
Terrain Coverage Ant Algorithms:
The Random Kick Effect

M. Dervisi
Computer Science Department,

IST College Athens, Greece
in collaboration with

University of Hertfordshire, UK
E-mail: maria.dervisi@gmail.com

O.B. Efremides
Computer Science Department,

IST College Athens, Greece
in collaboration with

University of Hertfordshire, UK
E-mail: obe@ist.edu.gr

D.P. Iracleous
Computer Science Department,

IST College Athens, Greece
in collaboration with

University of Hertfordshire, UK
E-mail: iracleous@ist.edu.gr

Abstract—In this work the effect of random repositioning
of ant robots/agents on the performance of terrain coverage
algorithms is investigated. A number of well-known terrain
coverage algorithms are implemented and studied in a simulated
environment. We prove that agent repositioning imposes small
variations on the performance of the algorithms when random
or controlled jumps occurred and evaporation and failures are
allowed.

Keywords—Terrain coverage, ant agents, performance

I. INTRODUCTION

Terrain coverage algorithms using ant robots/agents [1],
[2], [3] is under investigation in this work. We focus on the
jump effect of agents during the execution of the algorithms.
This effect can be defined as an unexpected fast move of the
agent, from its current position to a new one, in a way that
is not defined by the terrain coverage algorithm. This is, for
example, the case that visitors of a museum accidentally kick
the surveillance ant robots.

Resulting functional algorithms can have applications in
everyday use, such as vacuum cleaning a large area [4], [5].
Moreover, they can also be applied in critical emergency cases,
like searching the terrain of a collapsed mine, patrolling a
secure area, etc.

The key point in this work is that the executing algorithm
should be able to complete the assigned task, even if the terrain
or the agents are abruptly affected by natural phenomena, the
human factor, a sudden failure, the presence of obstacles in the
area etc. In any case, this should be as efficient as possible.

Throughout this work, jump is applied on well know terrain
coverage algorithms [6], [7], various terrain types and initial
agent positions. In all cases the objective is to examine the
performance of terrain coverage and how it is affected due
to jump and its combination with the simulation settings.
The most important settings include, agent battery drain [3],
the probability of agent failures [8] and the evaporation of
pheromone left by agents on the terrain [7], [8].

The algorithms studied in this work, have as their main
purpose to visit each area or cell of the terrain, at least once
[6], [7], [8]. Hence, it can be said that their goal is it to
achieve the exploration of unknown areas. These include Node-
counting, Recency, Alarm, Learning Real-Time A* (LRTA*),

Online Mapping Algorithms (OMA) and Wagner [9], [3],
[10]. Such algorithms have found practical and inexpensive
implementations in many real life problems [7]. Additionally,
a brute force approach using Random walk was also studied
but was excluded from the main comparisons found in the
experimental results section, as this implementation is of very
low performance. As each of the aforementioned algorithms
follows a slightly differentiated strategy in the way terrain
exploration is achieved, the effects of simulation settings are
examined for each algorithm in case.

This paper is organized as follows. In Section 2 the six
algorithms under investigation are presented. The setting for
the experiments is given in Section 3 while the simulation
results are discussed in Section 4. Conclusions are drawn in
Section 5.

II. THE ALGORITHMS

Six different algorithms are under investigations herein.
Node counting:

The node-counting algorithm (also referred to as “count-
ing“ later) approaches the terrain coverage in a deterministic
manner since it always chooses to move to the place with the
least number of visits. At each step, each agent moves from
its cell to an adjacent terrain cell, which is the one with the
fewest number of visits (by all agents). In the case where there
are more than one cells that have the fewest visits, the ties can
be broken at random [7].

LRTA*: also referred to as “learning” later, is a determin-
istic target location algorithm which updates the number of
visits of the current cell during each step. In this method, the
number of visits acts as a repellent for each agent [10]. With
each movement of the ant, the value of the current cell is
updated by taking the number of visits of the adjacent cell (to
which the ant is about to move) and incrementing it by one.
In the case where there are more than one cell that have the
fewest visits, the ties can be broken at random [11].

Wagner’s: Wagner proposed a deterministic terrain cover-
age method that updates the current cell value only if it is less
than the value of the adjacent cell to which the ant is about
to move. No update will occur to the current cell if the value
of the current cell is higher than the cell to which the ant
is moving to. This method is similar to both the LRTA* and

175 | P a g e  
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 10, 2013 



the Thrun’s algorithms. The only difference is that the current
value will not always be updated [7].

Thrun’s - OMA: The algorithm proposed by Thrun [12]
is also a deterministic terrain coverage model that is similar
to LRTA*, the only difference is that it guarantees that the
current cell value will be incremented, for each visited cell,
during each step. Whenever the adjacent cells have lower cell
values, the value of the current cell will still be increased as
opposed to the LRTA* algorithm. With LRTA*, it is possible
that if the adjacent cells have lower values, the current cell
can have its value lowered. This does not happen with Thrun’s
algorithm [11].

Recency: Agens next move is decided based on the elapsed
time since its adjacent cell has been visited. The only dif-
ference between this and node counting algorithm is that the
recency counts in time units rather than the number of visits
[8].

Alarm: In this algorithm the agent selects the next cell to
move probabilistically based on the amount of pheromones in
the adjacent cells. Moreover, the algorithm uses pheromone
level to repel agents instead of attracting them. In each step,
the agents move to cells with less pheromones [8].

III. EXPERIMENTAL SETTING

The Netlogo simulation environment [13] is used for imple-
menting and testing our algorithms. In order to efficiently study
the effect of jump for the above mentioned algorithms while
having full control over a) the agents that might be affected
and b) the frequency at which jump may occur, two different
approaches were implemented:

• The human controlled jump setting and

• The random jump setting

Both settings have the same effect; agents are moved from their
original position to a new one without visiting the intermediate
cells and without leaving any trace element on the cells their
skip. The difference is that the first, as its name implies, allows
the control of how many agents from the total available will be
affected, the maximum length of the jump and the frequency at
which it can occur. Conversely, in the case of random jump all
events occur in random, resulting in a more natural behavior,
which however is less controlled and more difficult to extract
useful conclusions about the role jump can play on terrain
exploration algorithms.

Terrain types scale from the lowest complexity (None) to
the most complex terrain type with special futures (e.g., a
number of tight borders/corridors) as it is shown in Figure
1.

IV. EXPERIMENTAL RESULTS

A. Initial Experiment - No Jump

The first experiment includes all algorithms, on all terrain
types, without any specific environmental settings, in order
to build our base for performance comparisons. As expected,
brute force Random Walk algorithm proved much slower than
all the others and it was removed from all subsequent tests.
In this configuration, the OMA and the Wagner algorithms

Fig. 1. Simplest to complex terrain types

Fig. 2. Results excluding Random Walk (lower is better)

achieve the highest performance in covering the entire terrain.
This is true even for the complex terrain settings, although
the time required to complete the task was higher. Figure 2
shows the time results for all combinations of environments
and algorithms.

B. Jump Enabled Experiment

Tests using either human controlled jump or random jump
options both indicated a slightly positive influence (see Figure
3). On simple terrains where jump can freely take place (since
there are no obstacles applying extra restrictions), it increases
performance to an average of 4%. In the begging of the
coverage process where the terrain is mostly unvisited, through
jump, agents are often given the chance to restart from a new
area instead of revisiting the nearby cells. As the terrain is
further covered agents again have the chance to go to a less
visited area and hence decrease area revisiting while achieving
faster area coverage.

Fig. 3. Human controlled jump enabled

176 | P a g e  
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 10, 2013 



Fig. 4. Evaporation with human controlled jump

Further experiments, indicated that the above benefit is
lost in highly obstructed terrains where the agent’s jump gets
frequently interrupted. In such setups there was actually a
decrease in performance since during the jump effect, agents
do not mark the cells they pass over and time is lost while
their goal is to cover the terrain. It must be noted that when
random jump was enabled the performance differences are
not easily noticeable as the entire process occurs in random.
This means that since there is no control over the distance,
frequency and number of agents that are affected by jump,
no safe conclusions can be made. Hence, in all cases the
human controlled jump provided results that can be more easily
predicted and interpreted, concerning the actual effect of jump
on the terrain coverage process, for the purposes of this work.

C. Pheromone Evaporation and Jump

In the next series of experiments, pheromone evaporation
was added to the environmental settings. OMA and Wagner
again proved to be the fastest algorithms, while the perfor-
mance of Alarm [9] was much closer to the rest. In addition,
total coverage times were higher, as evaporation led to an
increase in the revisits counter, compared to the previous
experiment.

The addition of both types of jump resulted in a similar
to the previous behavior. Specifically, human controlled jump
clearly indicated an improved behavior for non-obstructed
terrains, with its advantages being lost in the complex terrain
setup. Again, this was less noticeable for the random occurring
jump setting. The order of the algorithms based on their
performance was not influenced by jump, with OMA and
Wagner being the fastest ones (see Figure 4).

D. Failure Probability Experiments

The final series of experiments take under consideration the
probability of one or more agents failing during the simulation.
Actually, three different categories were simulated, with the
results in all cases not being comparable in performance terms
with the previous tests, as the number of working agents
decreased during execution.

The first set examines fixed age failure probability. It can
be deducted that the results seen from the experiment were
affected by the too short life time of agents and that with more
available time the coverage of simple terrains is performed

Fig. 5. Constant Failure Probability set to 80%

more efficiently. The addition of jump did not affect the results,
which were almost similar in simple terrains and slightly
slower in complex ones, when compared to not using jump.

The second sub-experiment series examine the case of the
constant failure probability. OMA and Wagner had the most
distinguishing performance. In both experiments with jump
enabled, the performance was slightly improved for simple
terrains. In contrast, it was slower for the obstructed terrains.

The final failure experiment included the increasing failure
probability case. This was actually a more aggressive failure
setting, compared to constant, as with time the chance of an
agent to fail increases. Subsequently, the execution times are
slower than the previous experiments that did not include the
failure factor, as agents were decreased during the simulation.

The addition of human controlled and random jump ap-
peared to play no significant role and in general its effect
cannot be conclusive as the factor of an increasing failure
probability obscures any definitive conclusions, as these were
noticed and elaborated for the first experiments in this section.

V. CONCLUSIONS

This work attempts to explore the variations on the terrain
coverage algorithm performance when the ant robots/agent
can randomly or controlled jump to another position of the
terrain instead of following the “next move” imposed by
the applied each time algorithm heuristic rule. Based on the
conducted experiments, we conclude that the jump effect has
a small positive impact on the performance when referring to
non-complex terrains. However, as the terrain becomes more
complex, with more and more obstacles, a gradual degradation
of the performance results is observed. Further, investigation
can potentially link jumps with other terrain coverage metrics.

REFERENCES

[1] M. Dorigo, V. Maniezzo, and A. Coloni, The ant system: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man,
and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[2] M. Dorigo, M. Birattari and T. Stutzle, Ant colony optimiza-
tion,Computational Intelligence Magazine, IEEE, 2006

[3] Marco Dorigo and Thomas Stutzle, The Ant Colony Optimization
Metaheuristic: Algorithms, Applications, and Advances, International
Series in Operations Research & Management Science, 2003, Volume
57, 250-285, DOI: 10.1007/0-306-48056-5 9

177 | P a g e  
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 10, 2013 



[4] J. R. VanderHeide and N. S. V. Rao. Terrain coverage of an unknown
room by an autonomous mobile robot. Technical report, Oak Ridge
National Laboratory, Tennessee, United States, 1995.

[5] F. Adler and D. Gordon, Information collection and spread by networks
of patrolling ants, The American Naturalist, 140(3):373–400, 1992

[6] Sven Knoenig and Yaxin Liu, Terrain Coverage with Ant Robots: A
Simulation Study, College of Computing, Georgia Institute of Technol-
ogy, Atlanta, GA 30332-0280, 2001

[7] Jonathan Mason and Ronaldo Menezes, Autonomous Algorithms for
Terrain Coverage Metrics, Classification and Evaluation, IEEE Congress
on Evolutionary Computation, 2008

[8] Robert Treverton and Ronaldo Menezes, Evaluating Failure in Terrain
Coverage by Autonomous Agents, IEEE, 978-1-4244-2753-6, 2009

[9] C. Lloyd. The alarm pheromones of social insects: A review. Technical
report, Colorado State University, 2003

[10] Eric Bonabeau , Marco Dorigo and Guy Theraulaz, Swarm intelligence:
from natural to artificial systems, Oxford University Press, Inc., New
York, NY, 1999

[11] S. Thrun, Efficient exploration in reinforcement learning. Technical Re-
port CMU-CS-92-102, School of Computer Science, Carnegie Mellon
University, 1992

[12] Howie Choset, Coverage for robotics – A survey of recent results,
Annals of Mathematics and Artificial Intelligence Volume 31, Numbers
1-4, 113-126, DOI: 10.1023/A:1016639210559

[13] U. Wilensky, Netlogo. Center for Connected Learning and Computer-
Based Modeling, Evanston, 1999

178 | P a g e  
www.ijacsa.thesai.org 

(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No. 10, 2013 


