
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

131 | P a g e

www.ijacsa.thesai.org

A Block Cipher Involving a Key and a Key Bunch

Matrix, Supplemented with Key-Based Permutation

and Substitution

Dr. V.U.K.Sastry

Professor (CSE Dept), Dean (R&D)
SreeNidhi Institute of Science & Technology, SNIST

Hyderabad, India

K. Shirisha

Computer Science & Engineering

SreeNidhi Institute of Science & Technology, SNIST

Hyderabad, India

Abstract— In this paper, we have developed a block

cipher involving a key and a key bunch matrix. In this

cipher, we have made use of key-based permutation and

key-based substitution. The cryptanalysis carried out in

this investigation, shows very clearly, that this cipher is a

very strong one. This is all on account of the confusion and

the diffusion created by the permutation, the substitution,

in each round of the iteration process.

Keywords-Key; key bunch matrix; encryption; decryption;

permutation; substitution; avalanche effect; cryptanalysis

I. INTRODUCTION

The study of the block ciphers [1] is an interesting area of
research in cryptography. In the very recent past, we have
developed a pair of block ciphers [2-3], which include a key
matrix, as it is in the case of the Hill cipher, and a key bunch
matrix. In these investigations, we have made use of the
concepts of the modular arithmetic inverse and the
multiplicative inverse.

In [2], we have made use of function Mix(), which mixes
the binary bits in each round of the iteration process, and in
[3], we have introduced a function called Permute(), which
carries out permutation of binary bits of the plaintext in each
round of the iteration process. In these analyses, we have
noticed that the key matrix and the key bunch matrix, and the
additional function Mix()/ Permute() strengthen the cipher, in
a conspicuous manner.

In the present paper, our objective is to develop a block
cipher, wherein we use a key matrix together with a key bunch
matrix. Here, we have introduced a key-based permutation and
a substitution basing upon the key. In this, our interest is to
see, how the permutation and the substitution would influence
the cipher and enhance the strength of the cipher, due to the
confusion and the diffusion arising in this process.

We now mention the plan of the paper. In section 2, we
discuss the development of the cipher and introduce the
flowcharts and the algorithms required in this analysis. We
illustrate the cipher and discuss the avalanche effect in section
3. We study the cryptanalysis in section 4. Finally in section 5,
we deal with the computation carried out in this investigation
and draw conclusions.

II. DEVELOPMENT OF THE CIPHER

We consider a plain P having n(2) characters and represent
it in the form of a square matrix of size n by using EBCDIC
code. Thus we have

P = [ijp], i=1 to n, j=1 to n. (2.1)

Let the key matrix K be given by

K=[ijk], i=1 to n, j=1 to n, (2.2)

The encryption key bunch matrix E is taken in the form

E = [ije], i=1 to n, j=1 to n, (2.3)

wherein each ije is an odd number lying in [1-255].

On using the concept of the multiplicative inverse [4], the
decryption key bunch matrix D is obtained in the form

 D= [dij], i=1 to n, j=1 to n,
 (2.4)

It is to be noted her that all the elements of D are also odd
numbers which lie in [1-255].

The basic equations governing the encryption can be
written in the form

P = (KP) mod 256, (2.5)

P = [ije × ijp] mod 256, i=1 to n, j = 1 to n (2.6)

P = Permute(P), (2.7)

P= Substitute(P), (2.8)

and

C = P. (2.9)
The corresponding equations of the decryption process are

given by

C = ISubstitute(C) (2.10)

C = IPermute(C), (2.11)

C = [ijd × ijc] mod 256, i=1 to n, j = 1 to n, (2.12)

 C = (K(-1) C) mod 256, and (2.13)

 P = C. (2.14)
The details of the function Permute() and the function

Substitute() are explained later. It is to be noted here, that the
functions ISubstitute() and IPermute() denote the reverse
process of the functions Substitute() and Permute().

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

132 | P a g e

www.ijacsa.thesai.org

The flowcharts depicting the process of the encryption and
the decryption are given in Figs. 1 and 2.

The algorithms, for the encryption and the decryption are
as follows.

Algorithm for Encryption

1. Read P,E,K,n,r

2. For k = 1 to r do

{

3. P=(KP) mod 256

4. For i=1 to n do

{

5. For j=1 to n do

{

6. ijp = (ije × ijp) mod 256

}

}

7. P=[ijp]

8. P=Permute(P)

9. P=Substitute(P)

}

8. C=P

9. Write(C)

Algorithm for Decryption

1. Read C,E,K,n,r

2. K
-1

=Inv(K)

3. D=Mult(E)

4. For k = 1 to r do

{

5. C=ISubstitute(C)

6. C=IPermute(C)

7. For i =1 to n do

{

8. For j=1 to n do

{

9. ijc = (ijd × ijc) mod 256

Fig.2. Flowchart for Decryption

Fig.1 Flowchart for Encryption

 Read P,E,K,n,r

For k=1 to r

P = KP mod 256

For i=1 to n

For j=1 to n

 ijp = (ijij pe ) mod 256

P = [ijp]

P= Permute(P)

C=P

Write (C)

P= Substitute(P)

For k = 1 to r

Read C,E,K,n,r

D = Mult(E)

K
-1

=Inv(K)

C = IPermute(C)

For j=1 to n

For i=1 to n

ijc = (ijd × ijc) mod 256

C = (K
-1

C) mod 256

C = [ijc]

Write (P)

P =C

C = ISubstitute(C)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

133 | P a g e

www.ijacsa.thesai.org

}

}
10. C=[ijc]

11. C = (K
-1

C) mod 256

}

12. P=C

13. Write (P)
Let us now, explain the basic ideas underlying in functions

Permute() and Substitute(). Both are dependent on a key. Let
us take the key K in the form





















91 20612740

12261 14730

20016 14 25

13 102182120

K
 (2.15)

The numbers in this key are listed in the 2
nd

 row of the
following table, Table-1.

































448442441438432431

348342341338332331

248242241238232231

148142141138132131

428422421418412411

328322321318312311

228222221218212211

128122121118112111

...

...

...

...

....

....

....

....

pppppp

pppppp

pppppp

pppppp

pppppp

pppppp

pppppp

pppppp

 (2.19)

TABLE-1. RELATION BETWEEN SERIAL NUMBERS AND THE ASCENDING ORDER OF THE KEY NUMBERS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

120 182 102 13 25 14 16 200 30 147 61 122 40 127 206 91

10 14 9 1 4 2 3 15 5 13 7 11 6 12 16 8

The 1

st
 row of this table contains the serial number, and the

3
rd

 row of this table indicates the ascending order of the
numbers in the key, given in the 2

nd
 row.

Consider the plaintext P in any round of the iteration
process. It is possible to see this plaintext as a set of square
matrices of size 16 whenever n is divisible by 16. As the
Table-1 is suggesting, we interchange the rows

 (1,10), (2,14), (3,9), (5,4), (8,15), (11,7) and (13,6).
(2.16)

Similarly, it may be done in the case of the columns. It
may be noted here, that once we have made an interchange
involving a row or a column, we do not do anymore
interchange involving that row or column subsequently so that
plaintext remains in a systematic manner. This is the basic
idea underlying in the function Permute(), when n>=16. On
the other hand, when n takes n takes a value less than 16, for
example when n=4, then let us see how the process of the
permutation will be carried out.

Consider an example when n=4. In this case, the plaintext
is of the form





















44434241

34333231

24232221

14131211

pppp

pppp

pppp

pppp

P (2.17)

On representing each element of this matrix in terms of
binary bits, in a row-wise manner, we have
This is a matrix having 4 rows and 32 columns. This can be
written, for convenience, in the form of another matrix, given
by (2.19).

This matrix has 8 rows and 16 columns. In order to carry
out permutation, we swap the rows (5,4) as indicated by
(2.16). The rest of the rows are untouched, as we do not have
the possibility of interchange. Then the columns are
interchanged by following the content of (2.16).

Let us now consider the process of substitution, which
depends upon the permutation. The EBCDIC code, which
includes the number 0 to 255, can be written in the form of a
matrix, given by

 ,1,1],1)1(16[),(ntojntoijijiEB  (2.20)

This has 16 rows and 16 columns. On interchanging the
rows first and then the columns next, we get a new matrix,
having the numbers 0 to 255, in some other order. This table
can be written in the form, given in (2.21).

On noting the correspondence between the matrices, given
by (2.20) and (2.21), we can perform the substitution process
in any plaintext. Thus we have the function Substitute().

The function Inv() is used to obtain the modular arithmetic
inverse of the key matrix K. The function Mult() results in the
decryption key bunch matrix D for the given encryption key
bunch matrix E. For a thorough understanding of these

)18.2(

448442441438432431428422421418412411

348342341338332331328322321318312311

248242241238232231228222221218212211

148142141138132131128122121118112111

.......

.......

.......

.......



















pppppppppppp

pppppppppppp

pppppppppppp

pppppppppppp

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

134 | P a g e

www.ijacsa.thesai.org

functions, we may refer to [2].

In this cipher, r denotes the number of rounds carried out
in the iteration process. Here, we have taken r=16.

III. ILLUSTRATION OF THE CIPHER AND THE AVALANCHE

EFFECT

Consider the plaintext given below.

Dear Brother! With all the training that you had from NCC
in your college, having a strong feel that India is our
motherland, and it is our responsibility to protect this country
from the invasion by other countries, you left us some years
back. After that, there are several changes within the country.
When you were leaving us, we had only few parties such as
Congress, Communist and BJP. Today, parties have grown as
mushrooms and the number of parties is that many. We do not
know, in what way unity can be achieved in this country! Each
party wants to destroy the other party, each party want to come
to power, and each thinks that it must rule the whole country,
crushing all the other parties. Ethical values have gone down!
Each person want to earn crores and crores, so that he would
be able to build up his own party, and to feed all the members
entering into his party in a grand manner with additional
facilities, such as liquor and all the other attractions satisfying
the passion. This is the fate of the country! You may protect6
the country at the borders, but I do not know who can protect
this country within this country from the tyranny of all the
political parties and the people supporting them.
 (3.1)

On focusing our attention on the first 16 characters, we
have

Dear Brother! Wi (3.2)
On using the EBCDIC code, we write the plaintext (3.2) in

the form





















13723064 79

153133136163

15015319464

153129133196

P
 (3.3)

Let us take the key matrix K, in the form





















91 20612740

12261 14730

20016 14 25

13 102182120

K
 (3.4)

Here, it may be noted that we have taken this K as the
same as (2.15), as this is having modular arithmetic inverse.

Let us take E in the form





















18733 109237

19 17 105167

23 18916711

23911 157121

E
 (3.5)

On using the plaintext P, the key matrix K, the encryption
key bunch matrix E, given by (3.3) – (3.5), and applying the
encryption algorithm, we get the ciphertext C in the form





















132119198239

18928 86 231

194253112174

219184103116

C
 (3.6)

On using the concept of multiplicative inverse, we get the
decryption key bunch matrix D in the form





















115225101229

2724121723

16714923163

15163181201

D
 (3.7)

)21.2(

255247241245251246240242254250252243244248253249

127119113117123118112114126122124115116120125121

31 23 17 21 27 22 16 18 30 26 28 19 20 24 29 25

95 87 81 85 91 86 80 82 94 90 92 83 84 88 93 89

191183177181187182176178190186188179180184189185

11110397 10110710296 98 11010610899 100104109105

15 7 1 5 11 6 0 2 14 10 12 3 4 8 13 9

47 39 33 37 43 38 32 34 46 42 44 35 36 40 45 41

239231225229235230224226238234236227228232237233

175167161165171166160162174170172163164168173169

207199193197203198192194206202204195196200205201

63 55 49 53 59 54 48 50 62 58 60 51 52 56 61 57

79 71 65 69 75 70 64 66 78 74 76 67 68 72 77 73

143135129133139134128130142138140131132136141137

223215209213219214208210222218220211212216221217

159151145149155150144146158154156147148152157153

























































SB

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

135 | P a g e

www.ijacsa.thesai.org

On using the C, the D, and the K, given by (3.6), (3.7) and
(3.4), and applying the decryption algorithm, we get back the
plaintext P.

Let us now examine the avalanche effect. On replacing the
4th row 4th column element, 137 by 153, we have a change of
one binary bit in the plaintext P. On using this modified
plaintext, the K, and the E, and employing the encryption
algorithm, we get the ciphertext C in the form





















55 1891975

12123546 8

26 17746 21

13157 104147

C
 (3.8)

 On comparing (3.6) and (3.8), after putting them in
their binary form, we find that these two ciphertexts differ by
70 bits out of 128 bits.

Let us now consider a one binary bit change in the key K.
On replacing the 2nd row 3rd column element, 16 of the key
K, given by (3.4), by 48, we have a one bit change. On using
this modified key, the plaintext P, and the encryption key
bunch matrix E, and the encryption algorithm, given in section
2, the ciphertext corresponding to the modified key is obtained
in the form





















3 13620 94

140243130158

61 5 166255

2 117180141

C
 (3.9)

On comparing (3.6) and (3.9), after putting them in their
binary form, we notice that these two ciphertexts differ by 81
bits out of 128 bits.

From the above discussion, we conclude that, this cipher
exhibits a strong avalanche effect, which stands as a
benchmark in respect of the strength of the cipher.

IV. CRYPTANALYSIS

This is the analysis which enables us to establish the
strength of the cipher. The different types of attacks available
in the literature of the cryptography are

1. Ciphertext only attack (Brute force attack),

2. Known plaintext attack,

3. Chosen plaintext attack, and

4. Chosen ciphertext attack.

Generally, an analytical proof is offered in the first two
cases, and a checkup is done with all possible intuitive ideas in
the latter two cases. A cipher is said to be acceptable, if it
withstands the first two attacks [1].

In this cipher, we are having a key matrix K and key bunch
matrix E. Both are taken to be square matrices of size n. In
view of this fact, the size of the key space is

22 78 22 nn 

=     .101022
2

22
2 5.45.135.11015 nnnn  (4.1)

On assuming that the time required for the computation
with one value of the key and the one value of the E, in the
key space as 10

-7
, the time required for the execution of the

cipher with all possible keys (i.e., taking all possible pairs of K
and E, into consideration) in the key space is

Specifically, in this analysis, as we have n=4, the time
given by (4.2), takes the form 3.12 x 10

57
 years. As this time is

very large, we conclude that, this cipher cannot be broken by
the brute force attack.

Let us examine the known plaintext attack. Here, we have
as many pairs of plaintexts and ciphertexts that we like to
have, can be had, at our disposal. Confining our attention to
r=1, that is to only one round of the iteration process, the
system of equations governing the encryption process, can be
written in the form

P = (KP) mod 256, (4.3)

P = [ije × ijp] mod 256, i=1 to n, j = 1 to n, (4.4)

P = Permute(P), (4.5)

P = Substitute(P), (4.6)

 and

 C = P. (4.7)
From (4.7), we can readily have P, as we know C. on using

this P, we cannot proceed further, from bottom, as the function
Substitute() and ISubstitute() depend upon the key K. Though
P on the right hand of (4.3) is known to us, we cannot proceed
further, as the P on the left hand side of (4.3) is unknown. In
view of the above facts, we cannot the break this cipher by the
known plaintext attack.

As the equations, governing the encryption process, are
found to be very much involved, in view of the functions
Permute() and Substitute(), which are based upon the key, and
the modulo arithmetic operation, we cannot imagine to choose,
intuitively, any plaintext or ciphertext, for breaking the cipher.

In the light of the above discussion, we conclude that this
cipher cannot be broken by any attack, and it is a strong one
by all means.

V. COMPUTATIONS AND CONCLUSIONS

In this investigation, we have developed a block cipher
which involves the basic ideas of the Hill cipher [5] and the
basic concepts of the key bunch matrix. Here, we have made
use of the functions Permute() and Substitute(), for permuting
the plaintext and for modifying the plaintext, by the
substitution process.

)2.4(.1012.3
606024365

1010 155.4
75.4

2

2

yearsn
n









(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

136 | P a g e

www.ijacsa.thesai.org

On account of these functions and the iteration process, the
plaintext has undergone several modifications, in the process
of encryption.

The programs required for carrying out the encryption and
the decryption are written in Java.

The plaintext, given by (3.1), is divided into 77 blocks. As
the last block is having only 2 characters, we have added 14
zeroes as additional characters to make it a complete block.
On carrying out the encryption of each block separately, by
using the K and the E, we get the ciphertext corresponding to
the entire plaintext (3.1), in the form (5.1). The cryptanalysis
carried out in this investigation, has clearly shown that this
cipher is strong one and it cannot be broken by any attack.
This investigation can be modified by including a large size
key matrix and a corresponding encryption key bunch matrix.
Then this can be applied to the encryption of images and
security of images can be achieved very conveniently.

REFERENCES

[1] William Stallings: Cryptography and Network Security: Principle and
Practices”, Third Edition 2003, Chapter 2, pp. 29.

[2]
Matrix and a Key bunch Matrix, Supplemented with Mix”, in press.

[3] Dr. V.U.K
Matrix and a Key bunch Matrix, Supplemented with Permutation”, in

The International Journal of Engineering And Science (IJES), ISSN:
2319 – 1813 ISBN: 2319 – 1805, Vol. – No.2, Dec 2012, pp. 40-47.

[4] Dr. V.U.K. Sastry, K.Shirisha, “A Novel Block Cipher Involving a Key
Bunch Matrix”, in International Journal of Computer Applications
(IJCA) (0975 – 8887) Vol.55– No.16, Oct 2012, Foundation of
Computer Science, NewYork, pp. 1-6.

[5] Lester Hill, (1929), “Cryptography in an algebraic alphabet”, V.36 (6),
pp. 306-312., American Mathematical Monthly.

AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor in the Dept. of
Computer Science and Engineering (CSE), Director (SCSI), Dean (R & D),
SreeNidhi Institute of Science and Technology (SNIST), Hyderabad, India.
He was Formerly Professor in IIT, Kharagpur, India and worked in IIT,
Kharagpur during 1963 – 1998. He guided 14 PhDs, and published more than
86 research papers in various International Journals. He received the Best
Engineering College Faculty Award in Computer Science and Engineering for
the year 2008 from the Indian Society for Technical Education (AP Chapter),
Best Teacher Award by Lions Clubs International, Hyderabad Elite, in 2012,
and Cognizant- Sreenidhi Best faculty award for the year 2012. His research
interests are Network Security & Cryptography, Image Processing, Data
Mining and Genetic Algorithms.

K. Shirisha is currently working as Associate Professor in the Department
of Computer Science and Engineering (CSE), SreeNidhi Institute of Science
& Technology (SNIST), Hyderabad, India. She is pursuing her Ph.D. Her
research interests are Information Security and Data Mining. She published 9
research papers in International Journals. She stood University topper in the
M.Tech.(CSE).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

137 | P a g e

www.ijacsa.thesai.org

71728025524325020920120073721151891176104

5512537190216821741071985815310710296230136

1022278010321422821316216824120811922312413912

18122112124317221018429228610215619711112577

59140146160792321205380221122472511149673

14721824518953217536619320512311117419615370

1432351312620311441220190146227121984169153

1012089717881481351757521182902239733217

1958814478581331131455311618952451851736

962412926982098813410118325022820622123473

96122151051532393435922417720458216181

199581818730157203172223860841720330206

248139101245231206618310617814021217928200255

179224621891633175240211261289713917325322

2074410019609788133952082411168324118646

12479173217131862432032128102252672441429

186982541581662282714510692481741903139203

21483138197491433399801832494822815639122

36592386610512319812134113165681487513953

4619141115147197201861935712824724425239

62411551181431085514915613310353234148152247

7121257172168532061352101111512145715818743

66491810855176915953101072341551312215

2471101551432042033144114190551141583136105

31319221222431351102422099510210534214139

23373619321722815040478223762781620219

1612181528016371661358525240180185204154197

15355190183681253496168331831733519179237

20492411321707765902472201502915720499178

1021288514980410473155493910126135162114

21411016103512044922221358153133322788

2123191181228216105155252548911119220620011

60249148170682401307023915622722376513699

33442391555232121924218616268702376105

24275182301432113622016561832023887942

732052491121332061131231869817411221121254

106163201868104521681661872371189450173

7816642823310322191541773617415771112179

1342238937148342522071671917714635200218211

391152461355138802311161411635921532108132

77182241751461252442011842328120224248210246

10331932002462021819343110461872553413540

1123121211125232135207250130197116332783154

1111099077731214140218902121621362168250

213889791026524211313184206187829239101

122149161240254917921923433253456212416553

24121716243182111161115103210925815217

1332831032215938999202521914147231133

4418144208233223235642406757520229136146

88111160605112614818314222547246159189242136

1316213111258415120713810513644623420164

1802531432141032121855812514259138189275637

1321191982391892886231194253112174219184103116

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.1, 2013

138 | P a g e

www.ijacsa.thesai.org

84146216863151132162195551956199596234

9919930671875389511461671391193922615180

224232731621920817126661072020517623210241

3322371049318715317124423230219132186183119

13814315110586823822521054199605261249139

21422816813012412598141001656118942813428

51110205197208122004047462021019718420188

1371761798352524991894149178122255151136

16442145601314125211422212181991012368172

49226108152107802811323722761237321511

14076152191801821459714314717019820624713729

(5.1)10018214014817312712524916196205523420152169

1811705038111164442065482112126214255103109

22624414212123315421129222301568015611220334

2331092623421111471241252171711722714917348

16213815523720318416617278155250161161247087

54660251871032402231107720893109137226111

65127951411721492011129941405822210547

11317480971935718572121361801742025216

52722541781078621891052126451288159194

261541074930481281641391411893812017822976

1061331631242348538612487637223136112692

38154149185126229243821121453342229566155

6281119246128207203231179133217183178593281

