

The difference between M3 and typical blackboard 
systems is that the knowledge in M3 is presented with 
semantic technologies such as RDF, RDFS, and OWL. There 
are many advantages in using the semantic technologies to 
present the knowledge in ubiquitous computing systems. First, 
because semantic technologies provide a natural way to 
describe any kind of knowledge as common machine-
interpretable ontologies they make it easier to develop context-
aware applications to smart spaces. Second, because of the 
flexible data model of RDF it is possible to add new 
information and create links between the information available 
in the knowledge base without breaking the existing 
applications. Third, the ontologies described with OWL and 
RDFS make it possible for knowledge sources to learn new 
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concepts much in the same way as humans use encyclopedias 
to describe unfamiliar words.  

In M3 the blackboard is called Semantic Information 
Broker (SIB). The Knowledge Processor (KP) is the name for 
the knowledge sources. M3 applications are created by KPs 
who provide services for end-users by interacting with each 
other via the SIB. The Smart Space Access Protocol (SSAP) 
defines the rules for KP-SIB interaction.  

There are currently two serialization formats for the SSAP 
available: SSAP/XML and SSAP/WAX. Both formats define 
eight operations: join, leave, insert, remove, update, query, 
subscribe, and unsubscribe. The SSAP/XML version provides 
three types of query operations: Triple, Wilbur, and SPARQL 
1.0. The M3 implementation using the SSAP/XML is called 
Smart-M3 [18]. A Word Aligned XML (WAX) version of the 
SSAP was introduced to better support the exploitation of M3 
in low capacity devices [19]. In SSAP/WAX encoding scheme 
each XML tag is 32 bit long. This allows more compact 
messages to be constructed. The SSAP/WAX is used in RIBS 
version of the M3 [20]. Wilbur queries are not supported in the 
RIBS. 

III. KNOWLEDGE SHARING PROTOCOL 

A. Overview 

The objective of the KSP is to define the methods and 
syntax for knowledge sharing in AmI/ubicomb domain. The 
idea was to develop similar protocol to Semantic Web 
enhanced ubicomb systems, as the Constrained Application 
Protocol (CoAP) [21] is to the embedded web (i.e. the idea 
was to do the same for SPARQL/HTTP, as the CoAP has done 
for the HTTP). Initially we even planned to implement the 
KSP solely on top of CoAP. However, we soon understood 
that the heterogeneous nature of smart spaces requires the KSP 
to be usable also directly with various lower level transport 
technologies. In this paper bindings for TCP and UDP 
transports are presented. The principal model of KSP stack is 
illustrated in the fig. 1. 

 

Figure 1.  Knowledge Sharing Protocol stack 

The different requirements of various transport 
technologies is managed in the KSP header presented in the 
section C. The KSP messages can contain also transport 
independent data and options fields. The structure for these 
fields is presented in sections D and E respectfully. All KSP 
messages are encoded in little endian format. 

There are five major differences with the KSP and existing 
M3CPs (namely the SSAP/XML and SSAP/WAX). First, to 
provide a feasible solution for low capacity devices a binary 
format for the messages is used in KSP. The binary format is 

more compact and faster to parse, but not as versatile as the 
XML format used in the SSAP. Second, all the transactions in 
KSP are based on the SPARQL 1.1 whereas in SSAP the 
SPARQL is only one of the three query formats. Third, KSP 
does not require join and leave operations because the access 
control parameters can be added to any KSP message when 
needed. This makes the basic KP-SIB interaction more 
scalable because the SIBs do not have to keep track of the 
state of KPs. Fourth, the KSP allows KPs to define the 
maximum size for SIB responses. This is very useful for low 
capacity devices because the memory requirements can be 
estimated at the compile time. The fifth main difference is that 
the KSP defines persistent format also for update operations 
(i.e. DELETE, INSERT, and UPDATE). The persistent type 
update operations work so that the data manipulation part of 
the operation is executed if a solution is found from the query 
pattern matching. Similarly to the query operation the 
persistent update operations are re-evaluated every time the 
content of the SIB change. By allowing KPs to create simple 
rules to the SIB the persistent update operations provide a way 
to reduce the traffic in resource restricted networks and lighten 
the load on low capacity devices. The persistent operation are 
terminated with TERMINATE operation. 

B. Messaging Model 

The KP always initiates the transaction by sending a 
request (REQ) message to the SIB. To support the needs of the 
wide range of communication technologies the KSP defines 
two types of requests: Non-confirmable (NON), and 
Confirmable (CON). With NON request the SIB sends a 
response (RES) message only if results are found or an 
internal error has occurred. The NON requests are useful for 
TCP-like transports that provide a reliable delivery of 
messages and do not therefore require extra control from the 
KSP. Additionally, the NON request are useful for reducing 
the network traffic when it is not required that every message 
is delivered to the SIB. For example, a low capacity 
accelerometer updating acceleration value in high intervals 
does not have to care if a message is lost because it would take 
more time to update the old value than to insert a new one. 
The NON requests are also useful when KSP is used in 
multicast/broadcast manner to discover the available SIBs in 
the network. With CON type requests the SIB always sends a 
response to the KP. Therefore, the CON type request is 
typically used with transport technologies such as the UDP 
that do not provide reliable delivery of messages.  The RES 
message is always send to the same socket where the REQ 
message was received 

In addition to normal RES messages, the KSP defines 
indication (IND) messages which are used to notify the KP 
about changes in the persistent operations. The IND messages 
are typically used when the results of a persistent query 
operation (i.e. subscribe) change. Indications are also used to 
inform KP when a persistent operation needs to be terminated 
for some reason. Because transports such as UDP do not 
provide reliable delivery of messages the KSP provides 
acknowledgement (ACK) messages to be used with unreliable 
communication protocols to notify the SIB when the IND 
message has been received. The decisions on how long to wait 
before retransmitting and how many times to retransmit the 
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IND message are left for various SIB implementations. It is 
even possible to implement a SIB that can dynamically adjust 
to various networks by making these values modifiable via a 
specific graph in the SIB. The fig. 2 presents a sequence chart 
which illustrates the message exchange between KP and a SIB 
in a scenario where a KP1 subscribes to a triple and KP2 
modifies the triple using UPDATE operation. Confirmable and 
Non-confirmable type requests are used by KP1 and KP2 
respectfully. 

 

Figure 2.  Example of message exchange with CON and NON requests 

C. Message Format and Semantics: Header field  

The fixed size header field contains parameters such as the 
version, transaction type, request type, and transaction 
identifier that are common for all transactions. The structure of 
the header field depends on the message type (REQ, RES, 
IND, or ACK) and the transport technology. The header size is 
eight bytes for TCP, four bytes for UDP REQ/RES/ACK 
messages, and six bytes for UDP Indications. Fig. 3 and fig. 4 
illustrate the header formats for different message types with 
TCP and UDP transports. 

 

Figure 3.  KPS header formats for TCP 

 

Figure 4.  KSP header formats for UDP 

The 8-bit Version field specifies the KSP version number. 
Value 0x01 is used for the version presented in the paper. 
With TCP the length of the KSP messages is defined in the 32-
bit Length field. The length of the message is needed with 
TCP because the KSP message can be divided into multiple 

TCP segments. With UDP the Length field is not present and 
the whole KSP message must fit to a single UDP datagram. 
The maximum size for UDP datagram depends on the 
underlying protocols. For example, with 6LowPAN the 
maximum message size is 1024 bytes. In KP initiated 
messages the 7-bit Transaction type field specifies the type of 
the operation and the 1-bit Request type the type of the request 
(either NON or CON). Table 1 presents the code values for 
different transaction types. With connectionless transports the 
ACK message is identified by assigning value 0x00 for the 
transaction type and request type fields. 

TABLE I.  TRANSACTION TYPES 

Transaction type Code 

DELETE DATA 0x01 

INSERT DATA 0x02 

UPDATE DATA 0x03 

DELETE 0x04 

INSERT 0x05 

UPDATE 0x06 

SELECT 0x07 

ASK 0x08 

CONSTRUCT 0x09 

DELETE_PERSISTENT 0x0a 

INSERT_PERSISTENT 0x0b 

UPDATE_PERSISTENT 0x0c 

SELECT_PERSISTENT 0x0d 

ASK_ PERSISTENT  0x0e 

CONSTRUCT_ PERSISTENT 0x0f 

TERMINATE 0x10 

RESET 0x11 

CREATE 0x12 

DROP 0x13 

COPY 0x14 

MOVE 0x15 

ADD 0x16 
 

In RES and IND messages the Transaction type and 
Message type fields are replaced with 7-bit Status code and 1-
bit Response type fields (either RES or IND). The Status code 
specifies whether operation was successfully executed. 
Available status codes are illustrated in the table 2. 

TABLE II.  STATUS CODES 

Status Code 

OK 0x00 

ERROR: KSP version not supported 0x01 

ERROR: Invalid transaction type 0x02 

ERROR: Invalid message type 0x03 

ERROR: Invalid data field format 0x04 

ERROR: Invalid option type 0x05 

ERROR: Invalid option format 0x06 

ERROR: SIB internal error 0x07 
 

In order to be able to pair RES and IND messages with the 
requests each KSP transaction is identified with 16-bit 
Transaction ID. UDP-like transports (no ordered delivery of 
messages) need also an additional identifier for the IND 
messages. The 16-bit Sequence number field is used for this 
purpose. The first indication for each persistent transaction 
must use a value 0x01 and the value is incremented by one for 
each following indication. A KP may discard an indication as 
outdated under the following condition: 
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Where I1 is the sequence number of the previous (not 
discarded) indication and the I2 is the sequence number of the 
most recent indication. The right side of the equation checks if 
the sequence number for I2 is smaller than for I1. The left side 
of the equation checks whether the sequence number for the I2 
has wrapped around. 

D. Message Format and Semantics: Data field 

The KSP transactions can be divided into three categories: 
query, update, and terminate. In query and update operations 
the REQ message Header field is followed by the Data field 
which contains the transaction specific information. With 
TERMINATE operation the Data field is not needed because 
transaction identifier in the request header can be used to 
define the active persistent transaction to be terminated. In 
RES messages only query operations contain the Data field. 

1) Encoding Format for RDF graph 
Since the KSP is a query and update protocol for RDF the 

RDF graphs play a central role in almost all KSP messages. 
The common structure for Graph fields is illustrated in the fig. 
5. 

 

Figure 5.  RDF graph field structure 

The Graph field consists of 8-bit triple count (TC) field 
and a zero or more (maximum 255) Triple fields. Each Triple 
field starts with 3-bit ST, 2-bit PT, and 3-bit OT fields, which 
specify the content of the following Subject, Predicate, and 
Object fields respectfully. Possible types for these triple 
members (subject, predicate, and object) are presented in the 
table 3. The Literal type can be only used in objects.  

TABLE III.  TRIPLE MEMBER TYPES 

Type Code 

Empty 0x00 

URI 0x01 

Reserved Word 0x02 

Variable 0x03 

Literal 0x04 

 

The field structure for the various triple members is 
illustrated in the fig. 6. In URI field the 8-bit Prefix index field 
specifies the URI from the prefix list that is concatenated with 
the local URI to form the full URI (see prefix option). For 
example, with prefix index value 0x03 the third URI is 
selected form the prefix list. Prefix index value 0x00 is used 
for full URIs. The 8-16 bit URI length field specifies the 
length of the actual URI string field. The first bit of the URI 
length field denotes whether the length of the URI is presented 
with one or two bytes. This kind of length encoding allows not 
only compact messages, but also makes it possible to use 
longer URIs when necessary. The drawback is that the parser 
needs to perform extra work when decoding/encoding the 

messages. Similar length encoding is also used in other strings 
in the KSP. 

 

Figure 6.  Field structure for triple member types 

Literals in RDF can be either plain or typed. Only typed 
Literals are used in KSP however. The first eight bits in the 
Literal field is reserved for the type. The table 4 presents the 
supported Literal types in the KSP version 1.0. 

TABLE IV.  LITERAL TYPES 

Type Value 

xsd:string 0x00 

xsd:interger 0x01 

xsd:float 0x02 

xsd:dateTime 0x03 

xsd:Boolean 0x04 
 

 With xsd:string type literal the first 8-32 bits is reserved 
for the length of  the string. The two most significant bits 
specify the number of bytes used for the length field and 
following 6-30 specify the length of the xsd:string. The 
xsd:integer and xsd:float fields are 32-bit long. The IEEE 32-
bit floating-point format is used for the xsd:float type. The 
xsd:dateTime field is 19 byte ASCII string. The xsd:Boolean 
field contains a 8-bit unsigned integer. Value 0x00 is reserved 
for “false” and 0x01 for “true”. 

Variable type triple member field contains 8-bit variable 
index which is used as an identifier for the variable in the KSP 
message. With n variables the largest variable index is n-1. In 
SELECT operation it is also required that the indexes for 
projected variables (i.e. variables whose bindings are returned) 
start from zero. For example, in SELECT query with six 
variables of which two are projected variables the variable 
indexes 0x00 and 0x01 are used for projected variables and 
indexes from 0x02 to 0x05 are reserved to other variables. 

The target in KSP is to provide as compact messages as 
possible and therefore two triple member types are designed 
just for this purpose. With Empty type the field (subject, 
predicate, or object) is not present and the corresponding value 
from the previous triple is used. The purpose of the Empty 
type is to enable more compact messages to be constructed by 
grouping triples with common subjects, predicates, and 
objects. The basic idea is similar to the Predicate-Object and 
Object lists in SPARQL, but the Empty type is more versatile 
because it allows both predicates without common subject, and 
objects without common subject-predicate to be grouped. The 
Reserved word type is another mechanism for shortening KSP 
messages. The idea in reserved words is to present common 
vocabulary with eight bit unsigned integers. The code values 
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for various reserved RDF, XML Schema (XMLS), RDFS, and 
OWL words are presented in the table 5. 

TABLE V.  RESERVED WORDS 

Word Value 

rdf:type 0x00 

rdfs:Class 0x01 

rdfs:subClassOf 0x02 

rdfs:property 0x03 

rdfs:subPropertyOf 0x04 

rdfs:range 0x05 

rdfs:domain 0x06 

owl:TransitiveProperty 0x07 

owl:SameAs 0x08 

xsd:string 0x09 

xsd:interger 0x0a 

xsd:float 0x0b 

xsd:dateTime 0x0c 

xsd:Boolean 0x0d 
   

2) Data field format for query operations 
KSP defines six types of query operations. These 

operations include the transient and persistent formats for 
SELECT, ASK and CONSTRUCT. The persistent query 
operations in KSP are very similar to the SSAP equivalents. 
The only difference is that in KSP the SIB does not inform the 
KP about new and obsolete results, but just sends the current 
status of the query when the results have changed. The Data 
field format for transient and persistent query REQ and RES 
messages is presented in the fig. 7. 

 

Figure 7.  Data field format for query requests and responses 

In SELECT requests the 8-bit VC field specifies the 
number of variables whose bindings are returned in the RES 
message. The following three fields are reserved for the query 
pattern which is matched against the RDF-database of the SIB. 
The query pattern consists of a Basic graph, and a number of 
Optional graph fields. The Basic graph field defines a triple 
pattern that must match in order for there to be a solution. The 
Optional graph fields contain graphs that do not reject the 
solution if no match for the graph pattern is found. The 
optional graphs are useful when a KP wants to receive some 
results even though not all the requested triples exist in the 
SIB. The 8-bit OGC field defines the number of optional 
graphs in the query pattern. The ASK request is otherwise 
identical to the SELECT request except there is no VC field. 
The CONSTRUCT request is also similar to the SELECT 
request expect the VC field is replaced by a Construct graph 

field. The Construct graph field defines triples to be 
constructed by replacing the variables with RDF terms 
obtained from the query pattern matching. 

As already mentioned the query RES and IND messages 
are identical in KSP. This simplifies parser and SIB 
implementations when compared to the SSAP where the 
indications contain both new and obsolete results. The 
SELECT RES/IND messages start with 8-bit PC field which 
specifies the number of following URIs associated to the 
prefix indexes. The 16-bit TRC and RC fields specify the 
number of total results and results respectfully. The difference 
between these fields is that the total result count specifies the 
total number of results of the query operation whereas the 
result count defines the number of results in the RES message. 
These values can be different if all the results do not fit to a 
single message due the max response size. Each Result field in 
SELECT RES/IND message contains a number of bound 
variables. The exact number of variables (maximum 255) in a 
single Result field is defined by the 8-bit VC field. The first 
eight bits in the Variable field specify the type of the RDF 
term to which the variable is bound. Possible types for bound 
variables include Empty, URI, Reserved Word, and Literal. 
Same formats for these RDF terms fields are used as in the 
Triple field (see fig. 6). The CONSTRUCT RES/IND 
messages are otherwise similar to the SELECT messages 
expect there is no VC field and the Results field contains 
triples instead of RDF terms. The Data field in ASK RES/IND 
messages contains 8-bit unsigned integer defining whether 
solutions were found. 

3) Data field format for update operations 
In addition to the query operations the KPS provides 

various operations for manipulating the data in the SIB. These 
operations can be roughly divided into two groups: update and 
management. The difference between these operation types is 
that update operations are used to modify triples inside the 
graphs whereas the management operations provide 
mechanisms for creating, destroying, etc. complete graphs. 
Fig. 8 illustrates the data field formats for the data 
manipulation requests. 

 

Figure 8.  Data field structure for update request 

The DATA format KSP update requests consist of various 
graphs which depending on the operation define either the 
triples to be deleted or/and inserted. The difference between 
plain and DATA type operations is that variables are not 
allowed in DATA operations. The advantage of DATA type 
operations is that large updates can be done without the need 
to first query bindings to the variables. The plain update 
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operations provide also many advantages over the DATA type 
operations, however, and it depends on the situation which 
type should be used. The plain update operations are 
especially useful in situations where a KP would need to first 
query information and then use the information for modifying 
triples in the SIB. It is also possible to create simple rules to 
the SIB by defining the update to be persistent. In persistent 
update operation a new query pattern match is executed 
always when information in the SIB is modified. If solutions 
are obtained from the query pattern matching the data 
manipulation part of the operation is executed. 

With SSAP it is only possible to access a single graph in 
the SIB. Sometimes it is feasible to be able to create separate 
graphs for different purposes however (e.g. privacy 
management). A simple way to manage privacy in M3 is to 
create separate graphs for various user groups and make the 
graphs accessible only to specific users. In KSP the CREATE 
and DROP operations are used for creating and destroying 
graphs respectfully. The 8-bit GC field defines the number of 
following Graph name fields which specify the URIs for the 
graphs to be created or destroyed. The encoding of the Graph 
name field is identical to the URI field. In COPY, MOVE and 
ADD operations the Source graph and Destination graph 
fields specify the source and destination graphs of the 
operation respectfully. Same encoding is used as for the Graph 
name field. 

E. Message Format and Semantics: Options field 

One of the main advantages of XML based protocols is 
extendibility. In KSP options are a way to achieve a certain 
level of extendibility in a non-XML protocol. Another 
advantage of options is that because options are, as the name 
implies, optional they make it possible to create more compact 
messages by leaving out the parts that are not needed in the 
particular message. The Options field follows the Data field in 
the KSP REQ messages. The 8-bit OC field defines the 
number of options in the request. Eight bits are reserved for 
the type in each option field. The table 6 presents the code 
values for the various option types. 

TABLE VI.  OPTION TYPES 

Option Code 

PREFIX 0x00 

DELETE GRAPH 0x01 

INSERT GRAPH 0x02 

QUERY GRAPH 0x03 

OPTIONAL PATTERN 0x04 

FILTER 0x05 

SOLUTION MODIFIER 0x06 

BIND 0x07 

MAX RESPONSE SIZE 0x08 

CREDENTIALS 0x09 

 

The fig. 9 illustrates the field formats for the various KSP 
options. One of the most important design guidelines for the 
KSP was to support low capacity computing platforms.  There 
are two options specified for this purpose: Prefix and Max 
response size. The Prefix option works as the PREFIX 
keyword in SPARQL and it is useful for shortening URIs 
appearing multiple times in a message. In Prefix field the first 

eight bits specify the number of following URI fields. In KSP 
messages the order number (prefix index) of the URI is used in 
the same way as the prefix label in SPARQL. By allowing the 
maximum size for RES and IND messages to be specified in 
the REQ message, the 32-bit Max response size option field 
makes it easier for a KP to estimate the memory requirements 
at compile time. 

 

Figure 9.  Field structures for options 

Normally the query and update operations affect to all the 
graphs in the SIB (assuming KP has access rights). It is 
sometimes useful to make a KSP operation to affect only 
certain graphs in the SIB however. The Delete graph, Insert 
graph and Query graph options are used for this purpose. The 
first eight bits specify the number of named graphs. Same 
encoding is used for Graph name fields as for normal URI 
fields. The various named graph options are typically used 
together with credentials option which provides access control 
for KSP communication.  Credentials are needed in situations 
where the SIB (or some graphs inside a SIB) can be accessed 
only by certain KPs. The Credentials field consists of 128-bit 
KP ID and Password fields which identify each KP uniquely. 
The first 8-bits in the Password field define the length of the 
following password. The Credentials option is typically only 
useful with transports such as Transport Layer Security (TLS) 
and Datagram TLS (DTLS) that provide encryption and trust 
for the authentication process. It should be noted that the KSP 
provides only a way to present the access rights and the actual 
access control management is out of the scope of the paper. 

The KSP provides two options for modifying the solution 
produced in query pattern matching: Filter and Solution 
modifier. The Filter option can be used for limiting the 
solution to those which filter expression evaluates true. The 
first eight bits in the Filters field are reserved for filter count 
(FC). Each filter expression consists of a group of operand and 
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operator tokens presented in Reverse Polish notation (RPN). 
The RPN was chosen because it provides a compact notation 
and allows fast processing of the expressions. The 8-bit TC 
field defines the number of tokens in the expression. The type 
for each token is also presented with eight bits. Values from 
0x00 to 0x06 are reserved for operands and values from 0x07 
onwards for operators. The table 7 presents the code values for 
various token types. If the token is operand type the Type field 
is followed by the Operand field which specifies the value for 
the operand. 

TABLE VII.  TOKEN TYPES 

Token type Code 

xsd:string 0x00 

xsd:integer 0x01 

xsd:float 0x02 

xsd:dateTime 0x03 

xsd:Boolean 0x04 

variable 0x05 

URI 0x06 

= 0x07 

!= 0x08 

< 0x09 

> 0x0a 

<= 0x0b 

>= 0x0c 

+ 0x0d 

- 0x0e 

* 0x0f 

/ 0x10 

|| 0x11 

&& 0x12 

regex 0x13 
 

The Solution modifier option provides ways for altering the 
solution sequence. By default the solution sequence of query 
operations is unordered. The 2-bit Order field can be used to 
define the solution order (unordered, ascending, or 
descending). The 1-bit Limit flag, Offset flag, and Distinct flag 
fields define whether the Limit, Offset, and Distinct modifiers 
are used. These modifiers are identical to the SPARQL 
equivalents. The next 3-bits are unused in this version of the 
KSP. If the solution sequence is ordered the 8-bit Variable 
index field defines the variable based on which the order of the 
solution sequence is created. For example, alphabetic order for 
the solution sequence is used if the variable is bound to 
xsd:string type. If the Limit and Offset flags are set the 16-bit 
Limit and Offset fields specify the maximum number and the 
offset for the results respectfully. The Limit and Offset 
modifiers are especially useful in large queries because they 
allow the KP to request the results in smaller packets. 

The last option type in KSP is the Bind. The Bind option 
allows new values for variables to be assigned. Unlike the 
BIND keyword of SPARQL (can be used inside the query 
pattern) the Bind option is always executed after the query 
pattern matching. The Bind option is especially useful in 
update operations. Certain scenarios are even quite difficult to 
execute without the bind. For example, let’s consider a 
scenario where the KP needs to increment a certain literal by 
one. Without the Bind option the KP would first need to query 
the value, update it by one, and then insert the new value to the 
SIB. However, if another KP modifies the literal between the 

query and the update operations, the update operation does not 
work correctly. The structure of the Bind field is similar to the 
Filter field. The only difference is the 8-bit Variable index 
field specifying the variable to be bound. 

IV. VALIDATION 

In order to evaluate the KSP in practice we compared it 
with the other M3 communication protocols in a prototype 
smart space called Smart Greenhouse [22]. Of all the KPs in 
the Smart Greenhouse we chose to implement the Autocontrol 
KP because it is the most complex embedded system in that 
smart space. First, the Autocontrol KP was implemented with 
SSAP/XML and SSAP/WAX using as few and as compact 
messages as possible. In order to reduce the amount of 
messages the SPARQL queries were used instead of the Triple 
queries. We used both the Predicate-Object and Object list, as 
well as, minimum number of characters in variables to make 
the SPARQL queries as compact as possible. Then, to make 
direct comparison of the M3CPs possible we implemented the 
Autocontrol KP with KSP using the same operations used with 
SSAP. Finally, to demonstrate the full capabilities of the KSP 
we implemented the Autocontrol KP using persistent update 
operations.  

In Smart Greenhouse the Autocontrol KP is responsible for 
modifying the status of the virtual actuators (LEDs, fans, and a 
water pump) available in the SIB. To do this it utilizes 
information about plant preferences and sensor measurements 
for humidity, temperature, and luminosity. For example, when 
the temperature is too high for a given plant the Autocontrol 
KP publishes information stating that the fans should be turned 
on. The information published by the Autocontrol KP is used 
by Actuator KP which modifies the physical actuators 
accordingly. 

The operations needed for modifying the status for LEDs, 
fans, or the water pump when the luminosity, temperature, or 
humidity are out of the range of plant preferences are very 
similar. First, the Autocontrol KP needs to query the available 
actuators. Then to be aware when the state of an actuator 
needs to be modified the KP executes two ASK subscriptions. 
The first subscription informs when an actuator needs to be 
turned on and the second when an actuator needs to be turned 
off. The content of the subscriptions depends on the actuator 
type. After performing the ASK subscriptions the Autocontrol 
KP waits for IND messages from the SIB. Every time the SIB 
notifies the Autocontrol KP that the status of an actuator needs 
to be modified the KP updates a new status using the SSAP 
update operation. Again the content of the message depends 
on the actuator type. 

The fig. 10 illustrates the message exchange between 
Autocontrol KP, Sensor KP, Actuator KP and the SIB. To 
make the sequence diagram as clear as possible we simplified 
it in two ways. First, only the messages related to the 
temperature and fans are illustrated and it should be noted that 
in reality similar message exchange is executed for other 
measurements and actuators as well. Second, only one of the 
two ASK subscriptions is illustrated in the sequence chart. It is 
also assumed that the static plant preference values for 
minimum (19.5 Celsius degree) and maximum (25.7 Celsius 
degree) temperature have been published into the SIB. The 
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Autocontrol KP uses CON type request while NON type 
request are used by the Sensor KP and the Actuator KP. 

 

Figure 10.   Sequence chart illustrating the message exchange between the KPs 
and the SIB in Smart Greenhouse 

The average size of REQ messages sent by the Autocontrol 
KP is illustrated in the fig. 11. The sizes for RES and IND 
messages are presented in the fig. 12. TCP was used as the 
transport technology with all M3CPs. For clarity sake we did 
not include the join and leave messages needed with 
SSAP/XML and SSAP/WAX. The first column in the fig. 11 
presents the average size of messages used to query the 
different actuators (fans, LEDs, or a water pump) from the 
SIB. In the fig. 12 the first column presents the average size of 
the RES messages to the actuator query. The second and third 
columns in fig. 11 and fig. 12 represent the ASK subscription 
requests and indications respectfully. In fig. 11 the fourth 
column presents the average size for the update message that 
is send every time a subscribe indication is received from the 
SIB. The average size for the update response message is 
illustrated in the fourth column of the fig. 12. As can be seen 
from the fig. 11, the size for KSP query/subscribe request is on 
average only 18.63% of the corresponding SSAP/XML and 
43.58% of the corresponding SSAP/WAX requests. In the case 
of the update request the average size of KSP message size is 
15.22% of SSAP/XML and 27.50% of the SSAP/WAX 
requests. In the RES and IND messages the difference 
between KSP and SSAP is even bigger. The KSP 
response/indication message size is on average 6.89% of the 
SSAP/XML and 19.06% of the SSAP/WAX RES/IND 
messages. 

In the previous study we illustrated how implementing the 
Autocontrol KP with KSP leads to a significantly shorter 
message sizes than with other M3CPs even when the same 
operations are used. The KSP provides also more advanced 
ways to implement the Autocontrol KP however. By using the 
persistent update operation both the workload on the 
Autocontrol KP and the network traffic can be dramatically 
decreased. Only two persistent update operations are needed 
for each actuator type and once the Autocontrol KP has 
performed these operations it can enter to a sleep mode. The 
persistent update requests are the only messages the 
Autocontrol KP has to send and it is therefore practical to 
compare them with the largest messages needed with other 
M3CPs. The average size of the persistent update requests sent 
by the Autocontrol KP is 165 bytes which is only 14.27% and 
25.78% of the largest SSAP/XML and SSAP/WAX requests 
respectfully. 

 
Figure 11.  Average request size of Autocontrol KP with different M3 

communication protocols 
 

 

    

     

     

     

     

     

     

     

     

     

     

     

     

     Figure 12.  Average message size of the response and indication messages 

received by the Autocontrol KP with different M3 communication protocols 

When CON type requests are used the size for each 
persistent update RESP message is four bytes (UDP assumed) 
which is only 0.59% of the largest SSAP/XML and 1.50% of 
the largest SSAP/WAX RES message. When used with TCP it 
is feasible to use NON type request in which case the 
persistent update response messages are not needed at all. The 
fig. 13 presents the message exchange between the KPs and 
the SIB in Smart Greenhouse when persistent update 
operations are used by the Autocontrol KP. 

V. CONCLUSIONS AND FUTURE WORK 

We presented a novel knowledge sharing protocol for 
semantic technology empowered AmI systems. The KSP is 
designed for M3 applications but it can be also used with any 
other application that requires a compact protocol for 
knowledge sharing. 
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Figure 13.  The message exchange between the KPs and the SIB when 

persistent update operations are used by the Autocontrol KP. 

The main design guideline in the KSP was to implement 
SPARQL-like knowledge sharing mechanism in a compact 
binary format that is suitable for real-life smart spaces. In 
addition to the compact binary format, the feasibility of the 
KSP to resource restricted devices and networks is improved 
with mechanisms such as the persistent update, multi-transport 
support, and the max request size option, for example.  

For evaluation purposes we implemented the Autocontrol 
KP of the Smart Greenhouse with different M3CPs. The KSP 
messages were on average 87.08% and 70.09% shorter than 
the SSAP/XML and SSAP/WAX messages respectfully. We 
also demonstrated how the Autocontrol KP implementation 
can be significantly simplified with persistent update 
operations. Only six (two for each actuator type) persistent 
update request were needed to fully implement the 
Autocontrol KP. It is evident that with fewer and more 
compact messages the KSP is more suitable for battery 
powered low capacity devices than the other M3CPs. 

The KSP is designed to be compact and easily processable 
knowledge sharing protocol for ubicomb systems. This kind of 
format does not come without limitations however. The binary 
format limits both maximum amount and size of entities such 
as prefixes, graphs, triples, and results, for example. This may 
cause troubles in certain situations where huge amount of RDF 
triples need to be manipulated in a single operation. Another 
drawback in KSP is that unlike SPARQL it requires a good 
application programming interface (API) because the binary 
format is not suitable to be used by developers as such. We 
also choice not to implement some of the rarely used features 
of SPARQL 1.1 mainly because they would have made the 
KSP too complicated. The current version of the KSP does not 
support SPARQL 1.1 features such as DESCRIBE queries, 
Property paths, Aggregates and Subqueries, for example. 

The adoption of semantic technologies in resource 
restricted devices is not only important for ubiquitous 
computing, but also for the Semantic Web. This is because, the 
Semantic Web is not going to get wider acceptance before 
there is enough data available to create meaningful Semantic 
Web applications. Therefore, in the future we are planning to 
exploit the KSP also in the field of IoT and Semantic Web. To 
this end we will further develop and evaluate the KSP. For 
example, new bindings for at least the BLE transport needs to 
be implemented. We are also considering whether some of the 
missing SPARQL 1.1 functionalities should be incorporated 
into the next version of the KSP.  

In the future we will also need to make a more 
comprehensive study on the benefits and drawbacks of the 
KSP when compared to SPARQL/HTTP used in the Semantic 
Web. Because the KSP is a binary format with predefined 
places for parameters it is obviously much faster to parse than 
the SPARQL. However, the actual difference in parsing times 
needs to be measured with different workloads to justify the 
drawbacks caused by the binary format. The effect of 
persistent update operations on the performance of the SIB 
needs to also to be carefully analyzed in the future. 
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