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Abstract— Data Mining is being actively applied to stock market 

since 1980s. It has been used to predict stock prices, stock 

indexes, for portfolio management, trend detection and for 

developing recommender systems. The various algorithms which 

have been used for the same include ANN, SVM, ARIMA, 

GARCH etc. Different hybrid models have been developed by 

combining these algorithms with other algorithms like roughest, 

fuzzy logic, GA, PSO, DE, ACO etc. to improve the efficiency. 

This paper proposes DE-SVM model (Differential Evolution- 

Support vector Machine) for stock price prediction. DE has been 

used to select best free parameters combination for SVM to 

improve results. The paper also compares the results of 

prediction with the outputs of SVM alone and PSO-SVM model 

(Particle Swarm Optimization). The effect of normalization of 

data on the accuracy of prediction has also been studied. 

Keywords- Differential evolution; Parameter optimization; Stock 

price prediction; Support vector Machines; Normalization. 

I. INTRODUCTION 

Stock Market prediction is an attractive field for research 
due to its commercial applications and the attractive benefits it 
offers. It follows stochastic, non-parametric and nonlinear 
behavior. An important hypothesis related to stock market 
which has been debated and researched time and again is 
EMH (Efficient Market Hypothesis). According to EMH, the 
stock market immediately reflects all of the information 
available publicly. But in reality, the stock market is not that 
efficient, so the prediction of stock market is possible.  

This paper proposes a hybrid of DE-SVM (Differential 
Evolution-Support Vector Machines). The performance of 
SVM is based on the selection of free parameters C (cost 
penalty), ϵ (insensitive-loss function) and γ (kernel parameter). 
DE will be used to find the best parameter combination for 
SVM. DE-SVM has already been used by Zhonghai Chen et 
al. [6] for air conditioning load prediction, Yong Sun et al. [7] 
for gas load prediction, Jośe Garćıa-Nieto et al. [8] for feature 
selection, Shu Jun et al. [9] for rainstorm forecasting and for 
studying the lithology identification method from well logs by 
Jiang An-nan et al. [10]. The paper also compares the results 
of DE-SVM with PSO-SVM and SVM. The effect of 
normalization on datasets has also been studied. 

II. LITERATURE REVIEW 

Yohanes et al. [1] showed that ARIMA (Autoregressive 
Integrated Moving Average) can be outperformed by ANN. 
ESS (Each sum square) result with ARIMA is 284.95 and with 
ANN is 170.40 [1]. Qiang Ye et al. [2] proved that stock price 
prediction results using amnestic NN are better than common 
ANN. The ratio of right classified stocks is 58.25% when 
forgetting coefficient is 0.10 as compared to 56.25% for 
forgetting coefficient of 0.00 (for common ANN) [2]. Ling-
Feng Hsieh et al. [3] integrated DOE (Design of Experiment) 
with BPNN to show that experimental validation of the 
optimal parameter settings can effectively improve the 
forecasting rate to 84%. Mustafa E. Abdual-Salam et al. [4] 
proved that DE converges to global minimum faster and gives 
better accuracy than PSO when used as training algorithms for 
ANN. Zhang Da-yong et al. [5] proposed a hybrid model 
ARMA-SVM (Autoregressive Moving average-SVM) which 
has MSE of 1.1433 against 1.1494 for BPNN.  

A. Support Vector Machines (SVM):  

SVM was developed by Vapnik and Cortes in 1995. SVM 
is a promising method for the classification of both linear and 
nonlinear data [11]. SVM can be used both for classification 
and regression. SVMs can be trained with lesser input samples 
and are less prone to overfitting. The training time of even the 
fastest SVMs can be extremely slow, but they are highly 
accurate, owing to their ability to model complex nonlinear 
decision boundaries [11]. SVM follows supervised learning. 
For classification purposes, when data is  linearly separable a 
straight line can be drawn to separate the tuples of one class 
from the other. For nonlinear data, the data is mapped into 
higher dimensional space where the different classes can be 
separated using a hyperplane. A number of hyperplanes are 
possible but SVM searches for the maximum marginal 
hyperplane (MMH). The vectors in the training set that have 
minimal distance to the maximum margin hyperplane are 
called support vectors [12].  

SVM selects the minority of observations (support vectors) 
to represent the majority of the rest of the observations [13]. 
The soft margins were introduced to penalize but not prohibit 
classification errors while finding the maximum margin 
hyperplane [11].  
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If the margin can be significantly increased, the better 
generalization can outweigh the penalty for a classification 
error on the training set [11].  To maximize the prediction 
ability of a model, both underfitting and overfitting need to be 
depressed at the same time in data processing [25]. The error 
of training is called Empirical Risk denoted by Remp. SVM uses 
SRM (Structural Risk Minimization) instead of ERM 
(Empirical Risk Minimization) which aims at minimizing (1) : 

min   Remp+
√ (  

  

 
  )   (

 

 
)

 
  

     (1) 
Here, l is number of samples in training set, 1-η is the 

probability of the equation ( (1) ≥ Rpred , Rpred is the total risk of 
prediction) to be true and h is VC dimension to depress 
overfitting in data processing [25]. 

SVM parameters: The performance of SVM is based on 
three basic parameters C (cost penalty), ϵ (insensitive loss 
function parameter) and γ (kernel parameter). 

Cost penalty: C determines the trade-off cost between 
minimizing the training error and minimizing the model’s 
complexity [26]. The parameter C determines the trade-off 
between model complexity and the tolerance degree of 
deviations larger than ε [20].  

ϵ loss-insensitive function: Parameter ϵ controls the width 
of the ϵ-insensitive zone, used to fit the training data [27]. 
Larger ϵ-value result in fewer SVs selected, and result in more 
‘flat’(less complex) regression estimates [20]. If the value of ϵ 
is too big, the separating error is high, the number of support 
vectors is small, and vice versa [26]. 

Kernel parameter: γ (2σ
2
) of the kernel function implicitly 

defines the nonlinear mapping from input space to some high-
dimensional feature space [28]. The main kernels used are: 

1) Linear kernel: x.y 

2) Polynomial kernel: K(xi,xj)= (xi.xj+1)
d 

3) Radial Basis kernel: K(xi,x)=exp( 
‖    ‖ 

   ) 

4) Sigmoid kernel function: K(xi,xj)=tanh(xi.xj+p) 

RBF kernel is mostly used for stock price prediction 
because only one parameter needs to be confirmed, there are 
less SVR training parameters constructed by it and it is easy to 
confirm SVR training parameters [18]. The kernel width 
parameter σ in RBF is appropriately selected to reflect the 
input range of the training/test data. For univariate problems, 
RBF width parameter is set to σ ~[0.1–0.5]* range(x) [20]. 

B. Differential Evolution (DE):  

Differential evolution (DE) was introduced by Kenneth 
Price and Rainer Storn in 1995 for global continuous 
optimization problem. It has won the third place at the 1st 
International Contest on Evolutionary Computation [14]. DE 
belongs to the family of Evolutionary Algorithms (EA). DE 
algorithm is similar to genetic algorithms having similar 
operations of crossover, mutation and selection. DE can find 

the true global minimum regardless of the initial parameter 
values. DE provides fast convergence and uses fewer control 
parameters. DE constructs better solutions than genetic 
algorithms because GA relies on crossover while DE relies on 
mutation operation. It is a stochastic population-based search 
method that employs repeated cycles of recombination and 
selection to guide the population towards the vicinity of global 
optimum. DE uses a differential mutation operation based on 
the distribution of parent solutions in the current population, 
coupled with recombination with a predetermined parent to 
generate a trial vector (offspring) followed by a one-to-one 
greedy selection scheme between the trial vector and the 
parent [15]. Depending on the way trial vector is generated, 
there exist many trial vector generation strategies and 
consequently many DE variants. High convergence 
characteristics and robustness of DE have made it one of the 
popular techniques for real-valued parameter optimization. DE 
uses three parameters conventionally, they are: the population 
size NP, the scale factor F and the crossover probability CR/ 
Cr. Some conditions for these variables include: NP>4, F>0 
and is a real valued constant and is often set to 0.5, CR Є (0, 
1) and is often set to 0.9 [16]. Different stages in DE are: 

1. Population structure : The current population, 
symbolized by Pc, is composed of those D-dimensional vectors 
X

g
i
 
= {x

g
i,1, x

g
i,2, …, x

g
i,D },  the index g indicates the 

generation to which a vector belongs [17]. In addition, each 
vector is assigned a population index, i, which varies from 1 to 
Np, knowing that Np is the population size [17]. Once 
initialized, DE mutates randomly chosen vectors to produce an 

intermediary population Pv of Np mutant vectors   
 

[22]. Each 

vector in the current population is then recombined with a 
mutant to produce a trial population Pu of Np trial vectors 

  
 

[22]. 

2. Initialization : This stage consists in forming the initial 
population. For example, if our objective is the optimization of 
the membership functions, the initialization step consists in 
arbitrarily choosing the interval of this function [17].  

3. Mutation [17, 22]: For each vector (for example, a 
vector which represents the interval of the membership 

functions)   
 

={    
 

,     
 

,….,     
 

} a mutant vector is produced 

according to the following formulation [22]: 

    
 

=     
 

 + F(     
 

 -      
 

)    (2) 

The scale factor F is a positive real number that controls 
the rate at which the population evolves. While there is no 
upper limit on F, effective values seldom are greater than 1. 

4. Crossing [17,22,4]:The relative vector is mixed with the 

transferred vector to produce a test vector     
 
  

    
 

=      
 

 if (    
 

 ≤ CR or j=jr)            (3) 

 

 

             
 

  otherwise 

 

 
The crossover probability CR ϵ [0,1] is a user-defined 

value that controls the fraction of parameter values that are 
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copied from the mutant. To determine which source 
contributes, a given uniform crossover parameter compares 

CR to the output of a uniform random number generator     
 

. If 

the random number is less than or equal to CR, the trial 

parameter is inherited from the mutant     
 

 ; otherwise, the 

parameter is copied from the vector     
 

 . In addition, the trial 

parameter, with randomly chosen index jr is taken from the 

mutant to ensure that the trial vector does not duplicate   
 

. 

Because of this additional demand, CR only approximates the 
true probability. 

5. Selection [17]: All the solutions in the population have 
the same chance that the parents of being selected, regardless 
of their fitness function value. The child produced (new 
vector) after the crossing operations is evaluated. Then, the 
performances of the child vector and its relative are compared 
and the best one is selected. If the relative is still better, it is 
maintained within the population.  

Once the new population is installed, the process of 
mutation, recombination and selection is repeated until the 
optimum is located, or a prespecified termination criterion is 
satisfied, e.g., the number of generations reaches a preset 
maximum, gmax [4]. 

C) Particle Swarm Optimization (PSO): PSO (Particle 
Swarm Optimization) was proposed by James Kennedy and 
Russell Eberhart in 1995. It is motivated by social behavior of 
organisms such as bird flocking and fish schooling [29]. It can 
be used for nonlinear and mixed integer optimization. PSO is 
different from evolutionary computing, as in it flying potential 
solutions through hyperspace are accelerating towards "better" 
solutions, while in evolutionary computation schemes operate 
directly on potential solutions which are represented as 
locations in hyperspace [4]. The position of a particle is 
influenced by the best position visited by itself (i.e. its own 
experience) and the position of the best particle in its 
neighborhood (i.e. the experience of neighboring particles) 
[30]. Particle position, xi, are adjusted using: 

xi(t+1)=xi(t)+vi(t+1)    (4) 
where the velocity component, vi, represents the step size. 

For the basic PSO, 

vi,j(t+1)=wvi,j(t)+c1r1,j(t)(yi,j(t)-xi,j(t))+c2r2,j(t)(ŷj(t)-xi,j(t))  

    (5) 
where w is the inertia weight [31], c1 and c2 are the 

acceleration coefficients, r1,j, r2,j ~ U(0, 1), yi is the personal 
best position of particle i, and ŷi is the neighborhood best 
position of particle i [30]. The neighborhood best position ŷi, 
of particle i depends on the neighborhood topology used 
[32,33]. 

The main steps involved in PSO are [34]: 
1) Initialize a population array of particles with random 

positions and velocities on D dimensions in the search space. 

2) For each particle, evaluate the desired optimization 
fitness function in D variables. 

3) Compare particle’s fitness evaluation with its previous 
best. If current value is better than previous best, then set 

previous best equal to the current value, and previous best 
position equal to the current location in D-dimensional space. 

4) Identify the particle in the neighborhood with the best 
success so far. 

5) Change the velocity and position of the particle 
according to (4) and (5) 

6) If a criterion is met (usually a sufficiently good fitness 
or a maximum number of iterations) then optimal result is 
given out otherwise optimization continues.  

DE and PSO have been used to optimize the parameters of 
SVM during training and then those parameters have been 
used to create the best possible model for prediction purposes. 

III. IMPLEMENTATION DETAILS 

1) Dataset: The daily datasets of Honeywell International 
Inc. (listed on NYSE) and Apple Inc. (listed on NASDAQ), 
have been used for implementation purposes. The data sets are 
available at (http://wikiposit.org/Finance/Stocks/) and are 
available in csv, html, tab delimited, xml and raw formats. The 
reference site for this data is www.finance.google.com. 
Opening price, high, low, adjusted closing price and volume 
have been used as inputs and the closing price the following 
day is the output for SVM model. The training datasets have 
500 records each from 6 April, 2009 to 29 March, 2011 for 
Honeywell and from 17 July, 2009 to 12 July, 2011 for Apple. 
The testing datasets have 200 records each from 30 March, 
2011 to 12 Jan, 2012 for Honeywell and 13 July, 2011 to 27 
April, 2012 for Apple.  

The paper compares prediction results of both normalized 
and non-normalized datasets. 

The data has been normalized as inspired by [18] to: 

1)  Avoid the data with large range “submerge” those 

with small range and balance their functions in the 

training to make data comparable [18]. 

2) To enhance training efficiency and to avoid the 

problem of inner product calculation when 

calculating kernel function [18]. 
The formula used for normalization is [18]: 

        
(        )         

         
   (6) 

 
Here, x is the original data, x' is the data after 

normalization,  xmin is the minimum of original data, xmax is the 
maximum of original data,  xlow  is the lower bound of the data 
after normalization,  xup is the upper bound of the data after 
normalization. Here, we use  xlow = −1 and  xup = +1 .  

2) Performance indicator: The performance measure used 
is MSE (Mean Square Error):  

MSE= 
 

 
∑        

    
      (7) 

 

Here, a is the actual value, p is the predicted value, i 
represents the term index which ranges from 1 to n, where n 
represents the last term index. MSE helps to avoid NAs and 
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negative terms in result which can arise because of 
normalization of data. 

3) Methodology: The basic methodology for the both 
normalized and non- normalized approaches is same. 

 To find the optimal range of all three parameters C,ϵ,γ 
first two parameters are fixed and the other one is varied to see 
its effect on Training MSE, Testing MSE and number of 
support vectors.  And then the second parameter is fixed and 
so on. All these collected values are considered to find the 
optimal range to be used for the purpose of stock price 
prediction. The general range of these parameters can vary 
over a large solution space but the optimal range differs for 
different applications and is also dataset dependent. Training 
MSE, testing MSE and number of support vectors of all three 
parameters are checked for overfitting and underfitting to 
select the optimal range.  

The following points have been considered while selecting 
values of C and γ: 

i) Selecting C: A ‘good’ value for C can be chosen equal to 
the range of output (response) values of training data [19].  
However, such a selection of C is quite sensitive to possible 
outliers (in the training data) [20] so, C has been fixed using 
the formula suggested in [20]: 

C=max(|y’+3σy|,|y’-3σy|)    (8) 

 
Here, y’ and σy are the mean and standard deviation of the 

y values of the training data. This C value coincides with 
prescription suggested by Mattera and Haykin (1999) when 
the data has no outliers, but yields better C-values when the 
data contains outliers [20]. Based on above formula C is 
calculated as 69.167. 

ii) Selecting γ:  RBF kernel has been used for 
implementation of SVM. This use is inspired from  [18]. 
Radial basis kernel expression is as follows:  

K(xi,x)=exp(-
‖    ‖ 

   )     (9) 

According to [20] for multivariate d-dimensional problems 
the RBF width parameter should be such that σ

d 
~ (0.1-0.5) so 

γ or 2σ
2 
 has been selected as 0.0625. 

iii) Mattera and Haykin (1999) propose to choose ϵ-value 
so that the percentage of SVs in the SVM regression model is 
around 50% of the number of samples [19]. [20] suggests that 
optimal generalization performances can be achieved with the 
number of SVs more or less than 50%. The range of values 
where number of SVs is from 200 to 300 has been chosen for 
optimization purpose in the implementation. 

Dataset for Apple: 

Finding range for ϵ:  

i) Selecting C: The value of C has been fixed at 450.8346 
using (8). 

ii) Selecting γ:  Value of γ is fixed at 0.0625 according to 
[20] as explained above. 

i) Normalized dataset parameters decision making: 

Finding range for ϵ: After fixing values of C and γ at 
450.8346 and 0.0625 respectively, the values of different 
aspects for ϵ have been calculated over the range [0.01,0.30]. 
The results for no. of support vectors, training MSE and 
testing MSE are shown in Figure 1(a), 1(b) and 1(c) 
respectively. The favorable range for ϵ has been found as 
[0.033,0.052] based on required number of support vectors, 
decrease in training and testing MSEs. 

 
Figure 1(a) 

 
Figure 1(b) 

 
Figure 1(c) 

 

Finding range for C: i) ϵ has been selected from above found 

range of [0.033,0.052]. It has been set as 0.039. 

ii) γ is set as 0.0625. 
The values of C are examined over [0.1,6000] while fixing 

ϵ and γ. The results of no of support vectors, training and 
testing errors are shown in Figure 2(a), 2(b) and 2(c). The 
range of C has been selected as [1,550]. Figure 2(a) shows that 
number of support vectors never fall below 200. So, C has 
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been selected such that training MSE decreases and there is no 
significant increase in testing MSE. 

 
Figure 2(a) 

 
Figure 2(b) 

 
Figure 2(c) 

Finding range for γ: i) ) ϵ has been selected from above 
found range of [0.033,0.052]. It has been set as 0.039. 

ii) C has been selected from above found range of [1,550]. 
It has been set as 500. 

The values of γ are examined over [0.0,0.4] after fixing ϵ 
and C. The results for no of support vectors, training and 
testing MSEs are shown in Figure 3(a), 3(b) and 3(c). The 
range of γ has been selected as [0.01,0.11]. Figure 3(a) shows 
that number of support vectors never fall below 200. The 
range has been selected so that there is no significant increase 
in training and testing MSEs. 

ii) Non-normalized dataset parameters decision making: 
Finding range for ϵ: After fixing the values of C and γ at 

450.8346 and 0.0625, the SVM model is created, training and 
testing MSEs along with no. of support vectors are recorded 
for ϵ over the range of [0.01,0.20]. 

 
Figure 3(a) 

 
Figure 3(b) 

 
Figure 3(c) 

The results are shown in Figures 4(a), 4(b) and 4(c). The 
range for ϵ has been selected as [0.033,0.052] after considering 
appropriate number of support vectors and after examining 
that training and testing errors don’t increase significantly in 
this range. 

iii) Finding range for C: 
i) ϵ has been selected from above found range of 

[0.033,0.052]. It has been set as 0.035. 

ii) γ is set as 0.0625. 

The results for no of support vectors, training error and 
testing error over range of C~[1,3000] are shown in Figures 
5(a), 5(b) and 5(c).  

The range for C has been selected as [1,300].  

Figure 5(a) shows that number of support vectors never 
fall below 200. The range has been selected such that training 
error decreases. 
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Figure 4(a) 

 
Figure 4(b) 

 
Figure 4(c) 

 
Figure 5(a) 

 

 
Figure 5(b) 

 
Figure 5(c) 

Finding range for γ: 
i) ) ϵ has been selected from above found range of 

[0.033,0.052]. It has been set as 0.035. 

ii) C has been selected from above found range of [1,300]. 
It has been set as 200.  

γ has been examined over [0.0,0.4] and the results are 
shown in Figure 6(a), 6(b) and 6(c). The range of γ has been 
selected as [0.01,0.1]. At γ > 0.1 testing MSE decreases but 
training error increases. 

Dataset for Honeywell: The above approach was also used 
with Honeywell dataset, both normalized and non normalized. 

i) Normalized dataset: For ϵ, C and γ were fixed at 69.167 
and 0.0625 using (8) and according to [20] which gave range 
as [0.08, 0.15]. Setting ϵ at 0.1 from the selected range and γ at 
0.0625, C has favorable range in [1,440]. Now, ϵ at 0.1 and C 
at 210 from selected favorable range γ had favorable range in 
[0.02,0.08]. 

ii) Non normalized dataset: For ϵ, C and γ were fixed at 
69.167 and 0.0625 using (8) and according to [20] which gave 
range as [0.05,0.07]. Setting ϵ at 0.05 from the selected range 
and γ at 0.0625, C has favorable range in [1,60]. Now, ϵ at 
0.05 and C at 30 from selected favorable range γ had favorable 
range in  [0.01,0.1]. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 9, 2012 

 

203 | P a g e  

www.ijacsa.thesai.org 

 
Figure 6(a) 

 
Figure 6(b) 

 
Figure 6(c) 

4) DE-SVM model:  
All implementation has been done in R on a system with 

AMD Turion-X2 2GHz Dual Core processor having 2GB 
RAM and Windows 7 Ultimate (32 bit) OS. The model used is 
shown in Figure 7. 

IV. RESULTS 

Apple: 
Normalized dataset: The range of parameters C,ϵ,γ are 

[1,550], [0.033,0.052] and [0.01,0.11] respectively. The time 
taken for both PSO and DE to converge is 13hrs approx. The 
results for both DE and PSO are shown in Table 1. Table 2 
shows prediction results for SVM (with default parameters of 
C=1, ϵ=0.1,γ=0.2), DE-SVM and PSO-SVM together. 

Non normalized dataset: The range of parameters C,ϵ,γ are 
[1,300], [0.033,0.052] and [0.01,0.1] respectively. The results 
for DE-SVM and PSO-SVM are shown in Table 3.  Table 4 
shows prediction results for SVM (with default parameters of 
C=1, ϵ=0.1,γ=0.2), DE-SVM and PSO-SVM together. The 
large values of MSEs for testing are because of the highly 
inaccurate predicted values produced because of the wide 
range of the output values. 

Table 1 

   Table 2 

 
For both DE and PSO, normalized and non normalized 

cases, the population size has been fixed at 30 and iterations at 
200. The prediction results of DE-SVM and PSO-SVM are 
better than SVM alone in both cases. 

Table 5 shows predicted stock price values for both 
normalized and unnormalized datasets for SVM, DE-SVM and 
PSO-SVM models. 

Table 3 

Table 4 

Table 5 

 Training MSE Testing MSE No. of 

support 

vectors 

SVM 0.003224442 0.008572274 94 

DE-SVM 0.001520 0.006520839 277 

PSO-SVM 0.001519326 0.006537451 277 

Origin

al  

Normalized data Unnormalized data 

price SVM DE-

SVM 

PSO-

SVM 

SVM DE-

SVM 

PSO-

SVM 

603 623.725

1 

615.647

1 

615.601

7 

264.183

9 

248.735

5 

248.147

1 

545.17 552.267 553.258

2 

553.474

3 

264.294

8 

263.016

6 

262.165

5 

493.42 497.069

6 

496.938 496.959 267.249

1 

264.414

6 

263.192

4 

369.8 359.912 367.155

1 

367.190

6 

354.184

7 

359.206

5 

359.202

0 

 Optimized C,ϵ,γ Training 

MSE 

Testing 

MSE 

No of 

support 

vectors 

DE 286.37295110, 

0.03567755, 

0.08290609 

0.001520 0.006520839 277 

PSO 312.57590986, 

0.03556743, 

0.08097982 

0.001519326 0.006537451 277 

 Optimized C,ϵ,γ Training 

MSE 

Testing 

MSE 

No. of 

support 

vectors 

DE 298.574181, 

0.035675, 

0.082388 

17.029155 30013.67 276 

PSO 296.05980293, 

0.03569455, 

0.08201110 

17.01084 30175.51 276 

 Training 

MSE 

Testing 

MSE 

No. of 

support 

vectors 

SVM 36.10602 30383.61 94 

DE-SVM 17.029155 30013.67 276 

PSO-SVM 17.01084 30175.51 276 
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Figure 7 

Honeywell: 
Normalized dataset: The range of parameters C,ϵ,γ are 

[1,440],[0.08,0.15] and [0.02,0.08] respectively. Table 6 
shows prediction results. 

Table 6 

 

Non normalized dataset results: The range of parameters 
C,ϵ,γ are [1,60],[0.05,0.07] and [0.01,0.1] respectively. Table 
7 shows the results. Predicted values for both normalized and 
non normalized datasets are shown in Table 8.  

For DE CR=0.7 and F=0.9. DE / local-to-best / 1 / bin strategy 

has been used for DE for all the implementations in this paper. 

Table 7 

 

Table 8 

V. CONCLUSION 

The performance of SVM can be significantly affected by 
choice of its free parameters of cost (C), insensitive loss 
function (ϵ) and kernel parameter (γ). The results show that 
DE-SVM model’s performance is comparable to that of PSO-
SVM. Performance of these models can be improved by 
normalization of datasets. Normalization helps to significantly 
improve the accuracy of the output when the range of values is 
vast. Normalization gives equal weightage to all the input 
variables by converting the values of all the variables within a 
pre-specified range. This helps to avoid dominance of one 
variable over others in the created model. So, it helps to 
improve the efficiency of the created model. SVM alone 
performs better when data is normalized because in hybrid 
models optimization techniques help to tune the model 
according to requirement of datasets. With normalization of 
data, the range for optimization of C,ϵ,γ improves. 

SVM Optimized 

C, ϵ,γ 

Training 

MSE 

Testing 

MSE 

No. of 

support 

vectors 

Time 

taken 

DE 

(CR= 

0.7, 

F= 

0.9) 

439.864990, 

0.080024, 

0.079993 

0.003211084 0.03108

918 

222 4 hrs 

10 

min 

PSO 440, 

 0.08   

0.07999401 

0.003210875 0.03117

105 

222 4 hrs 

30 

min 

 C,ϵ,γ Training 

MSE 

Testing 

MSE 

No. of 

support 

vectors 

DE- 

SVM 

40.543474,    

0.056122,    

0.010113 

0.4726898 1.603333 256 

PSO- 

SVM 

40.7422794, 

0.06411372, 

0.01000007 

0.4727329 1.620285 225 

SVM 1,0.1,0.2 0.8239745 3.8681 148 

Origin

al 

Normalized Unnormalized 

Closin

g 
price 

SVM DE-

SVM 

PSO-

SVM 

SVM DE-SVM PSO-

SVM 

41.94 42.503 42.340 42.34 43.019 42.95 42.95808 

62 61.555 61.63 61.64 56.079 61.56 61.53316 

43.22 44.15 44.002 44.00 45.36 44.65 44.66156 

53.56 53.84 54.15 54.15 54.185 54.44 54.47695 

56.43 56.373 56.64 56.65 56.546 56.654 56.70812 

Randomly select parameter values from 

specified limits using DE 

Create SVM model with parametric 

values selected by DE and training 

dataset 

Calculate Training MSE with 

10 fold cross validation 

Pass training MSE to objective 

function of DE for reduction 

iterations 

crossover, mutation, selection 

Create SVM model with 

optimized parameters and 

training dataset 

Test the model with test 

dataset 

Calculate testing MSE 



(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 3, No. 9, 2012 

 

205 | P a g e  

www.ijacsa.thesai.org 

VI. FUTURE SCOPE 

 DE responds to the population progress after a time lag. 
The whole population in DE remains unchanged until it is 
replaced by a new population [15]. Hence, it results in slower 
convergence. To alleviate this problem, a dynamic version of 
DE called Dynamic Differential Evolution (DDE) has been 
proposed by Anyong Qing [23]. DEPSO algorithm, which 
represents more stability by dual evolution, proposed by Ying-
Chih Wu [24] can be used for optimization of SVM. The 
above mentioned methods will help to further improve the 
efficiency of SVM and hence improve results. 
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